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1. INTRODUCTION 

1.1. This work is a natural continuation of [ 19, 20, 221 which we refer 
to as I, II, III and whose notation we adopt. Throughout g is a complex 
semisimple Lie algebra, h a Cartan subalgebra for g, and A E h* is dominant 
and regular. 

1.2. Let U(g) be the enveloping algebra of g. Detailed information on the 
primitive spectrum Prim U(g) of U(g) was summarized by Conjecture 7.4 of 
[ 181. Here a main question was to relate Prim U(g) with the Springer 
correspondence. Parts (i), (ii) of this conjecture were established in I, II and 
a partial solution to (iii) was given in [21] sufficient, e.g., to treat g of type 
A,. Meanwhile Borho and Brylinski [5] have established (iii) for induced 
ideals, while Barbasch and Vogan [ 1, 2] have established a version of (iii) in 
which %‘(gr I): I E Prim U(g) is replaced by a certain wavefront set (known 
to be contained in Y(gr 1)). This last work involves some case by case 
analysis and gives little indication as to why the Springer correspondence 
should arise in the study of Prim U(g). 

1.3. Let W be the Weyl group for the pair (g, $) and WA the subgroup of 
“integral reflections” relative to A (notation I, 1.4). After Duflo, one has 
surjective maps h * + Prim U(g) + $*/W defined by p --t Ann Z,(p) --t Z(g) n 
Ann L(p) (notation I, 1.3). In view of the Borho-Janzten translation prin- 
ciple it was natural to conjecture that the kernel of these maps should be 
given by some combinatorial property of W. In fact [ 161, for g of type An- 1 
and when W = W,, these kernels are precisely determined by the Robinson 
correspondence between the symmetric group S, and the set of all pairs of 
standard tableaux associated to the partitions of n. Following this, 
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Spaltenstein observed [30] that the Robinson correspondence was also 
appropriate to describe the Steinberg correspondence (see Section 9) 
introduced [35] to study the set of nilpotent elements in g*. The results of 
Barbasch and Vogan [ 1,2] extend this relationship between Prim U(g) and 
the Steinberg correspondence to arbitrary g. This becomes less precise 
outside type A, and in addition the case-by-case nature of their analysis does 
not permit easy interpretation of this remarkable phenomenon. 

1.4. Let g = n @ h @ n- be the triangular decomposition of g 
corresponding to the choice of h and to the choice of a basis B for the set of 
non-zero roots R. Set b = n @ h. Identify g with g* through the Killing form 
(and hence n* with n-). Let G denote the algebraic adjoint group of g and 
B, N, N-, H the subgroups of G corresponding to b, n, n-, h. 

1.5. Let M be a U(g) module generated by some finite-dimensional 
subspaceM’. After Bernstein [4, Sect. l] the variety y(M) of zeros of 
gr(Ann MO) is independent of MO. Again U(g)/Ann M is cyclic as a left U(g) 
module and we set y&(M) := y(U(g)/Ann M). One observes that 
yd(M) coincides with the variety of zeros of gr(Ann M) (4.6) and is hence 
G stable. This gives the inclusion yd(M) II> Gy(M). For say simple 
highest weight modules one has equality of dimension [24, 6.3.141 in the 
above and hence 

Td(A4) = GT-(M) 

if say ~J/(M) is irreducible (e.g., in type A,, [21]). More recently Borho 
and Bryslinki [5] have proved (*) for M g L(u) with p E h* integral. 

1.6. Our present aim is to compute r(M) for any simple highest weight 
module M. Here we shall present two methods. First we remark (see 10.1) 
that y(M) need not be irreducible. Yet a very general result of Gabber [ 1 l] 
asserts that for any finite-dimensional Lie algebra g and any finitely 
generated U(g) module M which admits no non-zero submodule of strictly 
lower Gelfand-Kirillov dimension the variety y(M) is equidimensional. 
Consequently we need only to be able to compute the components of y(M) 
of maximum dimension. Again we can use Gabber’s result (4.6) to show (for 
M simple) that y&‘(M) is equidimensional. Consequently our methods can 
in principle be extended to establishing (*) of 1.5. 

1.7. Our first method originates from an observation of King [27] (used 
also by Barbasch and Vogan). Let 7 be a closed H stable subvariety of n 
and Z(y) its ideal of definition in S(n). To y we assign a polynomial py 
in S(h) which measures the growth rate of h weight spaces of S(n-)/Z(r). 
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Since P‘(L(p)) 3 lo + n- we may just consider ~-(L(.LL)) to be a closed B 
stable subvariety of n. From King’s observation we show (5.5) that p,Y(L(wlJ) 
is proportional to the Goldie rank polynomial J?,,-, (II, 1.4) assigned to 
U(g)/Ann L(w-‘A). Here P~~~(,,,~)) differs from pI-tL(wi)) in that multiplicities 
are counted. Now let X denote the variety of nilpotent elements of g which 
we recall decomposes into a finite union of G orbits. From the construction 
of Springer [33] one obtains an injective map Sp:X/G -+ I@ with the 
property that for each nilpotent orbit P the number of irreducible 
components of d n n is just dim Sp(B). Denote these components by 7;. 
Applying a technique used by Spaltenstein [31 J (who showed that the 7 i 
have all the same dimension) we show that P,: = C Cpyi is a W submodule 
of S(h). Presumably P, is irreducible of type Sp(c”) 0 sg, where sg denotes 
the sign representation of W. Admitting this and 1.5(*) gives a natural and 
complete solution to part (iii) in Conjecture 7.4 of [ 181. Moreover this 
isomorphism would imply the pTv, to be linearly independent and so 
comparison of the pTi with J?,,~, completely determines Y(L(wA)). Of course 
this last step also requires a fairly explicit knowledge of the p%;. We 
conjecture the precise form of these polynomials in 9.8. Our formula would 
in addition imply the required identification with the Springer correspon- 
dence, namely, that P, is irreducible of type Sp(b) 0 sg. 

1.8. For each w E W, set w(n) = C(X,,: a E R + }. Then G(n n w(n)) is 
an irreducible G stable subvariety of JV and so admits a unique dense orbit 
which we denote by St(w). After Steinberg [35, Sect. 4] the map w t-t St(w) 
of W to .H/G is surjective. Furthermore, from [31] and 1351 one easily 
shows (9.6) that the irreducible components of St(w) f’ n are open in the 
closures of the “Y;(w’) := B(n fl w’(n)): w’ E St-‘(St(w)). Using Enright’s 
functor we develop an inductive procedure for relating T’^(L(-~1)) to 
Yi(w). This shows for example when 1 is integral that Y&(-WA)) 3 Y,(w). 
Though equality fails in general, one expects for 1 integral to have equality 
whenever one has equality of dimension. (One has equality of dimension in 
type A, and a somewhat more precise result than the above (see 9.12, 9.14).) 
In any case it is clear that the above result gives a natural relationship 
between the kernel of the Duflo map and the Steinberg correspondence 
indicated in 1.4. To make this relationship precise we need to show that for 
each w E W there exists iu E h* (not necessarily regular) such that 
Y@(p)) = Yi(w). By a theorem of Gabber [lo] this would imply that 
Y,(w) is involutive; but of course one easily sees (7.5) this to be the case 
directly and so our question can be viewed as a very special case of the 
obvious converse to Gabber’s theorem. 

1.9. One may ask, how does the variety of a highest weight module 
behave under the Enright functor? We show that (for integral weights) this is 
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described by the action of the Weyl group on components as discussed 
briefly in 1.7. This indicates that the Enright functor can be implemented via 
the results of Beilinson and Bernstein [3] (or Brylinski and Kashiwara [6]) 
through the action defined by Springer [33] of W on the components of 
@nit. 

2. THE CHARACTERISTIC POLYNOMIAL 

2.1. For each finite-dimensional C vector space V, we denote by V* its 
dual and by S(V) the symmetric algebra over V. For each ideal Z of S(V) we 
denote by Y(Z) c V* its variety of zeros and for any subvariety Y c V* we 
denote by Z(Y) the ideal of definition of the Zariski closure y of Y. 

2.2. Let 6 be a semisimple endomorphism of V. We assume that the 
eigenvalues {k, , k, ,..., k,} of 6 are strictly positive integers, which we shall 
eventually regard as variables. Extend 6 to a derivation (also denoted by S) 
of S(V). Let M be a finitely generated S(V) module and D a derivation of M 
satisfying D(m) = 6(a)m + a(Dm) for all a E S(V), m E M. (We call D a 6- 
derivation of M.) We assume that D acts locally semisimply on M and that 
all its eigenvalues are positive integers. For each n E R\J set M, = {r E M: 
D< = n<} and define the Poincare series of M through 

R,,.,(X) := f (dim M,) x”. 
fl=O 

As is well known R,(x) takes the form 

%sx) = AAx) 
nizl (1 -Xki) ’ 

where f, is a polynomial. Now assume that M is a cyclic S(v) module 
generated by an eigenvector of D which we can conveniently assume to have 
zero eigenvalue. Then we can write R,(x) in the form 

R,(x) = 1 c,(M) xk.‘, 
IcN 

where k . 1= C:=r k,l, and the c,(M) E C depend on A4 but not on the ki* 
Substitution in (*) and multiplying out its denominator shows that there 
exists a finite subset F,,, c N’ such that 
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where the c;(M) are linear combinations of the c,(M) and again independent 
of the ki. 

2.3. Retain the hypotheses and notation of 2.2. We consider the 
expression 

as a function of n and the ki: i = 1,2,..., t. By 2.2(e) it is a polynomial in it 
on residue classes mod(n ki). Fix a residue class. Then the corresponding 
polynomial has degree equal to the dimension d,,, of the variety associated to 
M and we denote its leading coefficient by TM(k). 

LEMMA. (i) );M(k) is independent of the residue class chosen and takes 
the form 

r&) = P&) 

where pu is a polynomial. 

(ii) If f, is given by (**) then 

p,(k) = 9 r c;(M)(k . I)“, 
rz,, 

where m is the smallest integer >O for which this expression is non-zero. 

(iii) pM is homogeneous of degree t - dM. 

Through the additivity of R, on exact sequences and the fact that in (iii) 
the degree of pw is determined by d, it is enough to assume that M is 
generated by an eigenvector of D. Fix n.E N and take x = e-iCe-is) with 8, E 
real and E > 0. Set no = deg f, + 1. We shall require a complex function h 
satisfying for m real 

= 0, otherwise. 

By Fourier transform we obtain 

h(B) =&j’ ei(8-ie)m dm = (e 
i(6-ia)n _ ei(8-ia)no 

> 

“0 2ni(8 - ie) ’ 
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By construction 

1 
I 

m e ino(.9-ia) 
(e 

i(O-ia)(n-no) _ l)fM(e-ice-ie) de 

=- 
2ni --a3 (e-i@nf=, (1 -e-i(e-ia)kf) ’ 

The integrand admits analytic continuation in the upper half-plane to a 
meromorphic function eieg(f?) with a pole at 8= in. Take n > n,. By the 
choice of n, and by the positivity of k, it follows that g(8) -+ 0 uniformly as 
IO]+ co for 0 < arg 0 < Z. Hence by Jordan’s lemma we have 

i dim M, = Res, g(8) 
*=PZo 

n’-“P‘&) 
= (t _ s)! <n k,) + o(n’-s-l)T 

where s, p,(k) are determined by the Taylor expansion 

fMce -ie) = p,(k)(ie)s + o(eS+ 1) (*I 
around 0 = 0. This gives (i). 

Obviously p,(k) = [f,(x)/( 1 - x)~],= i . If we write 1 - x = y, then from 
2.1(* *) we obtain 

fXx) =’ r @f) go (-I)’ ( “; ‘) Yr) 1. (1 -xl” YS iCF, 
Expand the binomial coefficient in powers of k + I and sum over 1. The first 
non-vanishing sum of the form 

c c;(M)(k . I)” 
IGF, 

gives a non-zero contribution to the coefficient of y” and possibly to terms 
of higher degree in y. Hence (ii). 

From (*) we obtain s = deg p,(k). Yet d,+, = t - s and so deg p,+, = t - d,,,. 
Hence (iii). 

2.4. Take V= n- in 2.1 and identify (n-)* with n through the Killing 
form on g. Let y be an H stable subvariety of n. With -a E R +, 



244 ANTHONYJOSEPH 

-vEP(R)++, take 6 to be the map X, -+ (a, V) X, and M = S(n -)/I(% ‘) in 
2.2 (notation I, 1.3, 1.4, 1.6). Since Z(Y) is h stable hence 6 stable there 
exists a unique 6 derivation D of A4 satisfying D( 1 + Z(Y)) = 0. Writing 
ry = r,, pT = pM we obtain 

COROLLARY. (9 ry = P~/(IL + a) where p, E S(b). 
(ii) py is homogeneous of degree (card R + - dim 7). 

2.5. For each a E R ’ let N, (resp. N;) denote the subgroup of N 
(resp. N-) with Lie algebra CX, (resp. CX-,). Let H, denote the 
subgroup of H with Lie algebra CZZ, (iY, E h being the coroot to a) and S, 
the subgroup of G with Lie algebra 5, := UX, 0 CH, 0 CX-,. Let s, E W 
be the reflection defined by a. 

LEMMA. Zf F is S, stable, then snpy= -ptvG 

Take --v E P(R)++. The Poincare series R,(x) for M = s(n-)/Z(Y) can 
be conveniently written 

R&X, V) = x dim(S(n-)/Z(Y)), A?‘“). 
WSMNR- 

(*I 

The hypothesis on Y implies that s(n-)/Z(Y) is a direct sum of finite- 
dimensional 4, modules and so dim(S(n-)/Z(Y)), = dim(S(n-)/Z(Y)),:n, 
for all ,u E NR -. In particular the non-vanishing of this weight space imphes 
that s,,u E R\lR -. It follows that R&x, V) is also defined for all -v E 
s,(P(Z?)“) and that Rdx, v) = R&x, s,v). Hence s,ry= ry and so 
scrPF=-PT-. 

2.6. Set B, = N,H,, B; = N;H,. Consider the H stable subvariety 7’ 
of n as a subvariety of g. 

PROPOSITION. Assume that V is irreducible and B; stable. Zf S,T $i 7 
then there exists a positive integer z such that 

zPsaT = W>(s, + l)p~-. 

Set Z = Z(Y) and J = Z(S,Y). Since (s(n-)/.Z)X-a is h stable and finitely 
generated [ 131 as an algebra, it admits a Poincare series R&x, v) satisfying 
the conclusions analogous to 2.4. We denote by r’s, 

py := ry 
- au+a ( ) 
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the functions which obtain from K&X, v). We shall compare & with ps, y 
and ptv. 

Since Y is irreducible and B; stable, it follows that Z is an h stable prime 
ideal of s(n) which is also adX, stable. Again J is the largest ideal of 
S(n-) contained in 2 being s, stable. It follows that J is prime and if a E Z 
satisfies (ad X-,)a = 0, then a E J. The latter implies that the restriction of 
the natural projection 71: s(n-)/J+ s(n-)/I to the subalgebra (,S(n-)/J)X-u 
is injective. We identify (s(n-)/J)X-- as a prime subring of s(n-)/I. 

Let z denote the dimension of Fract(S(n-)/I) over Fract(S(n-)/J)X-a. We 
show that z is finite. Since Fract(S(n-)/I) is already finitely generated over 
C it is enough to show that it is an algebraic extension of Fract(S(n-)/J)--. 
Since ad X-,, is a locally nilpotent derivation of s(n-)/J we obtain 
(notation I, 2.3) that d((S(n-)/J)X-a) > d(S(n-)/J) - 1 = d(S(n-)/I), where 
the last equality follows from the hypothesis S,Y 3 Y which since T is 
irreducible implies that dim S,Y = dim Y + 1. 

Since h acts locally semisimply on s(n-)/I we can choose z weight 
vectors in s(n-)/I which are linearly independent over Fract(S(n-)/J)Xmu. 
By choice of z they generate a freee (,S(n-)/J)X-- submodule of rank z of 
s(n-)/I whose quotient has strictly lower Gelfand-Kirillov dimension. It 
easily follows that z$~ = py. 

Let ,U be a weight of (S(n-)/J)X-u. Then ,u is a lowest weight of an 5, 
submodule of S(n-)/J whose weights have multiplicity one and form the cr- 
string ,D, ,U + a, p + 2a ,..., sap. Hence (sap, v) ) 0, for all -v E P(R) + + and 
so R&x, s,v) is defined. Furthermore, for all -v E P(R)‘+ one has 

Rs,(x, v) = c dim(S(n-)/J), x(“‘“) 

= c (dim(S(n-)/J);:-~)(X'","' +X('+a,u) + . . . +X('e"'")) 

uem- 

= (1 _ ;kw)) (zry(x, v) - #Ax, s, v)) + zqx, s, v). 

The second term gives a contribution of lower degree in n, namely, of 
degree dim Y < dim S,T and can therefore be ignored. The first term gives 

rsmfy(v) = (l/a)(Y.&v) - f&s, v)) = (l/a)( 1 - s,) F&v). 

Hence pseY = (l/a)@, + l)&-. 

2.7. We may of course reverse the roles of B,, B; in 2.6. That is, we 
have the 
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PROPOSITION. Let ‘ZT be a B stable irreducible subvariety of g. If n 2 
S,T 3 T then there exists a positive integer z such that zps, F = 
(llak + 1) PT-0 

2.8. Fix a E R ‘, p E S(b). It is well known that (1 - s,)p is divisible by 
a and so pi+ (l/a)(l -s,)p is an element of End S(h). These maps occur in 
the study of the flag variety [ 71 and in particular have been used to describe 
the action of W on its cohomology space. 

2.9. Take a E R + and let m, denote the subvariety of n defined by the 
equation X, = 0. If a E B then m, is also a subalgebra of n and coincides 
with n n s,(n). Set m; = ‘m, (notation I, 2.1). 

LEMMA. Zf 7 G!? m, then 

prnm, = --ap,. 

Set 1=1(Y), J=Z(YAm,). One has J=I+S(n-)X-,. The 
hypothesis Y & m, implies X-, @ I. Since I is a prime ideal, X-, is a non- 
zero divisor in S(n-)/I. For each p E NR - choose a subspace l’, of 
(S(n-)/I), whose image under the natural projection S(n-)/I+ S(n-)/J is 
just (S(n)/&. Set V = @ V, which identifies with S(m;)/(l n S(m;)). 

Since X-, is a non-zero divisor in S(n-)/I and generates S(n-) over 
S(m;) it follows that the sum 

is direct and equals S(n-)/I. Hence 

1 
= 1 _ x-b.~) Rp.nma (x, VI, 

and so P~-~,,,, = -ap,. as required. 

2.10. Let B’ be a subset of B. Let W,, denote the subgroup of W 
generated by the s,: a E B’ and w,, the unique longest element of W, ,. Let 
pe, 3 b (notation I, 1.3) denote the unique parabolic subalgebra of g with 
nilradical ml, := n n w,,(n). Let t,, denote the reductive part of pBC and set 
n,, = r,, n n. Let GB, denote the subgroup of G with Lie algebra rB,. Let Y 
be a subvariety of it,, . Following Lusztig and Spaltenstein [29] it is natural 
to define Ind(Y, pB, T gB,) := Y + m,, . If r is b stable, then so is Ind Y 
and pT defined with respect to rB, coincides with prnd Y. Furthermore if Y is 
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an irreducible component of d n n,, for some nilpotent G,, orbit b, then 
Ind Y is an irreducible component of (Ind B)n n, where Ind B is defined 
[29] to be the unique dense orbit in G(8 + m,,). This is because Y + mB, is 
irreducible and dim(r + m, ,) = dim 7 + dim m,, = f (dim B + 2 dim m, ,) = 
dim(Ind 8) n tt. (See 4.7.) 

3. ACTION OF THE WEYL GROUP 

3.1. Let d be a G orbit of nilpotent elements of g (briefly, a nilpotent 
orbit). Let (q} denote the set of irreducible components of d n n. By [3 1 ] 
the q have all the same dimension and by [34, p. 134; 35, Sect. 41 we even 
have dim q = i dim 8, Vi, which we shall call the Spaltenstein-Steinberg 
equality. Since n is B stable and B is irreducible, each 7 is B stable. Conse- 
quently pTi is defined for each q (notation 2.4). We set P, := 2 Cpyi which 
may be considered as a subspace of S(h). 

THEOREM. P, is a W submodule of S(t)). 

Set pi = pTi. It is enough to show that s,pi E P,, Vu E B, Vi. Fix a E B 
and set P, = BN, which is a parabolic subgroup of G with Lie algebra p, := 
b @ CX-, whose nilradical is m, (notation 2.9). To compute s,pi we 
distinguish two cases. 

Case 1. qcm,. If this holds q is an irreducible component of 
B n m, and hence P, stable (since P, is irreducible). Hence by 2.5 we 
obtain s,pi = -pi E P, as required. 

Case 2. T d m,. Set Ii = I(q n m,) and let Ii = n Jij be a primary 
decomposition for I. For each j set K, = A, which is a prime ideal and 
satisfies Kt c Jij for n suffiently large. Set A = s(n-)/Kij. Then Fract A aa 
(S(n-)/Jij) is finite dimensional over Fract A of dimension say yij. Just as in 
2.6 it follows that pscnmjlJij= yijpscnmjlKij. On the other hand, K, is the ideal 
of definition of an irreducible component of q n m,. By Krull’s theorem 
these components have all the same dimension, so from the above and 2.9 we 
obtain 

To proceed further it is convenient to further distinguish two cases: 

Case 2a. T(Kij) is P, stable. When this holds we obtain 
6, + ‘h+-(K,,) = 0 bY 2.5. 
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Case 2b. qj := P,y(K,,) $ ZV(Kij). Since w’(Kij) is B stable it follows 
that dim yij = 1 + dim T(K,) = dim q. Since m, is P, stable we have 
pij c P,(?J< n m,) = P,yi n m, c 0 n n. Since the 7’; have all the same 
dimension we conclude that qj is dense in a component of d n n. In this 
case pYij E P,. Furthermore by 2.7 there exists a positive integer zij such 
that (l/a)(s, + 1) PqKU) = ZijPyij* 

Combining the above results we obtain 

(8, - l)Pq = (l/a>@, + W-aPTJ 

= (lla)(scz + I) 2 YijPT(Kij) 
j 

= C YijzijP-V, E ‘& 
i 

as required. 

3.2. In 3.1 we observe that the {yj}j are just the components of d n n 
which are contained in m, and whose intersection with q has codimension 
one. Furthermore for each such j the product yijzij is a positive integer which 
can be defined without reference to the polynomialspFi. Yet it is not obvious 
that these coefficients define a representation of W on the free abelian group 
@Zq since we do not know thepri to be linearly independent. It is not even 
obvious that the pFl are cyclic vectors for P,. However from Spaltenstein’s 
analysis [31] it easily follows that a subset of thepri cannot span a strict W 
submodule of P,. 

3.3. We should like to show that P, is irreducible of type Sp(@) @ sg 
(notation 1.7). Here we remark that the appearance of sg should be thought 
of arising from omission of the product of the positive roots from 
denominators. We shall say that an orbit d is of Springer type if this does 
indeed hold. Since dim(Sp(b) 0 sg) = dim Sp(B) and the latter is just the 
number of irreducible components of @ n n for this to hold it is enough that 
P, admits a subrepresentation of type Sp(B) @ sg and furthermore this will 
imply the pY-, to be linearly independent. Actually we should like to show (in 
the language of (II, 1.1)) that Sp(B) @ sg is a univalent W module and so 
determines a unique submodule Sp, of S(h). (This condition on d is termed 
property (B) by Lusztig and Spaltenstein [9].) Given that this holds we 
should in fact like to show that Sp,= P,. 

Now in the notation of 2.10 assume that 4 is a nilpotent G,, orbit in rB,. 

LEMMA. Suppose d has property (B). Then 

(i) Ind B has property (B) and Sp,,, d = C W Sp,. 
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(ii) IfP, = Sp,, then Plnd B = Sp,,, @a 

(i) is just [29,3.5] and then (ii) follows from the remarks above and in 
2.10. 

4. ASSOCIATED VARIETIES 

4.1. Let a be a finite-dimensional Lie algebra and let X(a) denote the 
category of finitely generated U(a) modules. Take M E Ob X(a) and pick a 
finite-dimensional subspace Ma of M such that M= U(a)M’. We define a 
filtration in M compatible with the canonical filtration (U’(a)}j, N of U(a) by 
setting II@ = U’(a) Ma, Vj E N. Then gr M is a finitely generated module 
over the graded algebra gr(U(a)) and the latter we identify with the 
symmetric algebra S(a). After Bernstein [4] the radical dm is 
independent of the choice of the generating subspace Ma and we set Y(M) = 
7 ‘(gr Ann M). Given a E U(a) we let deg Q be the smallest integer m > 0 
such that a E Urn(a). 

LEMMA. Choose a E U(a) and set m = deg a. 

(i) aEAnnM”*aaMjcA4j+m-‘, VjEN and so grAnnM’c 
Ann gr M. 

(ii) Ann gr M c v$?&?@*. 

(i) is clear and (ii) follows from [4, Prop. 1.41. 

4.2. After Bernstein [4] or using the fact that @Uj(a) is noetherian (cf. 
[ 24, 7.1.61) we obtain 

LEMMA. Let 0 + 44, -+ M, + M, --f 0 be an exact sequence of objects in 
<F(a). One has 

4.3. Given ME Ob R(a) choose Ma as in 4.1. Then for any finite- 
dimensional U(g) module E the tensor product M @ E (with the diagonal 
action of g) is generated over Ma @ E and so A4 @ E E ObST(a). 

LEMMA. P-(M) = ?-(A4 @ E). 

Filter M @ E through (M @ E)’ := Uj(a)(M’ @ E) = M’ @ E. Then 
gr(M @ E) is isomorphic to (gr M) @ E as an S(g) module, where E is given 
the structure of a trivial S(g) module. Hence Ann gr(M @ E) = Ann gr M 
and so the assertion of the lemma follows from 4.1. 
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4.4. Given it4 E ObF(a), let d(M) denote its Gelfand-Kirillov 
dimension. One has d(M) = dim Y’(M). Call M smooth if d(M) = d(N) for 
every submodule N # 0 of M. Gabber informs me that he has established the 
following [ 111. 

THEOREM. If M is smooth, then P’(M) is equidimensional. 

4.5. Let M be a U(a) module and consider U(a)/Ann M as a left U(a) 
module. Obviously U(a)/Ann M is generated by the image 1 of the identity 
of U(a). Furthermore Ann 1 = Ann M. Thus if we define Y&(M) := 
Y(U(a)/Ann M) it follows trivially that Y&‘(M) = Y(gr Ann M). 

4.6. Now assume that M is a simple U(a) module. Then the prime ring 
U(a)/Ann M is smooth as a left U(a) module [25,2.3]. Hence by 4.4. 

COROLLARY. Let M be a simple U(a) module. Then F-pP(M) is 
equidimensional. 

4.7. Let 5%’ denote the Bernstein-Gelfand-Gelfand category of “regular” 
U(g) modules (notation I, 2.2). Each ME Ob 9 has finite length and admits 
a locally finite action of b. Thus Y”‘(M) is a closed B stable subvariety of n 
which identifies with Y(gr Ann”,,-, MO) for any finite-dimensional subspace 
MO of M which generates M as a U(n) module. 

We call an irreducible subvariety of n, orbital if it is dense in the closure 
of an irreducible component of d n n for some nilpotent orbit 0’. Every 
closed orbital subvariety of n is B stable; but (except for direct sums of 
copies of sl(2)) the variety CX,: /I a highest root, is B stable but not orbital. 
By the Spaltenstein-Steinberg equality an irreducible subvariety 8‘ of n is 
orbital if and only if dim ‘Y > 4 dim GY” and then equality holds. 

PROPOSITION. Take ME Ob 9. Then every irreducible component of 
Y(M) is closed and orbital. 

By 4.2 we can assume M to be simple. Now GY(M) is a finite union of 
nilpotent orbits contained in Y&‘(M). Since Y”(M) is equidimensional (4.4) 
it is enough to show that dim F(M) > 1 dim F&‘(M), or equivalently that 
d(M) > fd(U(g)/Ann M). The latter holds for any U(g) module M finitely 
generated over U(n) [ 15, 2.61. 

Remark. In 7.4 we give an alternative proof of 4.7 not requiring 4.4. 
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5. COMPARISON WITH GOLDIE RANK POLYNOMIALS 

5.1. Take wE W,,, ,uuE/i+ regular, -vEP(R)++ (notationI, 1.4, 1.6; 
III, 1.1) and set 

R ,(x, ,u, v) = 2 dim L(wp), x(lq”), 
ICNR- 

(notation I, 1.3; II, 3.2). 
Define the Jan&en matrix (II, 1.3) through 

chL(wp)= x e(w, w’) ch M(w’p). 
W’E w* 

From [S, 7.5.6, 7.5.71 this gives 

Just as in Section 2 we can associate a functionp,(p, v) polynomial in v to 
the above Poincare series. From 2.3(ii) we obtain (up to a scalar) that 

P,(PLI, v) = 1 a(w, W’)(W’P, Vy+, 
U’ ’ E w.1 

where m, is the smallest integer 20 for which the above expression is non- 
zero. When we take v = 6 we see that p,(,~, 6) is just the polynomial p’,(p) 
defined in (II, 1.4) and shown there to determine the Goldie ranks of the 
primitive quotients u(9YJ(wP): P E A + (notation I, 1.3). Slightly 
generalizing the analysis of II, King [27] showed that p’,&) divides p&u, v) 
for any v E --P(R)+ +. This implies that p&u, u) factorizes as polynomials in 
p, v which by the symmetry of the given expansion yields 

We remark that as a consequence of the work of various authors 
[3,6,9,28] the a(w, w’) can be considered to be known and are in fact 
determined by a purely combinatorial recipe involving only the specification 
of (WA, B,) as a Coxeter group. However, this is not so useful in computing 
the p’, and even the above factorization cannot yet be established purely 
combinatorially. 

5.2. For each c E h* let el denote the canonical generator of M(c) and et 
its image in t(r). Set I(<) = Ann 
J*(w)= VT% 

U(n-)t?l. Now take WE WA, ,uE~+ and set 
( or simply, J(w)). By [ 14,3.4] J,,(w) is independent of 
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,U E A ’ for which p,(p) # 0 (see III, 1.1). We set w;(w) = ?’ ‘(J,(w)) (or 
simply, w(w)). Of course T”(L(wp)) = w;(w), Vp E A + : p,.(p) # 0. Let 
(PJ) denote the set of orbital varieties of dimension d(L(wp)) = 
cardR’-m,. 

LEMMA. Fix w  E W, . There exist integers lfv > 0 (independent of ,a) such 
that 

Let I = n I&) b e a primary decomposition of Z(W,U) and set Ji = 
m. (One has J(w) = n Ji an d so the Ji are independent of ,u.) Set A i = 
S(n-)/Jj, 7’; = Y(Ji). Let y#) denote the dimension (which is finite) of 
Fract A i Oa i (S(n-)/li~)) over Fract A i. Then 

2 y’,(!4P&9 = p,(i% v) (*) 

where the sum is over all components of maximal dimension. Substituting 
from 5.1(*) and evaluating at say p = p gives the conclusion of the lemma. 

5.3. This result can be used (10.1) to show that V(w) is not always 
irreducible. Yet by Gabber’s result (4.4) it is always equidimensional. Let us 
show how 5.2 can be used to determine its components. 

Let us recall that C W$, = G Wj,,,_, (because every left cell contains an 
involution III, 4.1,4.6) and the latter is a simple univalent W module 
(II, 5.4). Denote this module by P. By 5.2 there exists a component P’; of 
w(w) such that P is a submodule of P, where @ is the unique nilpotent orbit 
dense in GT. Now if P, is simple (e.g., if d is of Springer type, 3.3) it 
follows that P,= P and so pwicwj E P. Moreover, B satisfies property (B) of 
3.3, since P is univalent. Now for distinct orbits 8, b’ of Springer type we 
must have P,# P,, and so we obtain the 

THEOREM. Take PEA+, w  f W, with p,(p) # 0. Suppose that all the 
nilpotents orbits of dimension 2d(L(wp)) in g* are of Springer type. Then 
G?~‘“(w) admits a unique dense nitpotent orbit B and this satisfies the 
property (B) of Lusztig and Spaltenstein. Furthermore Sp, = C Wj,. 

5.4. Since non-induced orbits are rather few and very rarely have the 
same dimension it is plausible that one could combine the analysis of 3.3 
and 5.3 to show (inductively) that all the nilpotent orbits are of Springer 
type. This would of course involve some case by case analysis and is not 
really what we have in mind. Nevertheless, admitting the equality G%‘(w) = 
7--pP(L(wil)) (cf. [6]) th’ 1s would establish part (iii) of conjecture [ 18, 7.41. 
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Note that the hypothesis that all the orbits are of Springer type implies that 
pTi are linearly independent. Since the j,,-, are given by 5.1, a knowledge of 
the pT, allows one to determine r(w) via 5.2. 

5.5. (Notation 5.2). Given that the pTi are linearly independent (e.g., if 
all nilpotent orbits are of Springer type) then in 5.2 we must have that 
y’,(p) = I’,$,&), in particular the yi are all proportional to the Goldie rank 
polynomial ~7,. Actually we can prove this last assertion without knowledge 
of linear independence. We define for each it4 E Ob 9’ the associated 
“scheme” Y(M) E @ NT of M as follows. 

Choose a finite-dimensional generating subspace M” of M considered as a 
CT(n) module and set I = gr(Ann,,,-, MO). Take a primary decomposition 
I = n Ii set Ji = A, 7;‘; = Y(JJ and let y’ denote the multiplicity of Ii with 
respect to Ji as defined in 5.2. By 4.1 each T is an orbital variety and we set 

.Y(M) = 1 yip",, Pmf) = - v Y’P-V,. 

A refinement of Bernstein’s theorem (see [24,6.3.2]) shows that Y(M) is 
independent of the choice ofM”. Furthermore, if E is a finite-dimensional 
module, taking M” 0 E as a generating subspace for M @ E shows as in 4.3 
that P(M @ E) = (dim E) Y(M). Again in the situation of 4.2 we have 
Y(M,) = 9’(M,) + Y(M3). This “additivity principle” implies exactly as in 
[36, Sect. 41 that in 5.2 the yi, are W harmonic polynomials on h*. 
Comparison with the corresponding additivity principle for Goldie rank 
(I, 5.11) shows that the transformation matrices for yi, under the action of 
W, are exactly the same as those for the g, := z,j, (notation I, 5.11; II, 
5.5, Remark 1). It follows that C Wyf+ isomorphic as a WA module to a 
homomorphic image of (the C linear span of the elements of) the left cell of 
WA containing w  (see III, 4.6,4.11). Evaluating 5.2(*) at say v = p we obtain 
for each w  E W integers ki > 0 such that 

x Y’,(P) ki = Ah). 

Since y’,(p) > 0, VP ELI + and n + is Zariski dense it follows that deg yi, < 
deg p’, . Now from the analysis of (II, 5.4) one has that C W,, j, is a simple 
WA module and furthermore is the only simple factor of the left cell of WA 
containing w  which can be realized by polynomials on I)* of degree 
<deg p’, . Thus C WA y: = @ W, p”, for each i and more precisely since the 
transformation matrices of y i,, 6, coincide, Schur’s lemma applied to the 
irreducibility of C WA?, gives rational numbers ri such that y; = ricfw for all 
w  in a given left cell of WA. Up to the overall factor @,,,(p) it follows that 
Y(L(wp)) is independent of the left cell containing w. Indeed Qp9cLtwyjj = 
Qp,_, and so taking account of (II, 5.5) we have established the 
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LEMMA. For all w, w’ E WA one has 

Remarks. We may identify Q??‘(M) with P ‘(M) if F:‘(M) is irreducible. 
Although the above result can also be obtained if it is known that all orbits 
are of Springer type, here we have actually obtained a more precise result 
which gives 1; = riz,. 

6. COMPARISON WITH ENRIGHT COMPLETION 

6.1. Let ME Ob 9 and choose a E B. Call M a-finite if X-, acts 
locally finitely on M and a-free if M admits no non-zero U(g) submodule 
which is a-finite. Since adX_, is a locally nilpotent derivation of U(g) the 
multiplicatively closed subset T, of U(g) generated by X-, is Ore in U(g). 
We set u(9),-m = T;‘U(g) and Mx-, = U(g),-* Bvce, M. Then M is a finite 
(resp. a-free) if and only if &I_, = 0 (resp. the canonical map M-+ Mx_, is 
injective). This shows that M is a-free if and only if it admits no non-zero 
finite-dimensional U(s,) submodule. Again 

LEMMA Take ME Ob 9. Then the following four conditions are 
equivalent. 

(i) M is a-finite. 

(ii) M is a direct sum offinite-dimensional 8, modules. 

(iii) s, pgyi = -pyi, for each component q of T(M). 

(iv) Y(M) c m,. 

(i) + (ii) is clear. (ii) =P (iii) by 2.5. (iii) * (iv) by 4.7 and Case 2 in 3.1. 
(iv) * (i) is clear. 

6.2. Take ME Ob 9, a E B. We define the Enright completion C,M of 
M to be the largest U(e,) submodule of M,-, on which X-, acts locally 
finitely. Since ad X, acts locally finitely on U(g) this is just the largest U(g) 
submodule of M belonging to Ob 9. The functor M+ C,M on Ob 9 is left 
exact, takes a-free modules to a-free modules and commutes with the functor 
M t+ E @M where E is a finite-dimensional U(g) module. (For all this see 
[23] noting [23, 2.121 in particular.) 

Assume that M is a-free. From the canonical embedding M+ Mx-, we 
may identify M with an essential submodule of C,M. We say that M is 
a-complete if M = C,M. 

Choose p E lj*, set @ = Wp, and let &Pi denote the full subcategory of 5%’ 
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of all modules annihilated by some power of the maximal ideal of Z(g) 
(notation I, 1.2) corresponding to 3 E Q*/W= Max Z(g). Then C, restricts 
to a functor on 9L which is the identity unless (a”, wp) E R\l’ for some 
WE w. 

6.3. Assume g = s1(2). The restriction of C, to 5YG is the identity unless 
(a”,p)E Z - (0). A ssume that -(a”,,u) E N +. An easy exercise (cf. 
[24,4.3.5]) shows that 9& admits just live indecomposable non-isomorphic 
objects. Of these only three are a-free, namely, vlu> := M(P), 
P(p) := M(s,p), and the non-trivial extension T(p) of P(p) by V(p). Of these 
only P(P), T(P) are a-complete. The a, module V(p) is simple, 
C, P’(B) = P(p) and the quotient E(p) is a simple 4, module of dimension 
-64 a”). 

LEMMA. Assume -(p, a”) E M + . 

(i) Hom(P(p), V(P)) = 0. 

(ii) Assume dim E < -(p, a”). Any a-free quotient of P(,u) @ E is a 
direct summand and a-complete. 

(i) is clear. For (ii) observe that the hypothesis implies that P(p) @E is a 
direct sum of Verma modules. (Use the action of Z(g) and [8, 7.6.141). Then 
any quotient which is not a direct summand would admit a finite- 
dimensional summand and hence not be a-free. Finally, since C, is left exact 
any direct summand of the a-complete module P(u) @ E is a-complete. 

6.4. Take ME Ob 9, a E B, and assume that M is a-free. Choose a 
finite-dimensional subspace M” c M (resp. (C,M)’ c C,M) which generates 
M (resp. C,M) over u(n). We can assume that M” c (C,M)’ c 
@[X:L] MO and that MO, (C,M)’ are b stable. Set N = C[X-,](C,M)O 
which is a regular a-free 5, submodule of C&f. Since N is contained in the 
a-completion of C[X-,] M” we have dim(N/C[X-,] MO) < co so we can 
assume that 

N = (C,M)’ + C [X-,] MO. t*> 

Set Mj = Uj(n-)M”, (C,M)j = Vj(n-)(C,M)O, VjE N. 

LEMMA. For all j E N one has 

C,Mf-l C[XIf,](C,M)j c (C,M)’ + C[X-,] Mj. 

Set Kj = Uj(m,)N, K = U(m;)N. Then K coincides with C,M and so is 

48 1/88/l I7 
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a-complete and a-free. Its 5, submodule Kj is hence also a-free. We show 
that it is a-complete. We have embeddings 

K’- C,KjA K. 

Let rr denote the projection of U(m;) onto Uj(m;) defined by taking an 
s, module complement to U’(m;). It defines a surjection z’: K + Kj of 4, 
modules whose restriction to K’ is the identity map. Then rt’q: C,Kj --t Kj is 
surjective and is the identity when restricted to K’. Thus if Kj were not 
a-complete it would admit a direct summand isomorphic to a simple 5, 
Verma module V(U) (see 6.3) and we should have maps V(U) + 
C, V(p) -H k’(p) whose composition is the identity. This contradicts 6.3(i). 
We obtain for alljE N that 

c,A4n c[xst,](c,A4)’ c C,MnC[X:;] Kj= C,Kj= K’. 

Yet by (*) 

Kj= Uj(mJNc Uj(m;)((C,M)’ + C[X_,] MO) c (C,M)j + C[X_,] Mj, 

as required. 

6.5. PROPOSITION. Take A4 E Ob 9, a E B. Then 

T(C,M) c P,F(M). 

Set N = ker(M + Mxme). Since localization is exact we have C,(M/N) ?$ 
C,M, so by 4.2 it is enough to assume that M is a-free. Again by 4.2 it is 
enough to show that p”(C,M/M) c P,F’(M). 

Define Mj, (C,M)j as in 6.4. Since M” (resp. (C,M)‘) is b stable we have 
A& = U’(g) MO (resp. (C,M)j = Uj(g)(C,M)‘). Set Z = Ann M” and let .Z be 
the largest p, stable ideal of S(g) contained in gr I. Then .Z is homogeneous 
and is a direct sum of simple finite-dimensional 4, modules. Let V be a 
finite-dimensional 5, submodule of J of homogeneous elements of degree m. 
Choose v E V. Since Vc gr Z, there exists u E Z such that gr u = u. Again for 
each 1 E N we have gr,((ad X_,)’ U) = (ad X-,)’ gr,(u) = (ad X-,)’ u E V 
and so there exists U, E Z such that uI - (ad X-,)’ u E U”-‘(g). Then by 
4.1(i) we obtain ((ad X-J’ U) Mj c Mj+“-‘, V’, I E N. Then for all j E N, 

u(C,M)k (C,MnC[XI;] U’(n-)MO) 

cC,MnC[X:k] y7 (adX_,)‘u A4’ 
( 1Fltv J 

c C,M n c [XI;] Mj+m-l, by the above, 

c (c&f)j+m-l + C[X-,] I@, by 6.4. 
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Setting ((C,M)/M)j = ((C,M)j + M)/M, this means that u(C,M/M)j c 
(caA4/A4)j+“-’ and so u =gr u E Ann,&gr(C,M/M))c \/grAnn(C,M/M)‘, 
by 4.l(ii). Since ZJ, V are arbitrary this gives T(C,M/M) CT(J) = 
m = P,Y(M), as required. 

Remark. P,Y(M) is closed since T(M) is closed and B stable, while 
P,/B is complete [34, p. 681. 

6.6. Take w  E W, and let C(w) (resp. C’(w)) denote the left (resp. right) 
cell of W, to which w  belongs (III, 4.6). One has (III, 4.6) that w’ E C(w) o 
J(w’n) = J(wn) o Cj, = Q?,( (II, 5.5). Again by (II, 5.2(i)) w’ E C’(w) o 
W ‘-I E C(w-1). 

LEMMA. (notation 5.2). 

(i) w(w) is independent of the right cell of WA to which w  belongs. 

(ii) Suppose B, c B. Then GF(w) is independent of the left cell of 
W, to which w  belongs. 

The hypothesis of (i) is equivalent to J(w-‘I1) =J(w’-‘A). Then by 
[ 12, 3.81 there exists a finite-dimensional U(g) module E such that L(wA) is 
a submodule of L(w’l)@E. By 4.3 we obtain Y%‘“(w) := Y(L(wA)) c 
F(L(w’L) @E) = T(L(w’L)) =: ZV’(w’). Interchanging w, w’ reverses the 
inclusion. 

(ii) Take (x E B, and let U, denote the functor on 9 defined in 4.13. (It is 
a subfunctor of the coherent continuation functor 19, defined by suitable 
tensoring with finite-dimensional modules.) By [23, 3.21 one has that L(w’n) 
is a subquotient of (C,L(wA)/L(wL)) aL(w’+‘il) is a subquotient of 
U,L(w-‘A). Thus the completion functors C,: a E B, generate the left cells 
just as the coherent continuation functors 0,: a E B, generate the right cells. 
Now by 4.2, 6.5 we have ?V(w’) c P,?@‘(w) if L(w’n) is a subquotient of 
C,L(wl) and so eventually %+(w’) c GV(w) if w’ E C(w). Hence (ii). 

6.7. We remark that if all nilpotent orbits are of Springer type then 6.6(i) 
obtains from 5.2 and 6.6(ii) from 5.3 without need of the technical restriction 
B, c B. Also 6.6(i) obtains from 5.5 but the proof here is simpler. Thus the 
main interest of 6.5 is not so much computational; but to indicate the 
possible relation between the Enright functor and the Springer action of W 
on the cohomology of fixed point sets of the flag variety. This is made more 
precise as follows. 
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LEMMA. Take ,u E h * and a E B such that -(a”, ,a) is a positive integer. 
If all nilpotent orbits having dimension 2d(LQ)) are of Springer type, then 

~(C,(L@u)) = r(W)) U P,~&(P)) n m,>. 

Set TT= Y(L(p)), W’ = Y(C,(L(p))), %V”” = P,Tn m,. 
We show that ZP = VUV” by comparing the characteristic 

polynomials pi of irreducible components q of both sides. By 4.7 these 
components are all orbital and our hypothesis that all the nilpotent orbits of 
dimension 2d(L@)) are of Springer type implies that their characteristic 
polynomials are linearly independent. 

If p = 2 kipi where ki E R\i we denote by [p] the set {pi: ki # 0). If T is 
a union of some of the K then [pY] determines this union, so what we have 
to show is that [pW] = [pW] U [pF,]. 

Let T(l) denote the union of the components of w  contained in m, and 
T/-cz) the union of those components not contained in m,. By definition 

[Pr] = [Pcl’] u [P’2’]: P”’ = Pr(T(i)T 

whereas by the analysis of 3.1 

[PFI = [P”‘l u [(s, - l)P’*‘l. 

We can assume p regular and write ,u = ~1. If we identify M(w’1) with w’ 
in the Grothendieck group, then L(wA) identifies with 

a(w) := C a(w, w’) w’ E C W, 
W’E W* 

and by [33,3.2] (as noted in 6.5), C,(L(wA)) corresponds to sea(w). 
Carrying through the analysis of 5.1, 5.2 on C,(L(wA)) it follows that there 
exist non-negative integers Ii, lf such that 

C lipi = ~,-l) )J llpi= S,jw-l, (*) 

where li#OoqcTT(resp. Z~#Oo~cT). 
Now by 3.1, s,pi = -pi if q c m,, whereas s, pi is a non-negative 

integer combination of the pi if q & m,. Hence by (*) 

[Ppl = [P”‘l u b,P’2’l 

as required. 

Remarks. One expects the set 7 (l) defined above to be empty. If this 
holds then 7(C,(L(p))/L(,u)) = P,Y(L(,a)) n m,. One may also ask if this 
equality is valid with T replaced by 9 (notation 5.5) in which the right- 
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hand side is computed through taking primary decomposition (as in 3.1). 
The main object of this would be to obtain a geometric interpretation of the 
z, (see III, introduction) and hence a process for computing these important 
coefficients. 

7. INVOLUTIVE VARIETIES 

7.1. Let a be a finite-dimensional Lie algebra. The Poisson bracket 
structure on S(a) is the unique bilinear antisymmetric pairing (a, b) + (a, b} 
of s(a) x s(a)-+ s(a) satisfying {ab, c} = a{& c} + b{a, c}, Vu, b, c E S(a) 
and whose restriction to a is just the Lie bracket on a. One calls a subvariety 
Y of a* involutive if Z(Y) is closed under the Poisson bracket. If Y is 
involutive it is easy to check that all its irreducible components are 
involutive. On the other hand, it can very easily happen that an ideal Z of 
S(a) is closed under Poisson bracket and yet Y(Z) is not involutive. 

7.2. Let a be an algebraic Lie algebra and A its adjoint group (acting 
in a*). Let B be an A orbit and set .Z = J(B). Since (s(a), .Z} c .Z the Poisson- 
bracket structure on s(a) defines in an obvious fashion a Poisson bracket 
structure on the affine algebraic variety (0, S(g)/J). 

LEMMA. Let 7. be an involutive subvariety of 0. Then dim Y > 
f dim 4. 

This is fairly easy and a fairly well-known result. Take x E Y in general 
position. For each f E s(a)/.Z, let <, denote the Hamiltonian vector field 
paired to the differential G!! through the Kirillov-Kostant two-form w. One 
has &s = If, gl and so the hypothesis that Y is involutive implies that 
(xx): f E Z(Y) belongs to the tangent space TX of Y at x. From the relation 
(w, (<Ax), c,(x))) = {f, g}(x), Vf, g E S(a)/.Z it then follows that TX is 
coisotropic with respect to w  and so dim Y’ = dim TX > dim 8, as required. 

7.3. From now on we take a = g. 

LEMMA. Let d be a nilpotent orbit and ‘ZY an involutive subvariety of 
d n n. Then dim Y = dim d n n. 

By the Spaltenstein-Steinberg equality we have dim Y < dim(@ n n) = 
4 dim 8. The opposite inequality follows from 7.2. 

7.4. It follows from 7.3 that any irreducible involutive subvariety of 
W f? n is dense in the closure of a component of d n n, i.e., it is orbital 
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(4.7). From this remark we obtain an alternative proof of 4.7 using the fact 
that P“(M) is always involutive [ 10, Thm. 11. 

7.5. Take w E W and recall (1.8) that G(n n w(n)) admits a unique 
dense orbit St(w). Set P’;(w) = B(n n w(n)), T;(w) = i” i(w) n St(w), 
y(w) = y*(w) n St(w). Obviously P’;(w) is dense in Pi(w). 

LEMMA. P”(w) is an involutive subvariety of St(w). 

Set S(w)={j3ER+:wj3ER”} and n;=C(X-4:/3ES(wP’)}. One 
easily checks that n; is the orthogonal of n n w(n) in n-. It follows that the 
ideal Z of definition of T(w) in S(g) takes the form Z = S(g)b + .Z, where .Z is 
the largest B stable ideal of S(n) contained in S(n-) n;. Now n; is a 
subalgebra of n- and so {J, J} c S(n) n;. Yet {.Z,J} is B stable, hence 
{J, J} c J which gives {Z, I} c Z, as required. 

7.6. COROLLARY. W-(w) is an irreducible component of St(w) n n. 

7.7. Take w E W. Define supp w to be the smallest subset B’ of B such 
that w E W,, (notation 2.10). Now let B’ denote the Bore1 subgroup relative 
to the reductive subalgebra rB, (notation 2.10) having Lie algebra h @ na,. 
Given B’ = supp w, we obtain B(n n w(n)) = B’(nB, n w(n,,)) + m,,. Thus 
Vi(w) takes the form Ind(T-, pe, T Se,) (notation 2.10). A similar remark 
applies to St(w). 

7.8. To see the relevance of induced varieties we first need the general 

LEMMA. Let a be a subalgebra of q and Z a left ideal of U(a). With 
respect to canonical filtrations 

6) gV(q)Z) = S(q) gr 1. 

(ii) Zf m is an ideal of q complementing a in q then gr(U(q)(Z + m)) = 
S(q)@ Z + ml. 

(i) obtains from the fact that U(q) is free as a right U(a) module. For 
(ii) use the direct sum decomposition U(q)Z = Z @ U(m) ml and the fact that 
mZc U(q)m. 

7.9. Let s(rB,) denote the category of regular r,, modules. Take ME 
Ob 2(rB,) and consider M as a U(p,,) module through the trivial action 
of m,, . Then Ind(M, per T g) := U(g) @LICR,j M (simply, Ind M) is a regular 
U(g) module. Furthermore 

LEMMA. r(Ind M) = Ind y(M). 
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By the fact that U(g) is free as a right U(p,,) module and 4.2 we can 
assume that M is cyclic, say M E U(r,,)/Z and then Ind M g 
U(g)/U(g)(Z + m,,). Use of 7.8 gives Y(Ind M) = Y(gr(U(g)(Z + m,,))) = 
7 ‘(S(g)(gr Z + m,,)) = % -(gr Z) + m,, = Ind 7 ‘(M), where we have used that 
rs, @ m,, @ m;, = g, and m,,, rn;, are paired by the Killing form. 

7.10. Take B’ cB and let LB(~) E Ob S(rR,) denote the simplest 
highest weight module with highest weight p -p. The following result is due 
to Jantzen and follows from [14,4.12]. 

PROPOSITION. Take -p E l)* dominant. Then for all w  E W,, one has 

8. SIMPLE HIGHEST WEIGHT MODULES 

8.1. Take w E W and recall that F‘(w) (notation 7.4) is involutive. The 
fundamental question to which we are arriving is the following. Does there 
exist P E b* antidominant such that F“(L(w,u)) = Y(w)? By 7.7-7.10 this 
question is reduced to the case when supp w = B. In particular it has a 
positive answer when w = ws, for then L,(w,,~) (with say ZI = -p) is finite 
dimensional. For the moment there seems to be no general construction 
which works for arbitrary w E W. The main result of this section is 
nevertheless a partial step in this direction. In this we shall fix --p E I)* 
dominant, regular and w E W, a E B such that k := -(a”, wp) is a positive 
integer. Now for each v E h* let e, denote the canonical generator of M(v) 
(having weight v - p) and e; its image in L(V). In the following sections we 
shall establish the following result (notation 7.5). 

PROPOSITION. AnnLIC”-, 6,, c ZZ(n-) n, implies Ann,,,, es, wII c 
~W>%&v. 

8.2. Retain the above hypothesis. 

LEMMA. 

(0 n; cm;. 

(ii) new = s,(n;) @ CX,. 

(iii) [X,, n;] c n;. 

Since -p is dominant and (w - ‘cr “, -p) > 0 we obtain w - ‘a E R ’ and so 
a @G S(w-‘). Hence (i). Again a E B and an elementary calculation shows 
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that S((S, w)-‘) = s,(S(w-‘)) U {a}, Hence (ii). Finally if p E R ‘, 
W-‘PER- and P-aER; then P--aERt and wP1(P-o)=w-‘/3- 
w-‘aER+, which implies (iii). 

8.3. The proof of 8.1 obviously requires a good description of the 
maximal submodule M(v) of M(v). This is provided by the truth of the 
Kazhdan-Lusztig conjecture in the general case [9,28] which through 
[23, 5.11 can be used to describe M(s,w,u) in terms of M(wp) using the 
Enright completion functor C,. This result may be stated as follows. Recall 
that C, is left exact and so C,M(W,U) identifies with a submodule of 
C,M(wp) z M(s, wp) [23, 2.51. Again by [8, 7.6.231 we may also consider 
M(w,u) as a submodule of M(s, w,D). Furthermore 

THEOREM. M(s, w> = WWP) + C,(Ww) 1. 

8.4. From now on set X=X,, Y = X-, . Recall that k := -(a”, wp). 

COROLLARY. 

Ann,,,-, %&VP = U(n) Yk + (C[ Y-‘](AnnU,,-, F,,,,) Y”) n U(n). 

Set e=e,,,,f =ewU. Recall [ 8, 7.1.151 that Yke can be identified with f. 
Take a E Ann,,,-, P. Then by 8.3 we have ae = bYke + ce, for some 
b, c E U(n-) such that ce E C,(M(W,U)). Since Ann,(,-, e = 0 it follows that 
a = bYk + c. Now consider m E C,(M(wp)). By definition of C, there 
exists I E n\l such that Y’m E M(w,u) so we must have Y’m = df = dXk,e, 
for some d E Ann”,,-,f Taking m = ce it follows that c e 
Y-‘(AnnU(,-, 7) Yk n U(n). Conversely, if this holds then ce E (M(w,u)), 
and since Xe = 0 and (ad X)’ c = 0 for f sufficiently large we have that ce E 
C,M(wp) by the definition of C,. From the above observations the 
corollary follows. 

8.5. The conclusion of 8.1 follows from 8.4 if we can show that 

(C[ Y, Y-‘](U(m;) n;) Yk) n U(C) c U(V) s,(n;) mod U(n-)Y. (*) 

In the next few sections we shall develop some machinery for doing this. 

8.6. Set H=H,, s=CX@GH@CY, b=CX@GH, bV=CH@CY. 
Fix a finite-dimensional 5 module E and let F be a b submodule of E. We 
consider C [Y] to be a b - module for adjoint action and take EC [ Y] to be 
the b- module E ac C [ Y] given a right C[ Y] module structure by right 
multiplication in the second factor. Then EC [ Y] admits a left C [ Y] module 
structure through Yez = [Y, e]z + eYz: e E E, z E C [ Y]. For example, take 
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E to be an s submodule of U(m;). Then EC [ Y] identifies with the subspace 
of U(n) generated by E over C [ Y]. Set ] Y) := EC [ Y] Y (which we note is 
distinct from (Y] := YEC [ Y]) and let rr denote the canonical projection of 
EC [ Y] onto EC [ Y]/] Y). We identify Im IZ with E itself. For each k E N + set 
@,#‘) := z(C [ Y, Y-l] FY’ n EC [ Y]) considered as a subspace of E. 
Obviously @,JF) is ad H stable. Furthermore 

LEMMA. [Y, Qk(F)] c Qk(F). (Recall k > 0.) 

Take 0 # f E @,JF). We can write f E z-‘(~) c EC [ Y] as f = Y-‘aYk 
for some a E C[ Y]F. Now j > 0 otherwise f= 0 and so Yf = Y-‘j-“aYk E 
C[Y, Y-l] FYk. Yet [Y,.?] = [K n(f)] = ;~c[Y,fl = 707) E Qk(F), as 
required. 

8.7. PROPOSITION. Qk(F) c ok+ ,(F) with equality fir k > dim E. 

It is enough to show that any ad H weight vector fE Qk(F) satisfies fE 
Qk+ ,(F). For such a choice we can write f = Y-juYk, a E C[ Y]F a weight 
vector. Furthermore we can choose weight vectors fi E F such that each 
product Y’x has weight independent of i and such that 

u = f di Ykfi: di E C. 
i=O 

Moreover, this expression lies in C[ Y]F for arbitrary choices of the di. For 
j > 0 we can write 

We see that ifj and the di are chosen so that 

2 dicj-i,l+i(ad Y)t+ifi=O 
i=O 

for all t > k - j, then Y-juYk E EC [Y] and?:= rr( Y-‘uYk) is just the above 
expression evaluated at t = k - j. If k is replaced by k + 1 then we can 
replace j by j + 1 so that the conditions on t are unchanged. To show 
f E ak+,(F) it is enough to observe that the dependence of cj-i,t+i can be 
compensated by an alteration in the di. This follows from the formula 

cj-i,t+i = 

(-l)‘+’ (j + t - l)! 
(t + i)! (j - i)! 

from which we see that replacement of di by dJ(j - i)! and cancellation of 
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the (j + t - l)! in each equation (*) removes this dependence on j. Similarly 
if k is replaced by k - 1 then we can replace j by j - 1 (to obtain fE 
Sk-,(F)) as long asj> 1. Now if k > dimE then YP’aYk+’ E ]Y) for all 
a E C[ Y]F which together with the first observation proves the last part. 

8.8. Let 71’ denote the canonical projection of EG[ Y] onto EC [Y]/(Yl 
and for each kE N+, set V/~(F) := n’(c [ Y, YP ‘1 FYk n EC [ Y]), considered 
as a subspace of E. Obviously vk(F) is ad H stable. In contrast to the Qk(F) 
these spaces need not be increasing in k (unless say E is a simple module). 
For any C[H] module V on which H acts locally semisimply, let G(V) 
denote the set of weights for which the corresponding H weight subspace of 
V is non-zero. 

A comparison of the rules for computing wk and Qk gives the 

LEMMA. For all k s 0 one has Q(y,(F)) = Q(@,(F)). 

8.9. So far we have not used that F is stable for the action ofX. This 
plays the role described in the following. Set IJ = CH and choose v E I)* such 
that (v, a”) = k. Then the sl(2) Verma module M(v) with canonical generator 
e, admits the submodule M(s,v) with canonical generator e,” = Yke,.. In 
particular M(v) is a-complete and EC [ Y] e,. identifies in the obvious fashion 
with the a-free and u-complete s module E @ M(v). Set Z(v) := G [ Y] FYke,,, 
which because F is b stable identifies with a submodule of E @ M(s,v). 
Finally set J(v) := (c[ Y, Y-i] FYk fl EC [ Y]) e,, which identifies with a 
submodule of E @ M(v). Just as in the proof of 8.4 one shows that there are 
embeddings Z(v) c-t J(v) G C,(Z(v)). 

LEMMA. rf k > dim E, then J(v) = C,(Z(v)). 

As in 8.7 we take a E G [ Y]F to be a weight vector of the form a = C Yx: 
fi E F. We must show that if Y-ja @ EG[ Y] then X’Y-jae, # 0, b’t E R\l. In 
this we can assumef, # 0, and j > 0 without loss of generality. Then 

XY-juev = [X, Ypju] e, 

= ,$ ([X, Yipj]he, + Y’-‘[-&fil e,>. 

Since AnnEClr,e, = 0, the above expression can only vanish if 
[X, Y-j]&e, = 0. Let us write [H,fO] = If,. Through the hypothesis 
k>dimE,wehavek+l>Oandso 

[x, Y-j]&e, = -jY-j-‘(H +j + 1).&e, 

= -jY-j- ‘(k + 1+ j)&e, # 0. 
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Finally F is b stable so [X, Y-ja] e, = Y-‘-‘be, for some (uniquely deter- 
mined) b E F and from the above calculation Y-j-lb 6? EC[Y]. The 
assertion of the lemma results. 

8.10. By 8.7 it makes sense to define 

Q(F) = Lit Qk(F). --t 

LEMMA. Q(W)) = s,(W))- 

Take k > dim E. By a standard argument (cf. [8, 7.6.14]), I(v) has 
composition factors isomorphic to the Verma modules M(s,v + pi): 
pi E Q(F). By the hypothesis on k those modules are simple and have 
different central characters. Then by 8.9 (cf. 6.3) it follows that J(v) is a 
direct sum of Verma modules M(v + sa,ui): pi E O(F). By definition of ty,JF) 
we may write 

J(v) = yk(F) e,, mod( YEG [ Y] e,.) 

= w,JF) e,. mod Y(E 0 M(v)). 

Yet E @ M(v) is also a direct sum (6.3(ii)) of Verma modules (in which 
J(v) embeds) and so we conclude that tyk(F) e, is mod Y(E @ M(v)) the span 
of the highest weight spaces of J(v). Hence Q(v~(F)) = s,@(F)), which 
combined with 8.8 gives the assertion of the lemma. 

8.11. Let E’ be a finite-dimensional s module and let E’E denote an s 
quotient of E’ @ E. For example, let E, E’ be 8, submodules of U(m;) and 
let E’E be defined by the multiplication in U(m;). The following result 
would be trivial for the tensor product E’ @E; but is a rather subtle question 
in general. 

PROPOSITION. @(E’F) = E’@(F). 

Choose k, v as before. We identify E’EG [ Y] e, with E’E @M(v), where 
the latter is defined to be the image (E’ @E) @ M(v) under the map E’ @ 
E -++ E’E. Since Ann E,EC,Y, e, = 0 it suffices to show that 

(C[Y, Y-‘]E’FYknE’EC[Y])e,=E’(C[Y, Yp’]FYknEC[Y])e,, 

for k sufficiently large. 
Now the right-hand side is just E’J(v) whereas an easy calculation shows 

that the left-hand side contains E’J(v) and is contained in C,(E’J(v)). Taking 
k > dim E it follows from 8.9 that J(v) = C,J(v) and moreover (cf. 8.10) is a 
direct sum of a-complete Verma modules M(v + sapi): pi E R(F). NOW 
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E’J(v) is a-free and a quotient of E’ @J(v) g @ (E’ @ M(v + sapi)): 
,D~ E Q(E), so taking k > dim(E @ E’) it follows from 6,3(ii) that E/J(v) is 
a-complete. 

8.12. Suppose that E can be written as a direct sum of simple s modules 
E, such that F = @ (F n Ei). For example, take E = m;, F = n;. 

COROLLARY. @(E’F) = E’s,(F). 

By 8.11 it is enough to show that Q(F) = s,(F) and through the 
hypothesis on E, F we can assume E simple without loss of generality. When 
this holds the assertion follows from 8.6 and 8.10. 

8.13. Writing U(m;) as a direct sum of finite-dimensional 5, modules 
(*) of 8.5 easily follows from 8.12. (We remark that more careful estimates 
of k show that equality holds in (*) of 8.5.) This proves 8.1. 

8.14. Proposition 8.1 is applied through the following 

LEMMA. Take w, w’ E W. If Ann,,,-, e;Y, c U(n) n;, then ~(L(w~)) 1 
T(w’). 

By 7.8 the hypothesis implies that gr Ann,,,-, t?,, c S(n) n;, and so 
~(L(w,u)) c n n w’(n). Finally use that F&(w,u)) is closed and B stable. 

8.15. In the so-called integral case we obtain the following fairly 
satisfactory result. 

THEOREM. Take -p E f~* dominant, regular and suppose that B, c B. 
Then for all w  E W,, one has Y:“(L(wp)) 3 Y(w). 

Since AnnLiCn-i .?M = 0, we obtain Ann,,,-, e,,,, c U(n) n; by induction on 
the length of w. Then the conclusion follows from 8.14. 

Remarks. It is likely that ~(L(w,u)) is irreducible in the above situation. 
When g has only type A, factors one has equality of dimension (see 9.14). If 
B, does not have only type A, factors then equality of dimension fails in 
8.15. Yet it can still happen that equality holds sufftciently often for one to 
be then able to determine ~(L(w,u)) through 6.6(i). 

8.16. In the non-integral case the appropriate generalization of 8.15 
should not be considered to be 8.15 with the technical restriction B, c B 
omitted. Although this might be true it is not the best result. This is 
illustrated by 10.1. 
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8.17. It is obvious that we can generalize 8.1 in the following possibly 
useful fashion. Replace n; by any CH, 0 CX, stable subspace m of m; 
and n,, by s,(m) 0 CX-,. On the other hand, it is unfortunate that the 
converse of 8.14 fails. This is because gr(Ann,,,, E,,) c S(n-) n;, does not 
imply that Ann,,,_, P,, c U(n) rt;,. For example, take g of type s1(3) with 
/I = -p, w = sasq, w’ = s,, where B = {a,/3}. This calculation illustrates 
nicely the theory developed in 8.6-8.12. 

8.18. We can now answer positively a question raised implicitly in 
(III, 5.4). Take -,u E h* dominant, regular and given w  E W,, let l,(w) 
denote its reduced length defined with respect to B,. If p is integral we set 
l,(w) = l(w). 

LEMMA. For all w E W, one has d(L(wp)) > card R ’ - I,(w) with 
equality ly and only if w = wsI for some B’ c B, . 

By the truth of the Kazhdan-Lusztig conjecture in the general case 19,281 
and (II, 5.1) the value of card R ’ -d(L(wp)) depends only on the 
specification of (W,, , B,) as a Coxeter group. Consequently we can assume 
that B = B, without loss of generality. Then by 8.15, d(L(w,u)) = 
dim P‘(L(wp)) > dim Y(w) 2 dim(n n w(n)) = card R ’ - l(w). This proves 
the first part. In the second part “if’ is already given by [ 15,2.8,3.5]. For 
“only if’ we note that the second inequality above is an equality only if 
n n w(n) is B stable. An easy exercise shows that this implies w  to be of the 
prescribed form. 

9. STEINBERG'S CONSTRUCTION 

9.1. In order to formulate our conjecture concerning the characteristic 
polynomial pY associated to an orbital variety Y we need first to make 
explicit some straightforward consequences of Steinberg’s construction 135) 
and Spaltenstein’s equidimensionality theorem [3 11. In this it is customary to 
consider unipotent rather than nilpotent elements. Let P denote the set of 
unipotent elements of G. One has N = P n B. For each g E G, S c G, set 
g(S) = gsg-’ :== {gsg-‘: s E S}. For each w  E W fix a representative in G 
(also denoted by w) set Pi(w) = B(N n w(N)), denote the unique conjugacy 
class dense in G(Nn w(N)) by St(w) and put PJw) = kY,(w)n St(w), 
g(w) =‘%‘*(w) n St(w). Given u E %/, let Z.(u) denote its centralizer in G 
and set A(u) = Zo(u)/ZL(u), where Z”,(u) denotes the connected component 
of the identity in Z,(u). 
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9.2. Set X,,. = BwB. One has the classical result 

G= Lj X,, x, = u x,, (*) 
WE w y< W’ 

where < denotes the Bruhat order. Let 8: G x G + G be defined by 0(x, y) = 
x-‘y and set Y,, = P-‘(X,.). -Taking K := {(g, g): g E G} one finds that 
Y, = K(l, w)(B x B) and so Y,V is a disjoint union of certain Yy: y E W. 
Hence 0((G x G) \ F,,,) = G \ e(F,) an since 0 is open, it follows that d 
tY(F,,,) is closed and so contains 2,. Yet y, c & I@,+,) as P is continuous 
which combined with our previous observation gives 0(F,.) = x,.. From (*) 
we then obtain 

Now let Z, denote the image of Y, in G/B x G/B. Similar reasoning to 
the above gives 

z,,= Lj z,. 
Y<W 

9.3. Let 3 denote the variety of all Bore1 subgroups of G which we 
identify (as usual) with G/B through the isomorphism of gB +gBg-‘. 
Similarly ?8 X 9 is identified with G/B x G/B and then Z,. is just the K 
orbit generated by (B, w(B)) E 2 X ~8. For each conjugacy class @ of 
unipotent elements we set, following Steinberg [34, p. 1341, 

S(g) = {(u, B,, B,) E (@ x J# x .g): u E B, n B,), 

S,,,(g) = {(u, B,, B,) E S(W (B,, B,) E Z,.). 

Let 7-t: S(@)--+ P denote the projection onto the first factor. 

LEMMA. Take u E 59. Then 

(i) (SW(g): w E St-‘(g)} is the set of (distinct) irreducible 
components of S(g). 

(ii) The map S,(F) -+ SJGf) n K’(U): w E St -l(F) is a one-to-one 
correspondence of the irreducible components of S(g) onto the A(u) orbits of 
irreducible components of B’,, x dSu. 

Let X be an irreducible component of -68, x ~8’,,. By 135, 3.11, Y := 
((g(u), g(X)): g E G} is an irreducible component of S(V) and every 
component so obtains. Obviously X-‘(U) n Y = Z.(u)(X) = A(u)(X) and so 
dimY=dimX+dim~=2dim~U+dimQ=cardR, by [31]. Then by 
[35,3.3] Y = S,(Q) for some unique w E W such that @n N n w(N) is 
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dense in N n w(N), equivalently for some unique w E St- l(g). Hence (i) 
and it remains to show that the inclusion S,(O) n C’(U) c S,(‘%) n 
C’(U): w E St-‘(g) is an equality. Now dim(S,(V) n z-l(u)) = 
dim S,(g) - dim g = dim S,(%Y) - dim @ [35,3.3a], so we have equality 
of dimension. On the other hand, the left-hand side is Z.(u) stable, whereas 
the right-hand side is a Z o(u) orbit of an irreducible component of 9” x 5YU. 
Hence (ii). 

9.4. Fix u E N n @. Following Spaltenstein [3 1 ] we define a map rp 
from 5YU x 5YU to the B x B orbits in N n %? x N nQ through 

yl(g,P), gABI) = P(g;‘@)), B(g;‘W)). Th’ IS sets up a bijection $7 between 
the set of Z.(u) x Z,(u) orbits in .?8,, x sU and the B x B orbits in N n GF x 
N n g’, and which also maps bijectively the set of A(u) x A(u) orbits of 
components of 5PU x 5YU to the set of components of N n GY x N n $7. 

LEMMA. Take w E W. Then rp(S,(G?) n IC- l(u)) is contained in Pz(w) x 
W,(w-’ ). If w E St-‘(@) then its closure is Z!(w) X P(w ~ ‘). 

One has 

W,,.(V n ~-‘W) = d(g(B),gwP)): gPnw(B)) 3 ~1 
= (B(g-l(u)), B(w-‘(g-‘(u))): g(N n w(N)) n%? 3 U) 

c q(w) x Pz(w -I), 

which proves the first part. Recalling [3 1 ] that dim Z.(u) - dim B = 
dim ,5?,, - dim %Y n N, it follows from 9.3(ii) that dim o(S,,,(5%7) fI n-‘(u)) = 
2 dim(@ n N) which then gives the second part. 

9.5. COROLLARY. (i) Every irreducible component of N n $9 x N n P 
takes the form P(w) x Z!(w-‘) for some w E Stt’(GY). 

(ii) g(w) x g(w-‘> c Uysw C&/~(Y) x %W’)). 

(i) is an immediate consequence of 9.3 and 9.4. For (ii) observe that 
S,,,(g) is just the inverse image of Z, under the projection rr: S(g) -+ &? X 9. 
Since rc is continuous X-‘(2,) I z-‘(Z,) = S.,(V). Then (ii) follows from 
9.2(***) and 9.4. 

Remark. (i) in a slightly weaker form is due to Spaltenstein 
[ 30, Lemma 11. 

9.6. Let us return to nilpotent elements. From 9.5 we obtain the 

LEMMA. Let B be a nilpotent orbit. 
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(i) Every irreducible component 0 n n takes the form 7‘(w) for some 
w E St-‘(@). In particular every such component is involutive and 
dim y(w) = dim y(w-‘). 

(ii> y(w) = UyGws T(Y). 

9.7. We can use 9.6 to give a much more explicit description of the 
behaviour of components under the action of the Weyl group (as defined in 
Section 3). 

PROPOSITION. Take WE W, aEB. Then y(w)Cm,os,w < w and $ 
either hold F(w) is P, stable. Otherwise 

ma n Pa VW>) = ( u 
r<wls,z<r 

w) u T(w) u F-(s, w). 

Recall that yr(w) is the B stable variety generated by the subspace @{Ix,: 
PER+ \S(w-‘)}. Since aES(w-‘) o s,w < w, this gives the first part. 

Now suppose that s, w  > w. Then one has P, wB = BwB U Bs, wB. Since 
m, is P, stable we obtain 

ma n UT(w)) = PaOx n W4), 

= P,(m, n w(n)>, 

= m, n (P, wB)W, 

= 76, w) u Cm, n T(w)>, 

and hence m, n P,(F’;(w)) = Ti;(s, w) U (m, f? “r/;(w)). Now consider 
F“(w) \ T>(w) which has codimension 21 in p“(w) and is B stable. Hence 
dim P,(T“(w) \ T>(w)) < dim y(w). S ince all components hava the same 
dimension it follows that m, n P,(p’(w) \ p>(w)) is precisely those 
components of St(w) n n which lie in m, and whose union contains 
y(w) \ yz(w). Thus the second part of the lemma follows from 9.6. 

9.8. From 9.7 we can give an explicit description of m, n P,(p;‘(w)) as 
a variety without reference to the polynomials pYC,,,. The result essentially 
coincides with the Kazhdan-Lusztig description [26, Sect. 71 taking account 
of 9.3-9.5). Yet it is not completely obvious that our action of W on the 
pY(,,, coincides with Springer’s action of W on top cohomology. This is 
because we still have to show that multiplicities coincide. Following 
Kazhdan-Lusztig [26, Sect. 51 we set 

S={(u,B,,B,)E(~xXxX):uEB,nBB,} 

S, = I@, B,, BJ E S: (B,, Bz) E Z,}. 

Observe that S(q) (resp. S,(V)) is the inverse image of g in S (resp. S,). 
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The S,: w  E W are irreducible of dimension 2r := card R and form a 
disjoint union of S. Hence the S,,,: w  E W are the irreducible components of 
S and their classes [gw] are a basis for the top homology HJS) of S (with 
rational coefficients). By [26, Sect. 51 H4JS) is a W-W bimodule 
isomorphic to the two-sided regular representation of W. There is hence a 
matrix C with coefficients C(y, w): y, w  E W defined by 

YPZI = 1 C(Y, w)l~wl. 
WEW 

Furthermore C(y, y) = 1 and C(y, w) = 0 unless y < w  [26, Sect. 71. Thus C 
is invertible and we let A denote its inverse whose entries we denote by 
A ( y, w). Then A determines the left W module structures of H,,(S) (and as a 
right W module is determined through the relation y]S,] = [ 3, ] y - ’ ; 
[26, Sect. 51. 

CONJECTURE. For each w  E W, one has (up to a non-zero scalar) 

P Y(W) = 1 A(w, Y>YP”, 
YEW 

where m is the least integer >O such that the right hand is non-zero. (In 
particular, m = deg pYV(H,) = card R + - dim Y(w).) 

it would follow from this conjecture that the natural action of W on the 
pp (,,,, coincides with the left action of W on the W gradation of H&S) 
associated to the W filtration [26,6.1] 

(H,,(S))m := @ {C[Sw]: dim St-‘(w) < 2m). 

In particular the py,wj would generate simple modules isomorphic to the 
Springer module defined on St-‘(w). In the language of 3.3 all orbits would 
then be of Springer type and (what is important for us) the Cpyt,,,) for 
distinct Y(w) would form a direct sum in S(h). Actually we would obtain 
the following more precise result. Observe [26, Sects. 5,6] that the left (resp. 
right) action of Won HJS) corresponds to an action of Won the left (resp. 
right) 9 factor. Through the description (9.3-9.5) of irreducible components 
of each S(Q) it follows that the right action of W fixes the irreducible 
component Y’“(w) defined by the left factor. Consequently the conjecture 
must give that up to scalars 

P ~-v(w) = !: A(w Y)YW’P~, m = deep,,,,, 
YEW 

for all w’ E W. Through the analysis of (II, Sect. 2) it then follows that the 
pp.(,,,) generate univalent (II, Sect. 2) W modules. We conclude that St(w) 

481/8811 I8 
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and hence every nilpotent orbit satisfies condition (B) of Lusztig and 
Spaltenstein. 

9.9. There is an obvious analogy with conjecture 9.8 and the formula 
(II, 5.1) for the Goldie rank polynomials. In type A,,, Kazhdan and Lusztig 
conjecture [26, Sect. 71 that C (notation 9.8) coincides with the Jantzen 
matrix (for integral weights). Through 5.2 and the conjecture this would 
imply that we have equality in 8.15. In general C should be some degenerate 
version of the Jantzen matrix, which satisfies similar positivity requirements 
(cf. [26, Sect. 71). In type B, for example it is known that these positivity 
requirements do not determine the Jantzen matrix and in fact one can even 
see from the early calculations of Jantzen [ 14,3.16] how to choose C in type 
B, to verify conjecture 9.8. Carrying our analogy further we may conjecture 
that this matrix determines the order relations between the Y(w) (defined by 
taking closures) through the notion of a left cell of W introduced in ] 17 ] and 
here defined relative to the basis 

A(w) := x A(w, Y>Y, WE w, 
YEW 

OfGW. 

9.9. Let 7:’ be an orbital variety and define r-(P) = (a E B: B ’ c m,}. 
From 9.7 it is immediate that rr(Y(w)) = r-(w) := t(w-I) := S(w-‘) n B. 

LEMMA. Take -,u E $ * dominant and regular. Then every component P 
ofY(L(wp)) satisfies z-(Y) I3 t-(w). 

Since a E r-(w)* s,w < w it follows that L(w@) is a quotient of 
M(wp)/M(s, WP) and so XL, e,,,, = 0 for k > (a”, wp). Consequently 
7’.(L(wp)) c m, which implies the required assertion. 

9.10. Since the characteristic polynomials pp. behave via 3.1 rather like 
the formal character of a highest weight module under coherent continuation 
(as we already remarked in 6.7) we may apply the Vogan calculus 
[37, Sect. 31 to their analysis. For simplicity we shall do this just in type A,, 
and here we can essentially reduce to the integral case (but see 10.2 for the 
type of corrections required). 

9.11. Take 1 integral and assume that B is simple of type A,. Take 
w E W and choose adjacent simple roots a, /3 such that a & r-(w), 
p E r-(w). (This is always possible except in the “trivial” cases 
w E {ld, We}.) Define 

T&w) = s, w, P 4 r-(s,w) 

=sow, otherwise. 
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LEMMA. nt, n (P,"z;'(w)) admits precisely one component Y satisfing 
a E z-(Y), j3 & r-(Y). Furthermore Y = Y(TJw)). 

Since in type A, every orbit is of Springer type it follows that the pY for 
distinct r are linearly independent. Set p = pYCcw,, By 3.1 and the 
hypothesis we may write s,p = p + p” + p”” where p* (resp. p@‘) denotes 
the sum C yizipYi, where 7’; runs over the components of m,nP,T(w) 
for which a E r-(ZPJ, /I @ r-(q) (resp. a, /I E r-(T)). Similarly we may 
write sDpn = p* + q4 + gab. Then sbs,p = -p + p* + q4 + q”’ - pa4. On 
the other hand, s,(sbs,p) = sqs,sDp = -sOsap and consequently the terms 
in sDs,p correspond to components q for which CI 6Z r-(T) must cancel 
and so q4 = p. Thus p” # 0 which proves that m, n (Pay(w)) has at least 
one component of the required type. If we write pg to denote the charac- 
teristic polynomials of these components, then we have JJ yizips = p” and 
as in the above we may write sop: = pg + qf + qFD. Then 2 y,z,qf = q4 = p 
and so qf E Cp for each i. (Recall that yizi > 0, and the fact that p is the 
characteristic polynomial of an irreducible variety.) Now we may write 
snqf=qf+rp+r~4 and the argument in the first part shows that rg = pg. 
We conclude that the pg are all proportional, so there is exactly one 
component of the required type. Now suppose /3 @ r-(s, w), then we show 
that P-(s, w) is the required component. Through the analysis of 9.7 it is 
enough to show that dim y(s, w) = dim y(w) and for this it is enough to 
observe Z~‘;(S~ w) ~5 m, n P”;(w). This follows because otherwise yr(s, w) c 
P;(w) c m4 contradictory to the hypothesis p @ r-(s, w). Finally if j3 E 
rr(saw), then aE r-(SAW), /?4 r-(w) and so 7’Jsow)= w. Hence T(w) is 
the unique component of m4 n P,T(s, w) satisfying the first part of the 
lemma. From the identity q4 = p it follows that P’(s,w) is the desired 
component of m, n P,"r ‘(w). 

9.12. Recall 8.15. Assume g simple of type A,. 

COROLLARY. Take -p E 9” dominant, integral, and regular. Then for 
each w E W, Y(w) is the unique component of F(L(w,u)) such that 
t-(F“(W)) = t-(w). 

Choose a, /I E B as in 9.11 and set w’ = T,,(w). Let n, be the number of 
components of ~(L(w,u)) with the required property. We show that 
n,, > n,. Then as r(L(w~)) does not depend on the left cell of W to which 
w  belongs we can assume that the right cell containing w  also contains ws, 
for some B’ c B (by the classification of double cells, cf. [ 161). Yet 
y/(L(w,,~)) = r(wB,) and so nwe,= 1. Yet by Knuth’s theorem (cf. 
[37,6.4]) the T,, operators generate the right cells. Thus the above 
inequality gives n, < 1, VW and hence the conclusion of the corollary. 

Consider C,L(wp). By Vogan’s calculus [37, Sect. 3; 23,3.2] it follows 
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that this module admits exactly one subquotient L(w”,B) such that a E 
r-(w”), /? @ tP(w”) and furthermore one finds that w” = w’. Let T-(wi): i = 
1, L..., n,, denote the components of ~(L(w,u)) satisfying the hypothesis of 
the corollary. Since every other simple quotient L( y,u) of C,L(W,U) satisfies 
a,/? E r-(y) it follows from 6.7 and 9.7 that the F(T,,(wi)) are components 
of L(w’,B). Since y(T,,(wi)) = y(7’,,(wj)) o r(wi) = ‘P”(wj) (as in the 
proof of 9.11, cf. [37,3.6]) it follows that n,, > n,, as required. 

9.13. We may also use 9.11 to determine which of the P ‘(w) coincide (in 
type AJ. Choose w, a, b as in 9.11. Set w’ = T,,(w). 

LEMMA. Yqw-1) = T(w'-1). 

Since TD,(T,,(w)) = w, we only have to show this when T,,(w) = s, w. 
Since S(w) c S(s,w) then (cf. 7.5) we have P-(w-r) II y((s,w)-‘) 
trivially. Yet dim r(w) = dim y(w-‘) by 9.5(i) (or by 7.6 using St(w) = 
St(w-I)), whereas dim F(w) = dim ZF(s, w) by 9.11. Consequently, 
dim y:‘(w-‘) = dim F((s, w)-‘) which proves the lemma. 

9.14. Let @: w I-+ (A(w),B(w)) denote the Robinson bijection 
[ 16, Sect. 21 of 

WSS,,,; u WC3 x St(r)), 
Ievn+ 1) 

where P(n + 1) denotes the set of partitions of n and for each r E P(n + l), 
St(c) denote the set of standard tableaux corresponding to & 

COROLLARY. For all w, w’ E W, B’ c B 

(i) y(w) = y(w’) o B(w) = B(w’). 

(ii) (Y(w): ,4(w) =A(w~,)] is the set of irreducible components of 
st( w, ,). 

(i) t obtains from 9.13 using Knuth’s theorem (as in 9.12). Then z- 
obtains from 9.6(i), and 3.3 which implies that the total number of distinct 
orbital varieties is just (in type A J 

c dime= 
ae@ 

2 card@ (0). 
IEP(rz-t 1) 

(One may alternatively apply the analysis of [37, 6.51 to 9.11.) 
Since St(w) = St(w-‘) and .4(w) = B(w-‘) it follows from (i) that the 

{T(w): w E @-‘(St(r) x St(@)} generate the same nilpotent orbit which 
takes the form St(w,,) for some B’ c B, where w,, E @-‘(St(r) X St({)). 
Hence (ii). 
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Remarks. This result in a slightly weaker form is due to Spaltenstein 
[30, Proposition 9.81. From it we easily see that w b Y/(w) x &(w-‘): 
w E W (notation 9.5) is (in type AJ just the Robinson bijection. The iden- 
tification of orbital varieties with standard tableaux which results was first 
obtained by Spaltenstein [32]. From say [16, Thm. 1; 15,2.6] and the 
Spaltenstein-Steinberg equality (3.1) it follows that we have dim Y(w) = 
dim 7 ‘(L(w,u)) in 9.12. 

10. AN EXAMPLE 

10.1. Take g simple of type G,. Set B = { czl, a*} with a, the short root. 
The nilpotent orbit generated by the short root eigenvector Xal is eight 
dimensional and cannot be induced from any proper parabolic subalgebra. It 
is known that these are exactly two completely prime primitive ideals whose 
associated variety is the closure of this orbit. These ideals are maximal ideals 
in the primitive fibres Xx (notation 1, 1.5) when W, is of type A, X A I . Now 
card( W/W,) = 3 and so the WA-dominant chamber is a union of three W- 
chambers. Specifically we may take L = :(o, t OJ (where wi is the 
fundamental weight corresponding to ai) and then A, := s,,1= -i(w, - 20,) 
and A, := s,J = 2w, - iuz are also dominant. On the other hand, the 
Springer representation associated to the eight-dimensional orbit is two- 
dimensional and so its intersection with n has two irreducible components 
7 ;, 17 ;, where we choose 9 ; = 7‘(w,s, ,). 

LEMMA. -F-(I,(ni))= F;: i = 1, 2, F-(L(/l))= T:; u 7; I 

The Goldie polynomials associated to L(L), L(L,), L(L,) are, respec- 
tively, p := (a, + a,)(3a, t a,), P, := s,,P = (2a, + aI) az, Pz := su,P = 
a,(3a, + 2aJ (cf. II, 6.3). Observe that p = p, + pz. Then by 5.2 it is 
enough to show that CP~-~= Cpi: i = 1,2. Now 7 ; = BX,, and so 7 ; c rn,*. 
Through 3.1 this gives sa2pr , = -pr I. Again 7 ; cf m,, and so by 3.1 again 
(s,! - l)p, , = zpr-, for some integer z > 0 which by 3.2 must (in this case) 
be strictly positive. In particular s,,p, .z = -pr Z. Now by 5.2 applied to 
L(L,) there exist 1,) 1, E N such that 

If I, # 0, then applying s,, to both sides we obtain s,,py, = -py-, which 
gives the contradiction z = -2. Hence Cpy2 = Cp2. Applying 5.2 to L(k,) 
we obtain 
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which if 1; # 0 gives the contradiction sa2p2 = -pz. Hence Cpy-, = Cpl , as 
required. 

10.2. The above result illustrates two phenomena. First, unlike the 
situation for the primitive ideals, it can happen that ?“-(L(p)) # 7 ‘(L(s,p)): 
,L E h *, a E B even when (a”, ,u) is not an integer. Secondly that ? ‘(L(U)): 
,U E h* need not be an irreducible variety. Actually these are both quite 
common phenomena for non-integral 1, and particularly easy to detect in the 
case when card B, < card B through arguments similar to the above. Yet one 
can hope to show as in the above case that for the appropriate nilpotent orbit 
0 one can always find a set of w E W such that the V(L(wL)) run through 
the closures of the irreducible components of n n P. 

APPENDIX: INDEX OF NOTATION 

Symbols appearing frequently are given below in order of appearance. 
(See also [ 19,20,22].) 

1.1. 9, $3 1 
1.2. U(g) - 
1.3. w, w, 
1.4. n,n-,B,R,b,G,B,N,N-,H 
1.5. T(ikf), T&(M) 
1.7. Z(T), JV-, sp, P, 
1.8. St(w), yi(w) 
2.1. v*, S(V) 
2.2. R,, f,  
2.3. r,+,, p,,, 

2.4. ryv,py 
2.5. N,, N,, H,, S,, 5,, s, 
2.6. B,, B, 
2.9. m,, rn; 
2.10. W,,, wBI, pel, m,,, rBc, n,,, G,,, Ind7”, Indfl 

3.1. p,, P, 
4.4. d(M) 
4.7. 9 
5.1. JT’, 
5.2. e,, Ft, J(w), W(w) 
5.5. sq4) 
6.2. C,, ~2~ 
6.6. C(w), C’(w) 
7.5. Yl(W), TT(W), P-(w), S(w), n, 
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8.4. X, Y 
8.18. l,(w) 
9.1. g/, q;(w), f%(w)> Z.(u), G&J), A(u) 
9.2. X,, Y,, Z, 
9.3. 9, S(sQ, S,(cz) 
9.9. t-, 7(w) 

Note added in proof: I believe that Refs (9, 28) may not now appear: but it is generally 
believed that the Jantzen conjecture holds even in the non-integral case. 

REFERENCES 

I. D. BARBASCH AND D. VOGAN, Primitive ideals and orbital integrals in complex classical 
groups, Math. Ann. 259 (1982), 153-199. 

2. D. BARBASCH AND D. VOGAN, Primitive ideals and orbital integrals in complex excep- 
tional groups, preprint, J. Alg. 80 (1983), 350-382. 

3. A. BEILINSON AND J. BERNSTEIN, Localisation de g modules, C. R. Acad. Sci. Paris 292A 
(1981), 15-18. 

4. I. N. BERNSTEIN, “Modules over a ring of differential operators, Func. Anal. Appl. 5 
(1971), 89-101. 

5. W. BORHO AND J.-L. BRYLINSKI, Differential operators on homogeneous spaces. I, Invent. 
Math. 69 (1982), 437-476. 

6. J.-L. BRYLINSKI AND M. KASHIWARA, Kazhdan-Lusztig conjecture and holonomic 
systems, Invent. Mafh. 64 (1981), 387-410. 

7. M. DEMAZURE, Dksingularisation des vari& de Schubert g&nkralis&es, Ann. &ole Norm. 
Sup. 7 (1974), 53-88. 

8. J. DIXMIER, “Algkbres enveloppantes, cahiers scientifiques XXXVII,” Gauthier-Villars, 
Paris, 1974. 

9. T. J. ENRIGHT, to appear. 
10. 0. GABBER, The integrability of the characteristic variety, Amer. J. Mafh. 103 (1981), 

445468. 
1 I. 0. GABBER, EquidimensionalitC de la variitk caractkristique, Exposk de 0. Gabber ridigt 

par T. Levasseur, Paris 6, 1982. 
12. 0. GABBER AND A. JOSEPH, On the Bernstein-Gelfind-Gelfand resolution and the Duflo 

sum formula, Compositio Math. 43 (1981), 107-131. 
13. Dz. HADZIEV, Some questions in the theory of vector invariants, Mat. Sb. 72 (1967), 

420-435. 
14. J. C. JANTZEN, “Moduln mit einem hiichsten Gewicht,” Lecture Notes in Mathematics 

No. 750, Springer-Verlag, Berlin/Heidelberg/New York, 1979. 
15. A. JOSEPH, Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma 

modules, J. London Math. Sot. 18 (1978), 50-60. 
16. A. JOSEPH, Sur la classification des ideaux primitifs dans l’algibre enveloppante de 

sl(n + 1, C), C. R. Acad. Sci. Paris 287A (1978), 303-306. 
17. A. JOSEPH, W-module structure in the primitive spectrum of the enveloping algebra of a 

semisimple Lie algebra, in Lecture Notes in Mathematics No. 728, pp. 116-135, 
Springer-Verlag, Berlin/Heidelberg/New York, 1979. 

18. A. JOSEPH, Kostant’s problem, Goldie rank and the Gelfand-Kirillov conjecture, Invent. 
Math. 56 (1980), 191-213. 



278 ANTHONY JOSEPH 

19. A. JOSEPH, Goldie rank in the enveloping algebra of a semisimple Lie algebra, I, J. A/g. 
65 (1980) 269-283. 

20. A. JOSEPH, Goldie rank in the enveloping algebra of a semisimple Lie algebra, II, J. Alg. 
65 (1980), 284-306. 

21. A. JOSEPH, Towards the Jan&en conjecture III, Compositio Math. 41 (1981), 23-30. 
22. A. JOSEPH, Goldie rank in the enveloping algebra of a semisimple Lie algebra, III, J. Alg. 

73 (1981), 295-326. 
23. A. JOSEPH, The Enright functor on the Bernstein-Gelfand-Gelfand category P, Inuent. 

Mafh. 67 (1982), 423-445. 
24. A. JOSEPH, Application de la theorie des anneaux aux algebres enveloppantes, Cours de 

troisieme cycle, Paris VI, 1981. 
25. A. JOSEPH AND L. W. SMALL, An additivity principle for Goldie rank, Israel J. Mafh. 31 

(1978), 105-I 14. 
26. D. KAZHDAN AND G. LUSZTIG, A topological approach to Springer’s representations, 

Advan. Mafh. 38 (1980), 222-228. 
27. D. R. KING, The character polynomial of the annihilator of an irreducible Harish- 

Chandra module, Amer. J. Math. 103 (1981), 1195-1240. 
28. G. LUSZTIG, to appear. 
29. G. LUSZTIG AND N. SPALTENSTEIN, Induced unipotent classes, J. London Math. Sot. 19 

(1979), 41-52. 
30. N. SPALTENSTEIN, “Classes unipotentes de sous-groupes de Borel,” Lecture Notes in 

Mathematics, No. 946, Springer-Verlag, Berlin/Heidelberg/New York, 1982. 
31. N. SPALTENSTEIN, On the fixed point set of a unipotent element on the variety of Bore1 

subgroups, Topology 16 (1977), 203-204. 
32. N. SPALTENSTEIN, The fixed point set of a unipotent transformation on the flag manifold, 

Proc. Konin. Nederl. Akad. 79 (1976), 452-456. 
33. T. A. SPRINGER, A construction of representations of Weyl groups, Invenf. Math. 44 

(1978). 279-293. 
34. R. STEINBERG, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics 

No. 366, Springer-Verlag, Berlin/Heidelberg/New York, 1974. 
35. R. STEINBERG, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 

209-224. 
36. D. VOGAN, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 

(1978), 75-98. 
37. D. VOGAN, A generalized r-invariant for the primitive spectrum of a semisimple Lie 

algebra, Math. Ann. 242 (1979), 209-224. 


