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1. INTRODUCTION

1.1. This work is a natural continuation of [19, 20, 22| which we refer
to as I, II, III and whose notation we adopt. Throughout g is a complex
semisimple Lie algebra, § a Cartan subalgebra for g, and A € b* is dominant
and regular.

[.2.  Let U(g) be the enveloping algebra of g. Detailed information on the
primitive spectrum Prim U(g) of U(g) was summarized by Conjecture 7.4 of
[18]. Here a main question was to relate Prim U(g) with the Springer
correspondence. Parts (i), (ii) of this conjecture were established in I, I and
a partial solution to (iii) was given in [21] sufficient, e.g., to treat g of type
A,. Meanwhile Borho and Brylinski [5] have established (iii) for induced
ideals, while Barbasch and Vogan [1, 2| have established a version of (iii) in
which 77 (gr I): I € Prim U(g) is replaced by a certain wavefront set (known
to be contained in 77(gr I)). This last work involves some case by case
analysis and gives little indication as to why the Springer correspondence
should arise in the study of Prim U(g).

1.3. Let W be the Weyl group for the pair (g, h) and W, the subgroup of
“integral reflections” relative to A (notationI, 1.4). After Duflo, one has
surjective maps h* - Prim U(g)— h*/W defined by 4 — Ann L(u) - Z(g) N
Ann L(g) (notation I, 1.3). In view of the Borho—Janzten translation prin-
ciple it was natural to conjecture that the kernel of these maps should be
given by some combinatorial property of W. In fact [16], for g of type 4,,_,
and when W = W, these kernels are precisely determined by the Robinson
correspondence between the symmetric group S, and the set of all pairs of
standard tableaux associated to the partitions of n. Following this,
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Spaltenstein observed [30] that the Robinson correspondence was also
appropriate to describe the Steinberg correspondence (see Section 9)
introduced [35] to study the set of nilpotent elements in g*. The results of
Barbasch and Vogan [1, 2] extend this relationship between Prim U(g) and
the Steinberg correspondence to arbitrary g. This becomes less precise
outside type 4, and in addition the case-by-case nature of their analysis does
not permit easy interpretation of this remarkable phenomenon.

14. Let g=n@®bh@n~- be the triangular decomposition of g
corresponding to the choice of § and to the choice of a basis B for the set of
non-zero roots R. Set b=n @ b. Identify g with g* through the Killing form
(and hence n* with n™). Let G denote the algebraic adjoint group of g and
B, N, N7, H the subgroups of G corresponding to b, n, n™, b.

1.5. Let M be a U(g) module generated by some finite-dimensional
subspace M°. After Bernstein [4, Sect. 1] the variety 7°(M) of zeros of
gr(Ann M®) is independent of M°. Again U(g)/Ann M is cyclic as a left U(g)
module and we set 7 /(M):=7"(U(g)/Ann M). One observes that
7"/ (M) coincides with the variety of zeros of gr(Ann M) (4.6) and is hence
G stable. This gives the inclusion 7"./(M) > G7 (M). For say simple
highest weight modules one has equality of dimension [24, 6.3.14] in the
above and hence

7"/ (M) = G7 (M) (+)

if say 7"/ (M) is irreducible (e.g., in type 4, [21]). More recently Borho
and Bryslinki [5] have proved () for M >~ L(u) with 4 € h* integral.

1.6. Our present aim is to compute 7" (M) for any simple highest weight
module M. Here we shall present two methods. First we remark (see 10.1)
that 777(M) need not be irreducible. Yet a very general result of Gabber [11]
asserts that for any finite-dimensional Lie algebra g and any finitely
generated U(g) module M which admits no non-zero submodule of strictly
lower Gelfand—Kirillov dimension the variety 7°(M) is equidimensional.
Consequently we need only to be able to compute the components of 77 (M)
of maximum dimension. Again we can use Gabber’s result (4.6) to show (for
M simple) that 7.2/ (M) is equidimensional. Consequently our methods can
in principle be extended to establishing () of 1.5.

1.7. Our first method originates from an observation of King [27] (used
also by Barbasch and Vogan). Let 7~ be a closed H stable subvariety of n
and I(7") its ideal of definition in S(n~). To 7" we assign a polynomial p,-
in S(b) which measures the growth rate of b weight spaces of S(n~)/I(Z").
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Since 7 (L(¢))>b +n~ we may just consider 7 (L(u)) to be a closed B
stable subvariety of n. From King’s observation we show (5.5) that p o (1))
is proportional to the Goldie rank polynomial j,.. (I, 1.4) assigned to
U(g)/Ann L(w™'A). Here p o ; (1, differs from py; (1), in that multiplicities
are counted. Now let .#~ denote the variety of nilpotent elements of g which
we recall decomposes into a finite union of G orbits. From the construction
of Springer [33] one obtains an injective map Sp:.#/G - W with the
property that for each nilpotent orbit ¢ the number of irreducible
components of @ Mn is just dim Sp(¢Z). Denote these components by 7.
Applying a technique used by Spaltenstein [31] (who showed that the 7;
have all the same dimension) we show that P, =}’ Cp,- is a W submodule
of S(h). Presumably P, is irreducible of type Sp(¢7) ® sg, where sg denotes
the sign representation of W. Admitting this and 1.5(x) gives a natural and
complete solution to part (iii) in Conjecture 7.4 of [18]. Moreover this
isomorphism would imply the p,. to be linearly independent and so
comparison of the p,- with j,, . completely determines 7”(L(w4)). Of course
this last step also requires a fairly explicit knowledge of the p,.. We
conjecture the precise form of these polynomials in 9.8. Our formula would
in addition imply the required identification with the Springer correspon-
dence, namely, that P, is irreducible of type Sp(?) ® sg.

1.8. For each w € W, set w(n)=C|{X,: @ € R"}. Then G(n N w(n)) is
an irreducible G stable subvariety of .#” and so admits a unique dense orbit
which we denote by St(w). After Steinberg {35, Sect. 4| the map w+ St(w)
of W to #/G is surjective. Furthermore, from [31] and |35] one easily
shows (9.6) that the irreducible components of St(w) M n are open in the
closures of the 7 (w’) :=B(nNw'(n)): w € St~ '(St(w)). Using Enright’s
functor we develop an inductive procedure for relating 7 (L(—wAd)) to
7 ,(w). This shows for example when A is integral that 7" (L(—wd)) 2 7 (w).
Though equality fails in general, one expects for A integral to have equality
whenever one has equality of dimension. (One has equality of dimension in
type 4, and a somewhat more precise result than the above (see 9.12, 9.14).)
In any case it is clear that the above result gives a natural relationship
between the kernel of the Duflo map and the Steinberg correspondence
indicated in 1.4. To make this relationship precise we need to show that for
each wE W there exists 4 € bh* (not necessarily regular) such that
77 (L(u))=7,(w). By a theorem of Gabber [10] this would imply that
77(w) is involutive; but of course one easily sees (7.5) this to be the case
directly and so our question can be viewed as a very special case of the
obvious converse to Gabber’s theorem.

1.9. One may ask, how does the variety of a highest weight module
behave under the Enright functor? We show that (for integral weights) this is
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described by the action of the Weyl group on components as discussed
briefly in 1.7. This indicates that the Enright functor can be implemented via
the results of Beilinson and Bernstein (3] (or Brylinski and Kashiwara [6])
through the action defined by Springer [33] of W on the components of
anNn.

2. THE CHARACTERISTIC POLYNOMIAL

2.1. For each finite-dimensional C vector space V, we denote by V'* its
dual and by S(V) the symmetric algebra over V. For each ideal I of S(V) we
denote by 77(I) = V* its variety of zeros and for any subvariety 7" < V* we
denote by I(7") the ideal of definition of the Zariski closure 7~ of 7.

2.2. Let 6 be a semisimple endomorphism of V. We assume that the
eigenvalues {k,, k,,..., k,} of & are strictly positive integers, which we shall
eventually regard as variables. Extend & to a derivation (also denoted by 4)
of S(V). Let M be a finitely generated S(V) module and D a derivation of M
satisfying D(am) = é(a)m + a(Dm) for alla € S(V), m € M. (We call D a §-
derivation of M.) We assume that D acts locally semisimply on M and that
all its eigenvalues are positive integers. For each n€ N set M, = {(EM:
D¢ = né} and define the Poincaré series of M through

Ry(x):= Y (dimM,)x".

n=>0
As is well known R,,(x) takes the form

Su(x)

=L

(*)

where f,, is a polynomial. Now assume that M is a cyclic S(V) module
generated by an eigenvector of D which we can conveniently assume to have
zero eigenvalue. Then we can write R, (x) in the form

Ry(x)= > c(M)x*",
leN
where k- 1=3"{_, k;I; and the ¢(M) &€ C depend on M but not on the k;.

Substitution in (*) and multiplying out its denominator shows that there
exists a finite subset F,, « N such that

Sux)= 3 cj(M)x"', ()

leFyy
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where the c¢j(M) are linear combinations of the ¢,(M) and again independent
of the k;.

2.3. Retain the hypotheses and notation of 2.2. We consider the
expression

s

dim M,

0

as a function of n and the &;:i=1,2,...,t. By 2.2(*) it is a polynomial in n
on residue classes mod(] | k;). Fix a residue class. Then the corresponding
polynomial has degree equal to the dimension d,, of the variety associated to
M and we denote its leading coefficient by r,,(k).

LEMMA. (i) r,(k) is independent of the residue class chosen and takes
the form

)= ) ([15).

i=1

where p,, is a polynomial.
(ii) If f,, is given by (xx) then

CD™ s e - o,

m! leFy

pulk) =

where m is the smallest integer >0 for which this expression is non-zero.
(iii) p,, is homogeneous of degree t — d,,.

Through the additivity of R,, on exact sequences and the fact that in (jii)
the degree of p,, is determined by d,, it is enough to assume that M is
generated by an eigenvector of D. Fix n-€ N and take x = e~ '®~'? with 6, ¢
real and ¢ > 0. Set n, =deg f;, + 1. We shall require a complex function A
satisfying for m real

0 . .

J e~ i®=iompgy 4o — 1, na<mEn,
-

=0, otherwise.

By Fourier transform we obtain

(ei(e—ie)n _ ei(B—ie)no)

hO) = 0™ dm =
27 Jn, 27i(0 — ie)
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By construction
n

Y dimM,= Y @imM,)[ e~ '""h(6)do

m=nq m=ng

=[" Ry(e-"2)h(6) d

1 o eino(G—ie)(ei(e_ie)(n—no) _ l)fM(e—i(e_is)) de
gy ) (e R

The integrand admits analytic continuation in the upper half-plane to a
meromorphic function e'%g(f) with a pole at #=ic. Take n>n,. By the
choice of n, and by the positivity of k, it follows that g(f) - O uniformly as
|6| » oo for 0 < arg # < 7. Hence by Jordan’s lemma we have

n
N dim M, = Res, g(6)

m=ng

_ n' = py(k)
¢—sNd1k)

where s, p,,(k) are determined by the Taylor expansion

Sule™) = pyu(k)(i0)° + O(6°*") (*)

around @=0. This gives (i).
Obviously p,,(k) = [f(x)/(1 —x)*],=,. If we write 1 —x =y, then from
2.1(xx) we obtain

+ O(nt—svl)’

Expand the binomial coefficient in powers of k - / and sum over /. The first
non-vanishing sum of the form

3 el(M)k - D"

leFy,

gives a non-zero contribution to the coefficient of y™ and possibly to terms
of higher degree in y. Hence (ii).

From (+) we obtain s = deg p,(k). Yet d,, =t — s and so deg p,, =1t —d,,.
Hence (iii).

2.4, Take V=n" in 2.1 and identify (n™)* with n through the Killing
form ong. Let 2" be an H stable subvariety ofn. With —a€ER™,



244 ANTHONY JOSEPH

—v € P(R)* 7, take & to be the map X, - (a,v) X, and M = S(n")/I(7") in
2.2 (notation I, 1.3, 1.4, 1.6). Since I(7") is b stable hence J stable there
exists a unique & derivation D of M satisfying D(1 + I{Z")) = 0. Writing
ry= Ty, Dy-= Dy We obtain

COROLLARY. (i) 7yp-= psp/([ [acr+ ) where py-€ S(b).
(i) py- is homogeneous of degree (card R* — dim 7).

2.5. For each a €R™ let N, (resp. N;) denote the subgroup of N
(resp. N7) with Lie algebra CX, (resp. CX_,). Let H, denote the
subgroup of H with Lie algebra CH, (H, € h being the coroot to @) and S,
the subgroup of G with Lie algebras, :=CX, @ CH,®CX_,. Lets, € W
be the reflection defined by a.

LEMMA. If 7 is S, stable, then s, py-=—py-.

Take —v € P(R)**. The Poincaré series R, (x) for M = S(n~)/I(7") can
be conveniently written

Ry(x,v)= Y dim(S(n~)/ (7)), x“". (*)
uw€MNR—

The hypothesis on 7~ implies that S(n~)/I(7") is a direct sum of finite-
dimensional s, modules and so dim(S(n~)/I(7")), = dim(S(n~)/ (7)),
for all u € NR . In particular the non-vanishing of this weight space implies
that s,z € NR~. It follows that R,{(x,v) is also defined for all —vE
s,(P(R)**) and that R,{x,v)=Ry{x,s,v). Hence s,ry-=ry and so
Sa Py = —Py-

2.6. SetB,=N_H_,, B, =N_H,. Consider the H stable subvariety 7~
of n as a subvariety of g.

PROPOSITION.  Assume that 7" is irreducible and B stable. If S, 7" 27"~
then there exists a positive integer z such that

Ps 7= (1/a)(s, + 1) Py
Set I=1I(7") and J =1(S,7"). Since (S(n~)/J)*-* is b stable and finitely

generated [13] as an algebra, it admits a Poincaré series R ,{(x, v) satisfying
the conclusions analogous to 2.4. We denote by 75,

b (11

aeR+
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the functions which obtain from R,{x,v). We shall compare 5,- with Ps, >
and p,-.

Since 7" is irreducible and B stable, it follows that 7 is an b stable prime
ideal of S(n~) which is also ad X, stable. Again J is the largest ideal of
S(n~) contained in I being s, stable. It follows that J is prime and if a € 1
satisfies (ad X__)a =0, then a € J. The latter implies that the restriction of
the natural projection z: S(n~)/J— S(n~)/I to the subalgebra (S(n~)/J)*-=
is injective. We identify (S(n~)/J)*-= as a prime subring of S(n~)/I.

Let z denote the dimension of Fract(S(n~)/I) over Fract(S(n~)/J)*-=. We
show that z is finite. Since Fract(S(n~)/I) is already finitely generated over
C it is enough to show that it is an algebraic extension of Fract(S(n~)/J)*~=.
Since ad X__,.is a locally nilpotent derivation of S(n~)/J we obtain
(notation I, 2.3) that d((S(n~)/J)*-+) > d(S(n™)/J) — 1 = d(S(n~)/I), where
the last equality follows from the hypothesis §,7” 2 7" which since 7 is
irreducible implies that dimS_, 7" =dim 7" + 1.

Since by acts locally semisimply on S(n~)/I we can choose z weight
vectors in S(n~)/I which are linearly independent over Fract(S(n~)/J)*=.
By choice of z they generate a freee (S(n~)/J)*- submodule of rank z of
S(n~)/I whose quotient has strictly lower Gelfand—Kirillov dimension. It
easily follows that zj5,-= p,-.

Let u be a weight of (S(n~)/J)*-=. Then u is a lowest weight of an s,
submodule of S(n~)/J whose weights have mulitiplicity one and form the a-
string u, 4 + a, u + 2a,..., s, u. Hence (s, u,v) >0, for all —v€ P(R)** and
s0 R,(x, s, v) is defined. Furthermore, for all —v € P(R)* * one has

Rsay(x, V) = Z dlm(S(n")/J)u x(‘"”’

neNR-
= 3 (dm(STYI)E-e) @B fxmren) o xlenn)
ueNR-
1 _x(Sau‘u.v)
= Y dim(S@a)I) [(__m_)~) ) +x<sau,p>}
ueNR— 1 — x\%

= ﬁ'__iGT) (R (%, v) — R p{x, 5,¥)) + R p{x, 5, ).

The second term gives a contribution of lower degree in n, namely, of
degree dim 7~ < dim S_, 7" and can therefore be ignored. The first term gives

rs, 7 (V) = (1/a)(Fov) — F3ds,v)) = (1/a)(1 —5,) F{).
Hence ps_y-= (1/a)(s, + 1) Py

2.7. We may of course reverse the roles of B,, B, in 2.6. That is, we
have the
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PROPOSITION. Let 7" be a B stable irreducible subvariety of g. If n>
S.7" 27" then there exists a positive integer z such that zpg , =

(1/a)(sq + 1) py--

2.8. Fix a €R"*, p€ S(b). It is well known that (1 —s,) p is divisible by
a and so p—(1/a)(1—s,) p is an element of End S(b). These maps occur in
the study of the flag variety [7] and in particular have been used to describe
the action of W on its cohomology space.

2.9. Take a €R™ and let m, denote the subvariety of n defined by the
equation X, =0. If & € B then m, is also a subalgebra of n and coincides
with n M s,(n). Set m; = ‘m, (notation I, 2.1).

LEMMA. If 7" & m,, then
Pram, = —0Pp-

Set I=01(7"), J=I(Z"Nm,). One has J=I+SMn")X_,. The
hypothesis 7 ¢ m,, implies X __, & 1. Since I is a prime ideal, X _, is a non-
zero divisor in S(n~)/I. For each u € NR~ choose a subspace V, of
(S(n~)/I), whose image under the natural projection S(n~)/7— S(n~)/J is
just (S(n~)/J),. Set V=@ V, which identifies with S(m_)/(I N S(m_)).

Since X_, is a non-zero divisor in S(n~)/I and generates S(n~) over
S(m_) it follows that the sum

Nvxl,

leN

is direct and equals S(n~)/I. Hence

Ry(x,m)=Y ¥ (dim ) x®lan
leNuehpt

1
S x—@n R 7'nm, (x, v),

and 0 p,-~n, = —0p5- as required.

2.10. Let B’ be a subset of B. Let W, denote the subgroup of W
generated by the s,: @ € B’ and wy, the unique longest element of Wj.. Let
psz. > b (notation I, 1.3) denote the unique parabolic subalgebra of g with
nilradical mj ;= n M wy.(n). Let tp, denote the reductive part of p,. and set
1, = 1. M n. Let G,, denote the subgroup of G with Lie algebra t,,. Let 77
be a subvariety of n,.. Following Lusztig and Spaltenstein [29] it is natural
to define Ind(7", p,. T 95.) := 7" + my.. If 7 is b stable, then so is Ind 7~
and p,- defined with respect to t,, coincides with p;,, ,-. Furthermore if 777 is
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an irreducible component of & M n,, for some nilpotent G, orbit 22, then
Ind 7" is an irreducible component of (Ind ) N\ n, where Ind & is defined
[29] to be the unique dense orbit in G(¢Z + my,). This is because 7~ + my, is
irreducible and dim(?7”+my.) =dim 7" +dim m,, = }(dim @+ 2 dimm,.,) =
dim(Ind Z) " n. (See 4.7.)

3. AcTioN oF THE WEYL GROUP

3.1. Let & be a G orbit of nilpotent elements of g (briefly, a nilpotent
orbit). Let {77} denote the set of irreducible components of & M n. By [31]
the 7 have all the same dimension and by [34, p. 134; 35, Sect. 4] we even
have dim 7; =% dim ¢, Vi, which we shall call the Spaltenstein—Steinberg
equality. Since n is B stable and B is irreducible, each 77 is B stable. Conse-
quently p,-, is defined for each 7 (notation 2.4). We set P, := 3" Cp,- which
may be considered as a subspace of S(b).

THEOREM. P, is a W submodule of S(b).

Set p; = py-. It is enough to show that s, p,€ P,, Ya € B, Vi. Fix a € B
and set P, = BN, which is a parabolic subgroup of G with Lie algebra p,, :=
b@® CX_, whose nilradical is m, (notation2.9). To compute s,p; we
distinguish two cases.

Case 1. 7;cm,. If this holds 77 is an irreducible component of
ZMm, and hence P, stable (since P, is irreducible). Hence by 2.5 we
obtain s, p, = —p,; € P, as required.

Case 2. 7;¢m,. Set I;=1(Z7;Nm,) and let I,={)J;; be a primary
decomposition for 1. For each j set K;;= \/.7,;., which is a prime ideal and
satisfies K{; = J; for n suffiently large. Set 4 = S(n~)/K;;. Then Fract4 ®,
(S(n™)/J;) is finite dimensional over Fract A of dimension say y;;. Just as in
2.6 it follows that Py, = VijPsn-yx,;» On the other hand, K, is the ideal
of definition of an irreducible component of 7; M m,. By Krull’s theorem
these components have all the same dimension, so from the above and 2.9 we
obtain

Z YiiPrwy = Pyvinm, = — Py
J

To proceed further it is convenient to further distinguish two cases:

Case 2a. 7°(K;) is P, stable. When this holds we obtain
(Sa + 1) Prx,) =0 by 2.5.
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Case 2b. 7,:=P,7°(K;) 27 (K;;). Since 7" (K};) is B stable it follows
that dim 7, = 1 +d1m7(KU)—d1m7 Since m, is P, stable we have
7,;cP (?/mm )=P, 7 ;Nm, =& Nn. Since the 7 have all the same
d1mens1on we conclude that 77; is dense in a component of @ M. In this
case py- € Pp. Furthermore by 2.7 there exists a positive integer z;; such

that (l/a)(s + I)Pr(x,,) - zup7f,j
Combining the above results we obtain

(8o — Dy, = (1/a)(s, + 1)(—ap5)
=(1/e)sa + 1) yyPr«,

J

= z Vij2ijPy, € Pp,
J

as required.

3.2. In 3.1 we observe that the {77;}; are just the components of & M n
which are contained in m, and whose intersection with 7; has codimension
one. Furthermore for each such j the product y;;z;; is a positive integer which
can be defined without reference to the polynomials p,-. Yet it is not obvious
that these coefficients define a representation of W on the free abelian group
@®Z7; since we do not know the p,- to be linearly independent. It is not even
obvious that the p,- are cyclic vectors for P,. However from Spaltenstein’s
analysis [31] it easily follows that a subset of the p,- cannot span a strict W
submodule of P .

3.3. We should like to show that P, is irreducible of type Sp(Z) ® sg
(notation 1.7). Here we remark that the appearance of sg should be thought
of arising from omission of the product of the positive roots from
denominators. We shall say that an orbit & is of Springer type if this does
indeed hold. Since dim(Sp(?) ® sg)=dim Sp(¢?) and the latter is just the
number of irreducible components of & M n for this to hold it is enough that
P, admits a subrepresentation of type Sp(¢?) ® sg and furthermore this will
imply the p,-, to be linearly independent. Actually we should like to show (in
the language of (II, 1.1)) that Sp(¢?) ® sg is a univalent W module and so
determines a unique submodule Sp, of S(h). (This condition on ¢7 is termed
property (B) by Lusztig and Spaltenstein [9].) Given that this holds we
should in fact like to show that Sp,= P,.

Now in the notation of 2.10 assume that ¢7 is a nilpotent G, orbit in t,..

LEMMA. Suppose @ has property (B). Then
(i) Ind 2 has property (B) and Sp;pq »= CW Sp.
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(ii)) IfPo=Sps, then Pyy o= Spng -

(i) is just [29, 3.5] and then (ii) follows from the remarks above and in
2.10.

4, ASSOCIATED VARIETIES

4.1. Let a be a finite-dimensional Lie algebra and let # (a) denote the
category of finitely generated U(a) modules. Take M € Ob.# (a) and pick a
finite-dimensional subspace M° of M such that M = U(a) M°. We define a
filtration in M compatible with the canonical filtration {U7(a)} jen of U(a) by
setting M’ = U/(a) M°, ¥jE N. Then gr M is a finitely generated module
over the graded algebra gr(U(a)) and the latter we identify with the
symmetric algebra S(a). After Bernstein [4] the radical \/gr Ann M is
independent of the choice of the generating subspace M° and we set 7" (M) =
7"(gr Ann M). Given a € U(a) we let dega be the smallest integer m >0
such that a € U™(a).

LEMMA. Choose a € U(a) and set m = deg a.

(i) a€e AmM’=>aM/ cM/*™"!, YjEN and so grAnmmM°c
Ann gr M.

(ii) AnngrM < /gr Ann M°.

(i) is clear and (ii) follows from [4, Prop. 1.4].

4.2. After Bernstein [4] or using the fact that @U’(a) is noetherian (cf.
[24,7.1.6]) we obtain

LEmMA. Let 0> M,—>M,—> M;— 0 be an exact sequence of objects in
F(a). One has

7 My)=7"(M,) V7 (M,).

4.3. Given M € Ob.#(a) choose M° as in 4.1. Then for any finite-
dimensional U(a) module E the tensor product M ® E (with the diagonal
action of g) is generated over M° ® E and so M ® E € Ob .#(a).

LEMMA. 77(M)=7"(M ® E).

Filler M® E through (M ® E) := U/(a)(M* ® E)=M’® E. Then
gr(M ® E) is isomorphic to (gr M) ® E as an S(g) module, where E is given
the structure of a trivial S(g) module. Hence Anngr(M ® E)=AnngrM
and so the assertion of the lemma follows from 4.1.
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44. Given M€ O0Ob.F(a), let d(M) denote its Gelfand—Kirillov
dimension. One has d(M) = dim 7" (M). Call M smooth if d(M) = d(N) for
every submodule N # 0 of M. Gabber informs me that he has established the
following {11].

THEOREM. If M is smooth, then 7" (M) is equidimensional.

4.5. Let M be a U(a) module and consider U(a)/Ann M as a left U(a)
module. Obviously U(a)/Ann M is generated by the image 1 of the identity
of U(a). Furthermore Annl=AnnM. Thus if we define 7 /(M) :=
7" (U(a)/Ann M) it follows trivially that 7"o/ (M) = 7 (gr Ann M).

4.6. Now assume that M is a simple U(a) module. Then the prime ring
U(a)/Ann M is smooth as a left U(a) module |25, 2.3]. Hence by 4.4.

COROLLARY. Let M be a simple U(a) module. Then 7 /(M) is
equidimensional.

4.7. Let .# denote the Bernstein—Gelfand—Gelfand category of “regular”
U(g) modules (notation I, 2.2). Each M € Ob .# has finite length and admits
a locally finite action of b. Thus 7”(M) is a closed B stable subvariety of n
which identifies with 7”(gr Anny,,,, M®) for any finite-dimensional subspace
M?® of M which generates M as a U(n~) module.

We call an irreducible subvariety of n, orbital if it is dense in the closure
of an irreducible component of &2 n for some nilpotent orbit ?. Every
closed orbital subvariety of n is B stable; but (except for direct sums of
copies of 5/(2)) the variety CX,: § a highest root, is B stable but not orbital.
By the Spaltenstein—Steinberg equality an irreducible subvariety 7~ of n is
orbital if and only if dim 7~ > } dim G7~ and then equality holds.

PROPOSITION. Take M & Ob . #. Then every irreducible component of
7" (M) is closed and orbital.

By 4.2 we can assume M to be simple. Now G777 (M) is a finite union of
nilpotent orbits contained in 7%/ (M). Since 7" (M) is equidimensional (4.4)
it is enough to show that dim 7" (M) > 3 dim 7"/ (M), or equivalently that
d(M) > 1d(U(g)/Ann M). The latter holds for any U(g) module M finitely
generated over U(n~) [15,2.6].

Remark. 1In 7.4 we give an alternative proof of 4.7 not requiring 4.4.
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5. COMPARISON WITH GOLDIE RANK POLYNOMIALS

5.1. Take wE W,, u€ A* regular, —v € P(R)** (notation I, 1.4, 1.6;
II1, 1.1) and set

R, (c,u,v)y= Y dim L(wu), x*?,
{eENR -

(notation I, 1.3; II, 3.2).
Define the Jantzen matrix (II, 1.3) through

chL(wu)= N a(w,w')ch M(w'y).

weWw,

From (8, 7.5.6, 7.5.7] this gives

I (Wu—p,v)
Ruomy)= ¥ a(w, w') x -
wiew, [Tecr+ (1—x )

Just as in Section 2 we can associate a function p, (4, v) polynomial in v to
the above Poincaré series. From 2.3(ii) we obtain (up to a scalar) that

P, v)= N a(w, w)(wy, v)™,

w'ew,

where m,, is the smallest integer >0 for which the above expression is non-
zero. When we take v =0 we see that p,(u, §) is just the polynomial g, (u)
defined in (IL, 1.4) and shown there to determine the Goldie ranks of the
primitive  quotients  U(g)/J(wu):u €A*  (notationI, 1.3).  Slightly
generalizing the analysis of II, King [27] showed that j,(¢) divides p, (4, v)
for any v&€ —P(R)" *. This implies that p,,(u, v) factorizes as polynomials in
4, v which by the symmetry of the given expansion yields

Pyt v) = P () P (V). (*)

We remark that as a consequence of the work of various authors
13, 6,9, 28] the a(w,w’) can be considered to be known and are in fact
determined by a purely combinatorial recipe involving only the specification
of (W,, B,) as a Coxeter group. However, this is not so useful in computing
the p,, and even the above factorization cannot yet be established purely
combinatorially.

5.2. For each { € h* let e, denote the canonical generator of M({) and ¢,
its image in L(£). Set I(£) = Anny,,,&,. Now take wE W,, u € 4" and set
Jaw)=+/I(wu) (or simply, J(w)). By [14,3.4] J,(w) is independent of
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€At for which p (#)+# 0 (see III, 1.1). We set Z,(w)=7 (J,(w)) (or
simply, #(w)). Of course 7" (L(wu))=%,(w), Vu€A*:p (u)#0. Let
{Z;} denote the set of orbital varieties of dimension d(L(wu))=

1
cardR* —m,,.

LEMMA. Fix w € W,. There exist integers I', > O (independent of u) such
that

: l’wp7,= ﬁw*"

Let I(wy)= () I (u) be a primary decomposition of I(wu) and set J,=
VI(¢). (One has J(w)= (1 J; and so the J; are independent of p.) Set 4; =
S, 7;=7"(J,). Let yi(u) denote the dimension (which is finite) of
Fract 4; ®,, (S(n"~)/T(¢)) over Fract 4;. Then

N ) py(v) = (4, v) (+)

where the sum is over all components of maximal dimension. Substituting
from 5.1(*) and evaluating at say u = p gives the conclusion of the lemma.

5.3. This result can be used (10.1) to show that ZZ(w) is not always
irreducible. Yet by Gabber’s result (4.4) it is always equidimensional. Let us
show how 5.2 can be used to determine its components.

Let us recall that CWp, = CWp, ., (because every left cell contains an
involution III, 4.1,4.6) and the latter is a simple univalent W module
(11, 5.4). Denote this module by P. By 5.2 there exists a component 7; of
# (w) such that P is a submodule of P, where 7 is the unique nilpotent orbit
dense in G7;. Now if P, is simple (e.g., if ¢ is of Springer type, 3.3) it
follows that P,= P and $0 py,,, € P. Moreover, 7 satisfies property (B) of
3.3, since P is univalent. Now for distinct orbits 7, &' of Springer type we
must have P,+ P, and so we obtain the

THEOREM. Take u€A*, we W, with p,(¢)+ 0. Suppose that all the
nilpotents orbits of dimension 2d(L(wu)) in g* are of Springer type. Then
G (w) admits a unique dense nilpotent orbit 7 and this satisfies the
property (B) of Lusztig and Spaltenstein. Furthermore Sp,= CWp,,.

5.4. Since non-induced orbits are rather few and very rarely have the
same dimension it is plausible that one couid combine the analysis of 3.3
and 5.3 to show (inductively) that all the nilpotent orbits are of Springer
type. This would of course involve some case by case analysis and is not
really what we have in mind. Nevertheless, admitting the equality GZ(w) =
7”57 (L(wi)) (cf. [6]) this would establish part (iii) of conjecture [18, 7.4].
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Note that the hypothesis that all the orbits are of Springer type implies that
P, are linearly independent. Since the p,,-, are given by 5.1, a knowledge of
the p,-, allows one to determine % (w) via 5.2.

5.5. (Notation 5.2). Given that the p,- are linearly independent (e.g., if
all nilpotent orbits are of Springer type) then in 5.2 we must have that
yi(p) =1, p,(u), in particular the y, are all proportional to the Goldie rank
polynomial p,,. Actually we can prove this last assertion without knowledge
of linear independence. We define for each M & Ob . # the associated
“scheme” ¥ (M) € @ N7, of M as follows.

Choose a finite-dimensional generating subspace M° of M considered as a
U(n~) module and set I = gr(Ann,,,-, M°). Take a primary decomposition
I=1I;setJ;=\/T,,7,=7"(J;) and let y* denote the multiplicity of I, with
respect to J; as defined in 5.2. By 4.7 each 77 is an orbital variety and we set

y(M):Syi7ﬂi’ Py(M)ZSyip%~

A refinement of Bernstein’s theorem (see |24, 6.3.2]) shows that (M) is
independent of the choice of M°. Furthermore, if E is a finite-dimensional
module, taking M® ® E as a generating subspace for M ® E shows as in 4.3
that (M ® E)=(dim E) ¥ (M). Again in the situation of 4.2 we have
F(M,)=(M,) + ¥ (M,). This “additivity principle” implies exactly as in
[36,Sect. 4] that in 5.2 the y! are W harmonic polynomials on b*.
Comparison with the corresponding additivity principle for Goldie rank
(I, 5.11) shows that the transformation matrices for y’ under the action of
W, are exactly the same as those for the §,, :=z,p, (notationl, 5.11; II,
5.5, Remark 1). It follows that CWy' isomorphic as a W, module to a
homomorphic image of (the C linear span of the elements of) the left cell of
W, containing w (see III, 4.6, 4.11). Evaluating 5.2(x) at say v = p we obtain
for each w € W integers k; > 0 such that

Nyl k= pu).

Since y',(#) >0, Yu € A* and A+ is Zariski dense it follows that deg yL.<
deg p,. Now from the analysis of (IL, 5.4) one has that CW, p,, is a simple
W, module and furthermore is the only simple factor of the left cell of W,
containing w which can be realized by polynomials on bh* of degree
<deg p,,. Thus CW,y! =CW, p,, for each i and more precisely since the
transformation matrices of y!,, §, coincide, Schur’s lemma applied to the
irreducibility of CW, p,, gives rational numbers r; such that y{, = r,q,, for all
w in a given left cell of W,. Up to the overall factor §,(u) it follows that
% (L(wu)) is independent of the left cell containing w. Indeed Qp ¢ () =
Qp,,- and so taking account of (II, 5.5) we have established the
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LEMMA. For all w,w' € W, one has
QA (L(wA)) = Q¥ (L(w'A)) < J(w 'A)=J(w' '4).

Remarks. We may identify Q.% (M) with 7 (M) if 77 (M) is irreducible.
Although the above result can also be obtained if it is known that all orbits
are of Springer type, here we have actually obtained a more precise result
which gives /!, =r,z,,.

6. COMPARISON WITH ENRIGHT COMPLETION

6.1. Let M€ Ob.# and choose a € B. Call M a-finite if X_, acts
locally finitely on M and a-free if M admits no non-zero U(g) submodule
which is a-finite. Since ad X_, is a locally nilpotent derivation of U(g) the
multiplicatively closed subset T, of U(g) generated by X_, is Ore in U(g).
We set U(g),_ =T,'U(g) and My_ = U(g)y_, ®yy M. Then M is a finite
(resp. a-free) if and only if M, =0 (resp. the canonical map M —> M, _is
injective). This shows that M is a-free if and only if it admits no non-zero
finite-dimensional U(s,) submodule. Again

LEMMA Take M € Ob.#. Then the following four conditions are
equivalent.

(i) M is a-finite.

(ii)) M is a direct sum of finite-dimensional s, modules.
(iii) s, Py, =Dy, for each component 7'; of 7" (M).
@iv) Z7M)cm,.

(i)= (ii) is clear. (ii)= (iii) by 2.5. (iii)= (iv) by 4.7 and Case 2 in 3.1
(iv)= (i) is clear.

6.2. Take M € Ob.#, a € B. We define the Enright completion C, M of
M to be the largest U(s,) submodule of M, on which X_, acts locally
finitely. Since ad X, acts locally finitely on U(g) this is just the largest U(g)
submodule of M belonging to Ob .#. The functor M - C,M on Ob % is left
exact, takes a-free modules to a-free modules and commutes with the functor
Mi— E ® M where E is a finite-dimensional U(g) module. (For all this see
[23] noting [23, 2.12] in particular.)

Assume that M is a-free. From the canonical embedding M - M,  we
may identify M with an essential submodule of C,M. We say that M is
a-complete if M =C, M.

Choose ¢ € b*, set 4= Wu, and let #,; denote the full subcategory of .#
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of all modules annihilated by some power of the maximal ideal of Z(g)
(notation I, 1.2) corresponding to 4 € h*/W =~ Max Z(g). Then C,, restricts
to a functor on .#; which is the identity unless (a’, wu) €EN* for some
we Ww.

6.3. Assume g = sl(2). The restriction of C, to #; is the identity unless
(a“,#)€Z — {0}. Assume that —(a¥,u)EN*. An easy exercise (cf.
[24, 4.3.5]) shows that #,; admits just five indecomposable non-isomorphic
objects. Of these only three are o-free, namely, V{u):=M(u),
P(u) := M(s,, 1), and the non-trivial extension T(u) of P(u) by V(u). Of these
only P(u), T(u) are a-complete. The s, module V(u) is simple,
C,V(u)=P(u) and the quotient E(u) is a simple s, module of dimension
_'(ﬂs a\/).

LEMMA. Assume —(u,a")ENT,

(i) Hom(P(u), V(u))=0.
(ii) Assume dim E < —(u,a"). Any a-free quotient of P(W)RE is a
direct summand and a-complete.

(i) is clear. For (ii) observe that the hypothesis implies that P(uz) ® E is a
direct sum of Verma modules. (Use the action of Z(g) and [8, 7.6.14]). Then
any quotient which is not a direct summand would admit a finite-
dimensional summand and hence not be a-free. Finally, since C_ is left exact
any direct summand of the a-complete module P(u) ® E is a-complete.

6.4. Take M Ob.#, a € B, and assume that M is a-free. Choose a
finite-dimensional subspace M° < M (resp. (C,M)°® = C_ M) which generates
M (resp. C,M) over U(n~). We can assume that M°c (C,M)°’c
ClXZL]M° and that M°, (C_M)° are b stable. Set N=C[Xx_,](C,M)°
which is a regular a-free s, submodule of C, M. Since N is contained in the
a-completion of C[X_,] M° we have dim(N/C[X_,]M°) < oo so we can
assume that

N=(C, M)’ +C[X_,] M". (*)
Set M/ = /(n")M°, (C, M) = U/(n")(C M)", ¥jEN.
LeEMMA. For all j € N one has
C,MNCIXZ L (C MY c(C MY +C[X_,| M.
Set K/ = U/(m;)N, K =U(m;)N. Then K coincides with C,M and so is

481/88/1-17
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a-complete and a-free. Its s, submodule K’ is hence also a-free. We show
that it is a-complete. We have embeddings

K — C K - K,

Let 7 denote the projection of U(m) onto U’(m) defined by taking an
s, module complement to U’(m). It defines a surjection n': K > K/ of s,
modules whose restriction to K/ is the identity map. Then 7’¢: C, K/ > K’ is
surjective and is the identity when restricted to K’. Thus if K’/ were not
a-complete it would admit a direct summand isomorphic to a simple s,
Verma module V(u) (see6.3) and we should have maps V(u) <
C,V(u)— V(u) whose composition is the identity. This contradicts 6.3(i).

We obtain for all j € N that
C,MNC[XZL(C MY cC ., MNCIX~ | K =C K/ =K'
Yet by (*)
K/ =U/(m7Nc U/(m)(C,M)° + ClX_ | M°) = (C,M) + C[X_,] M,
as required.
6.5. PROPOSITION. Take M € Ob #, a € B. Then
7°(C,M)c P, 7 (M).

Set N =ker(M —» M, ). Since localization is exact we have C,(M/N)>
C,M, so by 4.2 it is enough to assume that M is a-free. Again by 4.2 it is
enough to show that 7 (C_,M/M)cP_7"(M).

Define M’; (C,M)’ as in 6.4. Since M° (resp. (C,M)°) is b stable we have
M = Ui (g) M® (resp. (C,M) = U’(g)(C,M)°). Set I = Ann M° and let J be
the largest p, stable ideal of S(g) contained in gr I. Then J is homogeneous
and is a direct sum of simple finite-dimensional s, modules. Let V" be a
finite-dimensional s, submodule of J of homogeneous elements of degree m.
Choose v € V. Since V < gr 1, there exists « € I such that gr # = v. Again for
each /€N we have gr,((ad X ) u)=(ad X_,) gr,(u)=(ad X_, ) vEV
and so there exists u; € I such that u,— (ad X__)' « € U™ '(g). Then by
4.1(i) we obtain ((ad X__) u) M/ < M/*™~' ¥j, 1€ N. Then for all jE N,

w(C MY < (C,MNC[X-L] U/(n~) M)

cC,MNC[XZ}] (Z (ad X_,) u) M

leN
cC,MNC[XZL]M’*™=', by the above,
c(C,My*™ '+ C[X_,| M', by 6.4.
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Setting ((C,M)/MY = ((C,MY + M)/M, this means that u(C,M/MY c
(C,M/MY*™! and so v=gru€ Anng,(gr(C,M/M))c \/grAnn(C,M/M)",
by 4.1(ii). Since v, V are arbitrary this gives 7 (C,M/M)c 7 (J)=
P, 7°(I) =P,7 (M), as required.

Remark. P, 7°(M) is closed since 7Z"(M) is closed and B stable, while
P./B is complete |34, p. 68].

6.6. Take w&€ W, and let C(w) (resp. C'(w)) denote the left (resp. right)
cell of W, to which w belongs (III, 4.6). One has (II1, 4.6) that w’ € C(w) <
Jw'A)=J(wA) < Cp,, =Cp,. (I, 5.5). Again by (II, 5.2(i))) w’ € €'(w) <
wtecw™").

LEMMA. (notation 5.2).

(i) 277 (w) is independent of the right cell of W, to which w belongs.

(ii) Suppose B, < B. Then G¥#(w) is independent of the left cell of
W, to which w belongs.

The hypothesis of (i) is equivalent to J(w™'A)=J(w’~'i). Then by
[12, 3.8] there exists a finite-dimensional U(g) module £ such that L(wA) is
a submodule of L(w'A)® E. By 4.3 we obtain Z(w):=7"(L(wi)) <
7 (L(wA)® E)y=7"(L(w'A))=:2Z(w’). Interchanging w, w’ reverses the
inclusion.

(ii) Take a € B, and let U, denote the functor on .# defined in 4.13. (It is
a subfunctor of the coherent continuation functor 8, defined by suitable
tensoring with finite-dimensional modules.) By [23, 3.2] one has that L(w'A)
is a subquotient of (C,L(wA)/L(wA))<« L(w' 'A) is a subquotient of
U,L(w~'A). Thus the completion functors C,: a € B, generate the left cells
just as the coherent continuation functors @,: a € B, generate the right cells.
Now by 4.2, 6.5 we have Z(w')cP_ % (w) if L(w’A) is a subquotient of
C,L(wA) and so eventually Z(w') « G#(w) if w' € C(w). Hence (ii).

6.7. We remark that if all nilpotent orbits are of Springer type then 6.6(i)
obtains from 5.2 and 6.6(ii) from 5.3 without need of the technical restriction
B, c B. Also 6.6(i) obtains from 5.5 but the proof here is simpler. Thus the
main interest of 6.5 is not so much computational; but to indicate the
possible relation between the Enright functor and the Springer action of W
on the cohomology of fixed point sets of the flag variety. This is made more
precise as follows.
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LEMMA. Take u € h* and a € B such that —(a", u) is a positive integer.
If all nilpotent orbits having dimension 2d(L(u)) are of Springer type, then

7(Col@)=7"(LW)Y (P, 7" (L(u)) Nm,)-

Set " =7"(L(u), #"' =7 (C, (L)), #" =P, # Nm,.

We show that #" =%"U%" by comparing the -characteristic
polynomials p; of irreducible components 7] of both sides. By 4.7 these
components are all orbital and our hypothesis that all the nilpotent orbits of
dimension 2d(L(u)) are of Springer type implies that their characteristic
polynomials are linearly independent.

If p=>"k;p, where k, €N we denote by [p]| the set {p;: k;#0}. If 7" is
a union of some of the 77 then [ p,-| determines this union, so what we have
to show is that [ py- ]| = [pa] U [Py~ ]

Let 7™V denote the union of the components of 77" contained in m, and
7" the union of those components not contained in m,. By definition

[Pa] =PIV [P?]: PP = Py
whereas by the analysis of 3.1
[Py =[PV (s, — 1)PP].

We can assume u regular and write 4 = wi. If we identify M(w’i) with w’
in the Grothendieck group, then L(wi) identifies with

aw):= > aw,w)w €CW,
wew,

and by [33,3.2] (as noted in 6.5), C,(L(wA)) corresponds to s,a(w).
Carrying through the analysis of 5.1, 5.2 on C,(L(wA)) it follows that there
exist non-negative integers /;, I/ such that

zlipl'=p~w_l’ le{pi=saﬁw~1’ (*)

where [, #0 < 7, ¥ (tesp. I| # 0= ZCH7).
Now by 3.1, s,p,=—p; if 7;cm,, whereas s,p, is a non-negative
integer combination of the p; if 7; & m,. Hence by (*)

[Pa]=[p"]V [s.P?]
as required.

Remarks. One expects the set 7°" defined above to be empty. If this
holds then #°(C_(L(u))/L(1))=P,? (L(z)) Nm,. One may also ask if this
equality is valid with 7" replaced by . (notation 5.5) in which the right-
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hand side is computed through taking primary decomposition (as in 3.1).
The main object of this would be to obtain a geometric interpretation of the
z,, (see III, introduction) and hence a process for computing these important
coefficients.

7. INVOLUTIVE VARIETIES

7.1. Let a be a finite-dimensional Lie algebra. The Poisson bracket
structure on S(a) is the unique bilinear antisymmetric pairing (a, b) - {a, b}
of S(a) X S(a)— S(a) satisfying {ab,c} =a{b,c} + bla,c}, Ya,b,c € S(a)
and whose restriction to a is just the Lie bracket on a. One calls a subvariety
7" of a* involutive if I(7") is closed under the Poisson bracket. If 77 is
involutive it is easy to check that all its irreducible components are
involutive. On the other hand, it can very easily happen that an ideal I of
S(a) is closed under Poisson bracket and yet 77(I) is not involutive.

7.2. Let a be an algebraic Lie algebra and A its adjoint group (acting
in a*). Let ¢ be an A orbit and set J = J(&). Since {S(a), J} < J the Poisson-
bracket structure on S(a) defines in an obvious fashion a Poisson bracket
structure on the affine algebraic variety (22, S(g)/J).

LEMMA. Let 7 be an involutive subvariety of . Then dim 7" >
1 .

2 dim 2.

This is fairly easy and a fairly well-known result. Take x € 7" in general
position. For each f € S(a)/J, let ¢ denote the Hamiltonian vector field
paired to the differential df through the Kirillov—Kostant two-form w. One
has ;g = {f, g} and so the hypothesis that 7~ is involutive implies that
Edx): f € I(77) belongs to the tangent space T, of 7~ at x. From the relation

(W, (EAx), &(x))) = {f; g}(x), Yf, g€ S(a)/J it then follows that T, is
coisotropic with respect to w and so dim 7" =dim T, > dim &, as required.

7.3. From now on we take a=g.

LEMMA. Let @ be a nilpotent orbit and 7" an involutive subvariety of
ZNn Then dim 7" = dim & M.

By the Spaltenstein—Steinberg equality we have dim 7"  dim(Z Mn) =
1 dim 2. The opposite inequality follows from 7.2.

7.4. Tt follows from 7.3 that any irreducible involutive subvariety of
@ZMn is dense in the closure of a component of & Mn, i.e., it is orbital
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(4.7). From this remark we obtain an alternative proof of 4.7 using the fact
that 77(M) is always involutive {10, Thm. 1].

7.5. Take w€& W and recall (1.8) that G(nMyw(n)) admits a unique
dense orbit St(w). Set 7 ,(w)=B(nnw(n)), 7, (w)=7(w)NSt{w),
77 (w) = 75(w) N St(w). Obviously 7,(w) is dense in 7 (w).

LEMMA. 77 (w) is an involutive subvariety of St(w).

Set Sw)={fER":wPER "} and n, =C{X_g:fE€SwW ')}. One
easily checks that n,, is the orthogonal of n M w(n) in n~. It follows that the
ideal I of definition of 7" (w) in S(g) takes the form 7 = S(g)b + J, where J is
the largest B stable ideal of S(n~) contained in S(n~)n,. Now n is a
subalgebra of n~ and so {J,J} = S(n " )n,. Yet {J,J} is B stable, hence
{J,J} < J which gives {I,1} c I, as required.

7.6. COROLLARY. 7 (w) is an irreducible component of St(w) M n.

1.7. Take w €& W. Define supp w to be the smallest subset B’ of B such
that w € W, (notation 2.10). Now let B’ denote the Borel subgroup relative
to the reductive subalgebra r,, (notation 2.10) having Lie algebra b ® n,..
Given B’ =supp w, we obtain B(n M w(n))=B'(ng. M w(n,.)) + mg.. Thus
7 ,(w) takes the form Ind(?", p,. | g,.) (notation 2.10). A similar remark
applies to St(w).

7.8. To see the relevance of induced varieties we first need the general

LEMMA. Let a be a subalgebra of q and I a left ideal of U(a). With
respect to canonical filtrations

(i) er(U(@))=S()erl
(i) If m is an ideal of 9 complementing a in q then gr(U(q)({ + m)) =
S(a)(gr+ m).
(i) obtains from the fact that U(q) is free as a right U(a) module. For

(ii) use the direct sum decomposition U(q)/ =1 @ U(m) ml and the fact that
ml < U(q)m.

7.9. Let #(tp.) denote the category of regular r,, modules. Take M €
Ob #(t,,) and consider M as a U(py.) module through the trivial action
of my.. Then Ind(M, p,. T ) := U(g) ®uipyy M (simply, Ind M) is a regular
U(g) module. Furthermore

LEmMma. 77(Ind M) =Ind 7" (M).



VARIETY OF A HIGHEST WEIGHT MODULE 261

By the fact that U(g) is free as a right U(p,,) module and 4.2 we can
assume that M is cyclic, say M= U(ty)/[ and then IndM=
U(g)/U(8)({ + my.). Use of 7.8 gives 7 (Ind M) =7"(gr(U(g)(I + mp.))) =
7(S(a)grI+mg))=7"(grI) + my, =Ind 7 (M), where we have used that
ty. @ my @ my, =g, and my,, my, are paired by the Killing form.

7.10. Take B'c B and let L,(u)€ Ob #(r;,) denote the simplest
highest weight module with highest weight u — p. The following result is due
to Jantzen and follows from [14, 4.12].

PROPOSITION, Take —u € bY* dominant. Then for all w &€ W, one has

Ind(L, (wu), pg. 1 8) = L(wy).

8. SimMpLE HiIGHEST WEIGHT MODULES

8.1. Take w& W and recall that 7 (w) (notation 7.4) is involutive. The
fundamental question to which we are arriving is the following. Does there
exist 4 € b* antidominant such that 77 (L(wu))=7"(w)? By 7.7-7.10 this
question is reduced to the case when supp w= B. In particular it has a
positive answer when w = w,, for then L, (w, u) (with say 4 = —p) is finite
dimensional. For the moment there seems to be no general construction
which works for arbitrary w& W. The main result of this section is
nevertheless a partial step in this direction. In this we shall fix —u € h*
dominant, regular and w € W, a € B such that k := —(a", wu) is a positive
integer. Now for each v € h* let e, denote the canonical generator of M(v)
(having weight v —p) and &, its image in L(v). In the following sections we
shall establish the following result (notation 7.5).

PROPOSITION.  Anny,,,€,, < Um " )n; implies Anng ) €
Un™)ng .

8.2. Retain the above hypothesis.

LEMMA.
(i) n,cm;.
(i) ng,=s,m))®CX_,.
(iii) [X,,n,]lcn,.

Since —u is dominant and (w~'a", —u) > 0 we obtain w™'a € R* and so

a& S(w™"'). Hence (i). Again ¢ € B and an elementary calculation shows
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that S((s,w) ") =s,(Sw™ ") U {a}. Hence (ii). Finally if BERT,
w 'BER™ and B—aER; then f—aERY and w '(B—a)=w " 'f—
w~'a € R*, which implies (iii).

8.3. The proof of 8.1 obviously requires a good description of the
maximal submodule M(v) of M(v). This is provided by the truth of the
Kazhdan-Lusztig conjecture in the general case [9,28] which through
[23,5.1] can be used to describe M(s,wu) in terms of M(wu) using the
Enright completion functor C,,. This result may be stated as follows. Recall
that C, is left exact and so C,M(wu) identifies with a submodule of
C,M(wu) = M(s,wu) [23,2.5]. Again by [8, 7.6.23] we may also consider
M(wu) as a submodule of M(s, wu). Furthermore

THEOREM. M(s, wu) = M(wu) + C_ (M(wu)).
8.4. From now onset X =X,, Y =X__. Recall that k := —(a", wu).

COROLLARY.
Anng, &, =Un") Y*+ (C[Y'|(Anny, €,,) Y )N Un").

Sete=e, ,,,f=e,,. Recall [8,7.1.15] that ¥ ke can be identified with f.
Take a€ Ann,,(n y& Then by 8.3 we have ae=bY"e+ce, for some
b,c € U(n~) such that ce € C,(M(wu)). Since Ann,,,_, e =0 it follows that
a=>bY*+c. Now consider m € C,(M(wu)). By definition of C, there
exists /€ N such that ¥'m € M(wu) so we must have Y'm =df = dX* e,
for some d€Anny,.,f Taking m=ce it follows that c€
Y~!(Anny,-, f) Y*N U(n~). Conversely, if this holds then ce € (M(wu)),
and since Xe =0 and (ad X)' ¢ = 0 for ¢ sufficiently large we have that ce €
C,M(wu) by the definition of C,. From the above observations the
corollary follows.

8.5. The conclusion of 8.1 follows from 8.4 if we can show that
(ClY, Y ' (Um)n;) YYNUm™)c Un™)s,(ny)mod Un™)Y. (x)
In the next few sections we shall develop some machinery for doing this.

86. Set H=H,,s=CX®CH®CY,b=CX®CH, b~ =CH®C(CY.
Fix a finite-dimensional s module E and let F be a b submodule of E. We
consider C[Y] to be a b~ module for adjoint action and take EC[Y] to be
the b~ module £ ®:C[Y] given a right C[Y] module structure by right
multiplication in the second factor. Then EC[Y] admits a left C[Y] module
structure through Yez = [Y, ez + eYz:e € E, z € C[Y]. For example, take
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E to be an s submodule of U(m_ ). Then EC|Y] identifies with the subspace
of U(n~) generated by E over C[Y]. Set |Y) := EC[Y]Y (which we note is
distinct from (Y|:= YEC[Y]) and let = denote the canonical projection of
EC|Y] onto EC|Y]/|Y). We identify Im  with E itself. For each k € N* set
O(F) =n(C[Y,Y '| FY*NEC[Y]) considered as a subspace ofE.
Obviously @,(F) is ad H stable. Furthermore

LEMMA. [Y, @ (F)] < @,(F). (Recall k > 0.)

Take 0% f € @,(F). We can write f € n~'(f)c EC[Y] as f =Y Jav*
for some a € C[Y]F. Now j > 0 otherwise f=0 and so ¥f =Y Y Vay*e
ClY, Y7 FY* . Yet [V, fl=[Y,a()]=x[Y,f]=n(Yf)€E ®(F), as
required.

8.7. PROPOSITION. @ (F)c @, (F) with equality for k > dim E.

It is enough to show that any ad H weight vector f€ @,(F) satisfies f€
@, . ,(F). For such a choice we can write f =Y JaY* a € C[Y]F a weight
vector. Furthermore we can choose weight vectors f; € F such that each
product Y'f; has weight independent of i and such that

[ 1=

a= ﬂCii}/v’f/‘i:(iie(:.
0

i

Moreover, this expression lies in C[Y|F for arbitrary choices of the d;. For
J >0 we can write

o]

m
Y~ay* =X N die,, ((ad Y) ) YA

i=0

-

We see that if j and the d; are chosen so that

dic;_i s i(ad Y)Hifi =0 (*)

1=

0

for all ¢ > k — j, then Y~/aY* € EC|[Y] and f:= n(Y ~'a¥*) is just the above
expression evaluated at t =k — j. If k is replaced by k+ 1 then we can
replace j by j+ 1 so that the conditions on ¢ are unchanged. To show
fE®,, (F) it is enough to observe that the dependence of Cj_i4+i Can be
compensated by an alteration in the d;. This follows from the formula

SO ol VA VA V)
ITERET eyt (i)

from which we see that replacement of d, by d,/(j —i)! and cancellation of
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the (/ + ¢t — 1)! in each equation (x) removes this dependence on j. Similarly
if k is replaced by k — 1 then we can replace j by j— 1 (to obtain f€
@, ,(F)) as long as j> 1. Now if k > dim E then Y 'aY**' € |Y) for all
a € C|{Y]F which together with the first observation proves the last part.

8.8. Let 7’ denote the canonical projection of EC{Y| onto EC|Y|/(Y|
and for each k € N*, set y,(F) :=n'(C[Y, Y '| FY* " EC|Y]), considered
as a subspace of E. Obviously y,(F) is ad H stable. In contrast to the @, (F)
these spaces need not be increasing in k (unless say E is a simple module).
For any C[H] module ¥ on which H acts locally semisimply, let 2(})
denote the set of weights for which the corresponding H weight subspace of
V' is non-zero.

A comparison of the rules for computing v, and @, gives the

LEMMA. For all k> 0 one has 2(y,(F)) = 2(P,(F)).

8.9. So far we have not used that F is stable for the action of X. This
plays the role described in the following. Set h = CH and choose v € h* such
that (v, ") = k. Then the sl(2) Verma module M(v) with canonical generator
e, admits the submodule M(s,v) with canonical generator ¢, = Y*e,. In
particular M(v) is a-complete and EC|Y] e, identifies in the obvious fashion
with the a-free and a-complete s module £ ® M(v). Set I(v) := C[Y] FY*e,,
which because F is b stable identifies with a submodule of E &® M(s,v).
Finally set J(v):= (C[Y,Y " ']FY*NEC|Y]|)e, which identifies with a
submodule of E ® M(v). Just as in the proof of 8.4 one shows that there are
embeddings I(v) < J(v) < C,(I(v)).

LEMMA. If k > dim E, then J(v) = C,(I(v)).

As in 8.7 we take a € C[Y]F to be a weight vector of the form a =3 Y7/;:
Jf; € F. We must show that if Y~/a & EC[Y] then X'Y Jae,#0, VtEN. In
this we can assume f;, # 0, and j > 0 without loss of generality. Then

XY Vae,=|X,Y Ja]e,

Y_"L ([X, Y] fie, + Y X, fi] e,).

i=0

Since Anngc,e,=0, the above expression can only vanish if
[X,Y /] fye,=0. Let us write [H,f,]=1,- Through the hypothesis
k > dim E, we have k+ 1> 0 and so
X, Y~ foe, = —jY " HH +j+ D) fse,
=—jY 7 k+ 1+ )j)foe, #0.
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Finally F is b stable so [X, Y /a] e, = Y7/~ 'be, for some (uniquely deter-
mined) bEF and from the above calculation Y /~'b& EC[Y]. The
assertion of the lemma results.

8.10. By 8.7 it makes sense to define

O(F) = lim &,(F).

LEMMA.  (D(F)) = s, (2(F)).

Take k> dimE. By a standard argument (cf. [8, 7.6.14]), I(v) has
composition factors isomorphic to the Verma modules M(s v +u;):
U; € 2(F). By the hypothesis on k those modules are simple and have
different central characters. Then by 8.9 (cf. 6.3) it foliows that J(v) is a
direct sum of Verma modules M(v + s, u,): ; € Q(F). By definition of y,(F)
we may write

J() =y, (F)e, mod(YEC|Y]e,)
=y, (F)e,mod Y(E ® M(v)).

Yet £ ® M(v) is also a direct sum (6.3(ii)) of Verma modules (in which
J(v) embeds) and so we conclude that v, (F) e, is mod Y(E ® M(v)) the span
of the highest weight spaces of J(v). Hence 2(y . (F))=s,(22(F)), which
combined with 8.8 gives the assertion of the lemma.

8.11. Let E’ be a finite-dimensional s module and let E'E denote an s
quotient of E’ ® E. For example, let E, E’ be s, submodules of U(m_ ) and
let E'E be defined by the multiplication in U(m_). The following result
would be trivial for the tensor product £’ ® E; but is a rather subtle question
in general.

PROPOSITION. @(E'F) = E'D(F).

Choose k, v as before. We identify E'EC[Y] e, with E'E ® M(v), where
the latter is defined to be the image (E’ ® E) ® M(v) under the map E’' ®
E — E'E. Since Anng .y e, =0 it suffices to show that

(ClY,Y '|E'FY*NE'EC|Y])e,=E'(C|Y,Y '| FY*NEC[Y])e,,

for k sufficiently large.

Now the right-hand side is just E'J(v) whereas an easy calculation shows
that the left-hand side contains E'J(v) and is contained in C_(E'J(v)). Taking
k > dim E it follows from 8.9 that J(v) = C_J(v) and moreover (cf. 8.10) is a
direct sum of a-complete Verma modules M(v + s, u;): 4; € 2(F). Now
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E'J(v) is a-free and a quotient of E'®J(V)X @ (E' @M+ s,u,;)):
U, € Q(F), so taking k > dim(E ® E’) it follows from 6.3(ii) that E'J(v) is
a-complete.

8.12. Suppose that E can be written as a direct sum of simple s modules
E, such that F=® (FNE,). For example, take E=m_, F=n,.

COROLLARY. @(E'F)=E’s (F).

By 8.11 it is enough to show that @(F)=s,(F) and through the
hypothesis on E, F we can assume E simple without loss of generality. When
this holds the assertion follows from 8.6 and 8.10.

8.13. Writing U(m_) as a direct sum of finite-dimensional s, modules
() of 8.5 easily follows from 8.12. (We remark that more careful estimates
of k show that equality holds in (%) of 8.5.) This proves 8.1.

8.14. Proposition 8.1 is applied through the following

LEMMA. Take w, w' € W. If Anny,,, &, < U(n")n, then 7"(L(wu)) >
7 (w').

By 7.8 the hypothesis implies that gr Ann,,,e,, =S )n,. and so
7" (L(wy)) < n M w'(n). Finally use that 7"(L(wu)) is closed and B stable.

8.15. In the so-called integral case we obtain the following fairly
satisfactory result.

THEOREM. Take —u € h* dominant, regular and suppose that B, — B.
Then for all w& W, one has 7" (L(wu)) = 7" (w).

Since Anny,,-, €, = 0, we obtain Ann,, é,, < U(n™)n, by induction on
the length of w. Then the conclusion follows from 8.14.

Remarks. 1Tt is likely that 77 (L(wg)) is irreducible in the above situation.
When g has only type A, factors one has equality of dimension (see 9.14). If
B, does not have only type 4, factors then equality of dimension fails in
8.15. Yet it can still happen that equality holds sufficiently often for one to
be then able to determine 7 (L(wu)) through 6.6(i).

8.16. In the non-integral case the appropriate generalization of 8.15
should not be considered to be 8.15 with the technical restriction B, — B
omitted. Although this might be true it is not the best result. This is
illustrated by 10.1.
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8.17. It is obvious that we can generalize 8.1 in the following possibly
useful fashion. Replace n,; by any CH, ® CX, stable subspace m of m
and ng , by 5,(m)® CX_,. On the other hand, it is unfortunate that the
converse of 8.14 fails. This is because gr(Anny ., €,,) < S(n~)n, does not
imply that Ann,, €, < U(n~)n,.. For example, take g of type s/(3) with
U=-—p, w=s,8,, w=s,, where B={a,f}. This calculation illustrates
nicely the theory developed in 8.6-8.12.

8.18. We can now answer positively a question raised implicitly in
(I, 5.4). Take —u € b* dominant, regular and given w€ W, let [, (w)
denote its reduced length defined with respect to B,,. If u is integral we set
L (w)=1(w).

LEMMA. For all we W, one has d(L(wu))>cardR* —1,(w) with
equality if and only if w=wy, for some B' < B,,.

By the truth of the Kazhdan—Lusztig conjecture in the general case [9, 28]
and (II,5.1) the value of card R* —d(L(wu)) depends only on the
specification of (W, Bu)‘ as a Coxeter group. Consequently we can assume
that B =B, without loss of generality. Then by 8.15, d(L(wu))=
dim 77 (L (wu)) = dim 7" (w) > dim(n M w(n)) = card R* — I(w). This proves
the first part. In the second part “if” is already given by [15, 2.8, 3.5]. For
“only if” we note that the second inequality above is an equality only if
nMw(n) is B stable. An easy exercise shows that this implies w to be of the
prescribed form.

9. STEINBERG’S CONSTRUCTION

9.1. In order to formulate our conjecture concerning the characteristic
polynomial p,- associated to an orbital variety 7~ we need first to make
explicit some straightforward consequences of Steinberg’s construction {35
and Spaltenstein’s equidimensionality theorem [31]. In this it is customary to
consider unipotent rather than nilpotent elements. Let Z denote the set of
unipotent elements of G. One has N =% MB. For each g€ G, S <G, set
2(S)=gSg ' :={gsg ':sE€ S}. For each w € W fix a representative in G
(also denoted by w) set Z,(w)=B(N N w(N)), denote the unique conjugacy
class dense in G(NMw(N)) by St(w) and put Zy(w)=Z(w) N St(w),
# (w) =%,(w) N St(w). Given u € 7, let Zgu) denote its centralizer in G
and set A(u)=Z g(u)/Z%(u), where Z (1) denotes the connected component
of the identity in Z g(u).
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9.2. Set X,,=BwB. One has the classical result

G=1[]x, X.=1]4%, ()

weEW y<w

where < denotes the Bruhat order. Let 8: G X G — G be defined by 8(x, y) =
x7 'y and set Y,=¢""(X,). Taking K :={(g, g): ¢ € G} one finds that
Y, =K(1,w)(B X B) and so Y, is a disjoint union of certain Y,: y € W.
Hence 8((G X G)\ Y¥,)=G \_6(Y,) and since @ is open, it follows that
6(Y,) is closed and so contains X,. Yet ¥, <@ '(X,) as ¢ is continuous
which combined with our previous observation gives 8(Y,) = X,.. From (x)
we then obtain

Y, = L]y, (%)

Now let Z,, denote the image of Y, in G/B X G/B. Similar reasoning to
the above gives

9.3. Let .# denote the variety of all Borel subgroups of G which we
1

identify (as usual) with G/B through the isomorphism of gB— gBg~'.
Similarly % X .# is identified with G/B X G/B and then Z, is just the K
orbit generated by (B, w(B))€ % X .#. For each conjugacy class # of
unipotent elements we set, following Steinberg |34, p. 134],

S(g): {(uaBlaBz)E (% X%X;?):uEBlﬁBz},
S,(#)={(u,B,,B,)) € S(¥):(B,,B,)EZ,}

Let 7: S(#)~ % denote the projection onto the first factor.

LEMMA. Take u € %. Then
(1) (S, (@):weSt Y¥)} is the set of (distinct) irreducible
components of S(%).
(ii) The map S (Z)—~S ()N rn '(u):weE St (%) is a one-to-one
correspondence of the irreducible components of S(%) onto the A(u) orbits of
irreducible components of ¥, X Z,.

Let X be an irreducible component of .%, X .#,. By [35,3.1], Y :=
{(g(u), g(X)): g € G} is an irreducible component of S(#) and every
component so obtains. Obviously 77 '(u) N Y = Z g(u)(X) = A(u)(X) and so
dim Y =dim X + dim % = 2dim ., + dim% =card R, by [31]. Then by
[35,3.3] Y=S,(%) for some unique w € W such that "N N w(N) is
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dense in N M w(N), equivalently for some unique w € St~'(#). Hence (i)
and it remains to show that the inclusion S (¥)N7n () =S, (%F)N
7' u):wEStT(#) is an equality., Now dim(S,(Z)N7n '(u))=
dim S (¥)—-dim % =dim S (¥) —dim % [35, 3.3a], so we have equality
of dimension. On the other hand, the left-hand side is Z 4(u) stable, whereas
the right-hand side is a Z g(u) orbit of an irreducible component of .4, X .%,.
Hence (ii).

9.4. Fix u€ NN¥. Following Spaltenstein [31]| we define a map ¢
from %, X%, to the BXB orbits in NN#& xNN¥ through
0(g,(B), g,(B)) = (B(g (1)), B(g; '(#))). This sets up a bijection @ between
the set of Z g(u) X Z g(u) orbits in .2, X %, and the B X B orbits in NN % X
NN#, and which also maps bijectively the set of A(u) X A(u) orbits of
components of %, X %, to the set of components of NN#& X NN Z.

LEMMA. Take w€ W. Then ¢(S, (%)M r '(u)) is contained in #,(w) X
Zy(w™"). If we St~ (Z) then its closure is (W) X #(w™").

One has

08, (&) r () =p{(g(B), gw(B)): g(B N w(B)) D u}
= {B(g™ '), B(w'(g 7' ()): NN WN) N F D uj
c Z(w) X 2y (w™),

which proves the first part. Recalling [31] that dim Z gu)—dim B =
dim 2, — dim @ NN, it follows from 9.3(ii) that dim o(S (Z)N 7 ') =
2 dim(# M N) which then gives the second part.

9.5. CoROLLARY. (i) Every irreducible component of NM% XNN¥F
takes the form % (w) X # (w™') for some w € St~ '(#).

(i) ZwW)x#w™ )< U, @(y) X %(y~")).
(i) is an immediate consequence of 9.3 and 9.4. For (ii) observe that
S, (%) is just the inverse image of Z,, under the projection n: S(¢') > % X .Z.

Since 7 is continuous 7~ (Z,) > (Z,) =S (%). Then (ii) follows from
9.2(+#x) and 9.4.

Remark. (i) in a slightly weaker form is due to Spaltenstein
(30, Lemma 1].

9.6. Let us return to nilpotent elements. From 9.5 we obtain the

LEMMA. Let & be a nilpotent orbit.
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(i) Every irreducible component & M takes the form 7 (w) for some
w€E€St™(?). In particular every such component is involutive and
dim 7" (w) = dim 7" (w ).

(i) 77(w)c U, 72p).

9.7. We can use 9.6 to give a much more explicit description of the
behaviour of components under the action of the Weyl group (as defined in
Section 3).

PROPOSITION. Take wE W, a € B. Then 7" (w)c m, < s, w < w and if
either hold 7~ (w) is P, stable. Otherwise

m, (P, 7 (w)) ( U V(z)) U7 (W)U Z (5, W).
z<W|sqa2<2
Recall that 7 .(w) is the B stable variety generated by the subspace #{X;:
BERT N\ S(w™1)}. Since a € S(w™') <> 5, w < w, this gives the first part.
Now suppose that s, w > w. Then one has P,wB = BwB U Bs_, wB. Since
m, is P, stable we obtain

M, NP (71(W)) =Py (m, N7 ,(w)),
=P, (m, N w(n)),
=m, N (P, wB)(n),
=718, W) (M, N7, (w)),

and hence m, MNP (7,(w))=7 (s, w)U (m,N7,(w)). Now consider
7" (w) \.7,(w) which has codimension >1 in 7 (w) and is B stable. Hence
dim P (7" (w) \\ 7,(w)) < dim 7"(w). Since all components hava the same
dimension it follows that m, MNP (7 (w) \ 7,(w)) is precisely those
components of St(w)n which lie in m, and whose union contains
7" (w) \\ 7,(w). Thus the second part of the lemma follows from 9.6.

9.8. From 9.7 we can give an explicit description of m, NP (7" (w)) as
a variety without reference to the polynomials p,-,,. The result essentially
coincides with the Kazhdan—Lusztig description [26, Sect. 7] taking account
of 9.3-9.5). Yet it is not completely obvious that our action of W on the
Dy coincides with Springer’s action of W on top cohomology. This is
because we still have to show that multiplicities coincide. Following
Kazhdan-Lusztig [26, Sect. 5] we set

§={(u,B,,B))€ (¥ X F X F)u€B NB,}
S,={u,B,,B,)€S:(B,,B)EZ,}.
Observe that S(%) (resp. S,(%)) is the inverse image of # in S (resp. S,).
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The S,:we& W are irreducible of dimension 2r:=card R and form a
disjoint union of S. Hence the S,: w € W are the irreducible components of
S and their classes [S,] are a basis for the top homology H,(S) of § (with
rational coefficients). By [26,Sect.5] H,.(S) is a W-W bimodule
isomorphic to the two-sided regular representation of W. There is hence a
matrix C with coefficients C(p, w): y, w € W defined by

&)=Y cnwiS,]
wew
Furthermore C(y, y) =1 and C(y, w) =0 unless y  w [26, Sect. 7]. Thus C
is invertible and we let 4 denote its inverse whose entries we denote by
A(y,w). Then A determines the left W module structures of H,,(S) (and as a

right W module is determined through the relation y[§,]=(S,]y™";
[26, Sect. 51.

CoNIeCTURE.  For each w € W, one has {up to a non-zero scalar)

Pron= Y Alw, )",
yYEW
where m is the least integer >0 such that the right hand is non-zero. (In
particular, m = deg py-,,, = card R* —dim 7" (w).)

It would follow from this conjecture that the natural action of W on the
Pz coincides with the left action of W on the W gradation of H,(S)
associated to the W filtration (26, 6.1]

(H,(S)" :=® {C[S,,): dim St~ '(w) < 2m}.

In particular the py,, would generate simple modules isomorphic to the
Springer module defined on St~ !(w). In the language of 3.3 all orbits would
then be of Springer type and (what is important for us) the Cp,,, for
distinct 7" (w) would form a direct sum in S(§). Actually we would obtain
the following more precise result. Observe [26, Sects. 5, 6] that the left (resp.
right) action of W on H,,(S) corresponds to an action of W on the left (resp.
right) % factor. Through the description (9.3-9.5) of irreducible components
of each S(%) it follows that the right action of W fixes the irreducible
component 77 (w) defined by the left factor. Consequently the conjecture
must give that up to scalars

Prom= > AW, p)yw'p™,  m=deg Py,

yew

for all w’ € W. Through the analysis of (II, Sect. 2) it then follows that the
Pywy generate univalent (IL, Sect. 2) W modules. We conclude that St(w)

481/88/1-18
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and hence every nilpotent orbit satisfies condition (B) of Lusztig and
Spaltenstein.

9.9. There is an obvious analogy with conjecture 9.8 and the formula
(II, 5.1) for the Goldie rank polynomials. In type 4,, Kazhdan and Lusztig
conjecture |26, Sect. 7] that C (notation 9.8) coincides with the Jantzen
matrix (for integral weights). Through 5.2 and the conjecture this would
imply that we have equality in 8.15. In general C should be some degenerate
version of the Jantzen matrix, which satisfies similar positivity requirements
(cf. [26, Sect. 7]). In type B, for example it is known that these positivity
requirements do not determine the Jantzen matrix and in fact one can even
see from the early calculations of Jantzen [14, 3.16] how to choose C in type
B, to verify conjecture 9.8. Carrying our analogy further we may conjecture
that this matrix determines the order relations between the 77 (w) (defined by
taking closures) through the notion of a left cell of ¥ introduced in |17] and
here defined relative to the basis

Aw):= N Aw,p)y, wEW,
yew

of CW.

9.9. Let 7~ be an orbital variety and define 7_(7")={a € B: 7 cm,}.
From 9.7 it is immediate that 7 (7 "(w))=t_(w):=t(w ') :=S(w~')NB.

LEmMA. Take —u € b* dominant and regular. Then every component 7~
of 7"(L(wu)) satisfies ©_(7") > t_(w).

Since a€1_(w)es,w<w it follows that L(wg) is a quotient of
M(wu)/M(s,wu) and so X*,é,,=0 for k> (a’,wu). Consequently
7" (L(wu)) < m, which implies the required assertion.

9.10. Since the characteristic polynomials p,- behave via 3.1 rather like
the formal character of a highest weight module under coherent continuation
(as we already remarked in6.7) we may apply the Vogan calculus
[37, Sect. 3] to their analysis. For simplicity we shall do this just in type 4,
and here we can essentially reduce to the integral case (but see 10.2 for the
type of corrections required).

9.11. Take A integral and assume that B is simple of typeA,. Take
wE W and choose adjacent simple roots @, § such that a & 7_(w),
Ber_(w) (This is always possible except in the “trivial” cases
w € {ld, wg}.) Define

Ta(w)=5,w, P& _(5,W)

=Sz W, otherwise.
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LemMA. m, N (P,7 (w)) admits precisely one component 7" satisfing
a€t1_(77), BE 1 (7). Furthermore 7" =7 (T ,4(w)).

Since in type A, every orbit is of Springer type it follows that the p,- for
distinct 7~ are linearly independent. Set p= p,,,. By 3.1 and the
hypothesis we may write s, p= p + p® + p** where p® (resp. p**) denotes
the sum }_ y;z, p,, where 7 runs over the components of m, NP, 7 (w)
for which a € 1_(7), B& 1_(7;) (resp. a, BE 1_(7})). Similarly we may
write s, p* = p* + ¢* + q¢**. Then sz5,p=—p + p* +¢® +¢** — p**. On
the other hand, s (sgs, p) = 555,53 p = —s35, p and consequently the terms
in s;5, p correspond to components 7; for which a & t_(?;) must cancel
and so ¢® = p. Thus p® # 0 which proves that m_ M (P_7 (w)) has at least
one component of the required type. If we write p® to denote the charac-
teristic polynomials of these components, then we have Y y,z; p¥ = p® and
as in the above we may write s, pF = pf +¢% + q?%. Then 3 y,;z,9° =¢* = p
and so g% € Cp for eachi. (Recall that v;z; > 0, and the fact that p is the
characteristic polynomial of an irreducible variety.) Now we may write
5.9 =q? + r¥ + r2® and the argument in the first part shows that r® = p.
We conclude that the pf are all proportional, so there is exactly one
component of the required type. Now suppose S €& 7_(s,w), then we show
that 77(s,w) is the required component. Through the analysis of 9.7 it is
enough to show that dim 77(s,w) = dim 7" (w) and for this it is enough to
observe 77 (s, w) & m, M7 (w). This follows because otherwise 7 (s, w)c
7"\(w) = m, contradictory to the hypothesis S & 7_(s,w). Finally if f €
T_(5,w), then a € t_(s,w), B& 1_(w) and so T,,(s;w) = w. Hence 7" (w) is
the unique component of m; NP7 (s;w) satisfying the first part of the
lemma. From the identity ¢° = p it follows that 77(s,w) is the desired
component of m, NP, 7" (w).

9.12. Recall 8.15. Assume g simple of type 4,,.

CoROLLARY. Take —u € b* dominant, integral, and regular. Then for
each wE€ W, 77(w) is the unique component of 7 (L(ww)) such that
T_(7"(w))=1_(w).

Choose a, B€ B as in 9.11 and set w' = T,5(w). Let n,, be the number of
components of 77 (L(wu)) with the required property. We show that
n, > n,. Then as 77(L(wu)) does not depend on the left cell of W to which
w belongs we can assume that the right cell containing w also contains w,,
for some B’ B (by the classification of double cells, cf. [16]). Yet
7 (L(wg-u))=7"(wg:) and so n, =1. Yet by Knuth’s theorem (cf.
[37,6.4]) the T,; operators generate the right cells. Thus the above
inequality gives n,, < 1, Yw and hence the conclusion of the corollary.

Consider C,L(wu). By Vogan’s calculus [37, Sect. 3; 23, 3.2] it follows
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that this module admits exactly one subquotient L(w”) such that a €
T_(w"), B& 7_(w") and furthermore one finds that w” = w'. Let 77 (w,): i =
1, 2,.., n,, denote the components of 77 (L(wu)) satisfying the hypothesis of
the corollary. Since every other simple quotient L(yu) of C,L(wu) satisfies
a, B € t_(p) it follows from 6.7 and 9.7 that the 77(T,4(w;)) are components
of L(w'y). Since 77 (T, 5(w;)) =7 (T,5(w;)) <7 (w)=7"(w;) (as in the
proof of 9.11, cf. {37, 3.6]) it follows that n,. > n,, as required.

9.13. We may also use 9.11 to determine which of the 7 (w) coincide (in
type A,). Choose w, , f as in 9.11. Set w’ =T _,(w).

LEMMA. 77 (w™ ) =7"(w' ")

Since T},(T,s3(w)) =w, we only have to show this when T,4(w)=s5,w.
Since S(w)c S(s,w) then (cf.7.5) we have Z°(w " )> 27 ((s,w)™ ")
trivially. Yet dim 77 (w)=dim 7 (w~"') by 9.5(i) (or by 7.6 using St(w)=
St(w™')), whereas dim 7 (w)=dim 7 (s,w) by 9.11. Consequently,
dim 7" (w~") = dim 7" ((s,w) ') which proves the lemma.

9.14. Let @:w— (A(w), B(w)) denote the Robinson bijection
[16, Sect. 2] of

w=S,., 3 U (8t(©&) xStQ),

{eP(n+1)

where P(n + 1) denotes the set of partitions of n and for each (€ P(n + 1),
St (£) denote the set of standard tableaux corresponding to £

CoroLLARY. Forall w,w € W,B' B
(i) Z7(w)y=7"(w')< B(w)=B(w’).

(ii) {77 (w): A(w)=A(wy.)} is the set of irreducible components of
St(wg.).

(i) < obtains from 9.13 using Knuth’s theorem (as in 9.12). Then =
obtains from 9.6(i), and 3.3 which implies that the total number of distinct
orbital varieties is just (in type 4,)

2 dimo= > card(St(&))

aeW {eP(n+1)

(One may alternatively apply the analysis of [37, 6.5] to 9.11.)

Since St(w)=St(w™!) and A(w)=B(w™') it follows from (i) that the
{7 (w): w € @71 (St(&) X St(&))} generate the same nilpotent orbit which
takes the form St(w,.) for some B’ = B, where w,. € @ '(St(£) X St(&)).
Hence (ii).
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Remarks. This result in a slightly weaker form is due to Spaltenstein
[30, Proposition 9.8]. From it we easily see that wim Z (W) X Z(w™'):
w € W (notation 9.5) is (in type 4,) just the Robinson bijection. The iden-
tification of orbital varieties with standard tableaux which results was first
obtained by Spaltenstein [32]. From say [16, Thm. 1; 15,2.6] and the
Spaltenstein—Steinberg equality (3.1) it follows that we have dim 77 (w) =
dim 7" (L(wy)) in 9.12.

10. AN EXAMPLE

10.1. Take g simple of type G,. Set B = {a,, a,} with a, the short root.
The nilpotent orbit generated by the short root eigenvector X, is eight
dimensional and cannot be induced from any proper parabolic subalgebra. It
is known that these are exactly two completely prime primitive ideals whose
associated variety is the closure of this orbit. These ideals are maximal ideals
in the primitive fibres X (notation I, 1.5) when W, is of type 4, X A,. Now
card(W/W,) =3 and so the W,-dominant chamber is a union of three W-
chambers. Specifically we may take A=1(w,+ w,) (where w, is the
fundamental weight corresponding to a;) and then 4, :=s5, 4 = —3(w, — 2w,)
and 4,:=s, A =2w,—jw, are also dominant. On the other hand, the
Springer representation associated to the eight-dimensional orbit is two-
dimensional and so its intersection with n has two irreducible components
7'\, 7, where we choose 7| = 7 "(w,s,, ).

LemvMa. 7 (L(A)) =7 1i=1,2, 7 (LA)=7,07,.

The Goldie polynomials associated to L(4), L(4,), L(A,) are, respec-
tively, p:=(a, +a,)3a,+a;), p,:=5,p=Q2a;+ay)a,, py:=5,p=
a,(3a, + 2a;) (cf. 1II,6.3). Observe that p= p, + p,. Then by 5.2 it is
enough to show that Cp,. =Cp;:i=1,2. Now 7, =BX, andso 7, cm, .
Through 3.1 this gives s,,p,- = —p, . Again 75¢& m, and so by 3.1 again
(Sq¢,~ 1) ps, = zp;-, for some integer z > O which by 3.2 must (in this case)
be strictly positive. In particular Sq, P7,=—Pr, Now by 5.2 applied to
L(4,) there exist /;, I, € N such that

llPV, ‘*’lzprz = D;-
If I, # 0, then applying s, to both sides we obtain s, py, = —p,, which

gives the contradiction z = —2. Hence Cp,, = Cp,. Applying 5.2 to L(4,)
we obtain

Lipy +Lpy,=p
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which if /5 # 0 gives the contradiction s,,p, = —p,. Hence Cp,, =Cp,, as
required.

10.2. The above result illustrates two phenomena. First, unlike the
situation for the primitive ideals, it can happen that 7" (L (1)) # 7 (L(s, 4)):
i €H*, a € B even when (a",u) is not an integer. Secondly that 77 '(L(u)):
4 € H* need not be an irreducible variety. Actually these are both quite
common phenomena for non-integral A, and particularly easy to detect in the
case when card B, < card B through arguments similar to the above. Yet one
can hope to show as in the above case that for the appropriate nilpotent orbit
¢ one can always find a set of w € W such that the V(L(wd)) run through
the closures of the irreducible components of n M .

APPENDIX: INDEX OF NOTATION

Symbols appearing frequently are given below in order of appearance.
(See also |19, 20, 22].)

I.1. g, b, 4
12. U(g) -
13. W, W,

14. m,n-,B,R b G B N N, H
15. 7°(M), 7 (M)

17. I(Z°), A, Sp, Ps

1.8. St(w), 7,(w)

2.1. VX S(V)

2.2. Ry, fu

23. rys Pu

24, ry,py

25. N,,N_,H,,S,,5,,5,
26. B,,B,

29. m,, m;
2.10. Wy, Wy, Pgis Mg, Tgoy Ny, Gy Ind 77, Ind &2

3.1. P, p,

44. dM)

4.7. #

5.1. B,

5.2. e, e, J(w), #(w)
55. (M)

6.2. C,, %#;

6.6. C(w), C'(w)
1.5. 73(w) 75(w), 77 (w), S(w), ny,
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84. X,Y

8.18. [,(w)

9. %, (W), y(w), Zofu), Z4u), A(w)
92. X, Y., Z,

93. %, S5%) S,.%)

99. 1 _,1(w)

Note added in proof. 1 believe that Refs (9, 28) may not now appear; but it is generally
believed that the Jantzen conjecture holds even in the non-integral case.

1

REFERENCES

. D. BARBASCH AND D. VoGAN, Primitive ideals and orbital integrals in complex classical
groups, Math. Ann. 259 (1982), 153-199.

. D. BARBASCH AND D. VOGAN, Primitive ideals and orbital integrals in complex excep-
tional groups, preprint, J. Alg. 80 (1983), 350-382.

. A. BEILINSON AND J. BERNSTEIN, Localisation de g modules, C. R. Acad. Sci. Paris 292A
(1981), 15-18.

. L. N. BERNSTEIN, “Modules over a ring of differential operators, Func. Anal. Appl. 5§
(1971), 89-101.

. W. BorHo AND J.-L. BrYLINSKI, Differential operators on homogeneous spaces. I, Invent.
Math. 69 (1982), 437-476.

. J.-L. BrYLINSKI AND M. KasHiwArRA, Kazhdan-Lusztig conjecture and holonomic
systems, Invent. Math. 64 (1981), 387-410.

. M. DEMAZURE, Désingularisation des variétés de Schubert généralisées, Ann. Ecole Norm.
Sup. 7 (1974), 53-88.

. J. DIXMIER, “Algébres enveloppantes, cahiers scientifiques XXXVIL,” Gauthier—Villars,
Paris, 1974.

. T. J. ENRIGHT, to appear.

. O. GaBBER, The integrability of the characteristic variety, Amer. J. Math. 103 (1981),
445-468.

. O. GaBBER, Equidimensionalité de la variété caractéristique, Exposé de O. Gabber rédigé
par T. Levasseur, Paris 6, 1982, B

. O. GABBER AND A. JosSePH, On the Bernstein—Gelfand—Gelfand resolution and the Duflo
sum formula, Compositio Math. 43 (1981), 107-131.

. Dz. Hapziev, Some questions in the theory of vector invariants, Mat. Sb. 72 (1967),
420-435.

. J. C. JANTZEN, “Moduln mit einem hdchsten Gewicht,” Lecture Notes in Mathematics
No. 750, Springer—Verlag, Berlin/Heidelberg/New York, 1979.

. A. JosepH, Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma
modules, J. London Math. Soc. 18 (1978), 50-60.

. A. JOsePH, Sur la classification des idéaux primitifs dans I'algébre enveloppante de
sl(n + 1,C), C. R. Acad. Sci. Paris 287A (1978), 303-306.

. A. JosepH, W-module structure in the primitive spectrum of the enveloping algebra of a
semisimple Lie algebra, in Lecture Notes in Mathematics No. 728, pp. 116-135,
Springer—Verlag, Berlin/Heidelberg/New York, 1979.

. A. JosepH, Kostant’s problem, Goldie rank and the Gelfand—Kirillov conjecture, Invent.
Math. 56 (1980), 191-213.



278

19.
20.

21.
22,

23.
24,
25.
26.
27.

28.
29.

30.
3L
32.
33.
34.
35.
36.

37.

ANTHONY JOSEPH

A. JosePH, Goldie rank in the enveloping algebra of a semisimple Lie algebra, 1, J. Alg.
65 (1980), 269-283.

A. JosepPH, Goldie rank in the enveloping algebra of a semisimple Lie algebra, II, J. A/g.
65 (1980), 284-306.

A. JosepH, Towards the Jantzen conjecture I1I, Compositio Math. 41 (1981), 23-30.

A. JosepH, Goldie rank in the enveloping algebra of a semisimple Lie algebra, IIl, J. 4lg.
73 (1981), 295-326.

A. JosepPH, The Enright functor on the Bernstein—-Gelfand—Gelfand category 7, Invent.
Math. 67 (1982), 423-445.

A. JosePH, Application de la théorie des anneaux aux algébres enveloppantes, Cours de
troisieme cycle, Paris VI, 1981.

A. JoSEPH AND L. W. SMALL, An additivity principle for Goldie rank, Israel J. Math. 31
(1978), 105-114.

D. KazHDAN AND G. LuszTig, A topological approach to Springer’s representations,
Advan. Math. 38 (1980), 222-228.

D. R. KiNG, The character polynomial of the annihilator of an irreducible Harish—
Chandra module, Amer. J. Math. 103 (1981), 1195-1240.

G. LuszTig, to appear.

G. LuszTiG AND N. SPALTENSTEIN, Induced unipotent classes, J. London Math. Soc. 19
(1979), 41-52.

N. SPALTENSTEIN, “Classes unipotentes de sous-groupes de Borel,” Lecture Notes in
Mathematics, No. 946, Springer—Verlag, Berlin/Heidelberg/New York, 1982.

N. SPALTENSTEIN, On the fixed point set of a unipotent element on the variety of Borel
subgroups, Topology 16 (1977), 203-204.

N. SpALTENSTEIN, The fixed point set of a unipotent transformation on the flag manifold,
Proc. Konin. Nederl. Akad. 719 (1976), 452-456.

T. A. SPRINGER, A construction of representations of Weyl groups, Invent. Math. 44
(1978), 279-293.

R. STEINBERG, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics
No. 366, Springer—Verlag, Berlin/Heidelberg/New York, 1974.

R. STEINBERG, On the desingularization of the unipotent variety, Invent. Math. 36 (1976),
209-224.

D. VoGaN, Gelfand—Kirillov dimension for Harish-Chandra modules, Invent. Math. 48
(1978), 75-98.

D. VoGAN, A generalized r-invariant for the primitive spectrum of a semisimple Lie
algebra, Math. Ann. 242 (1979), 209-224.



