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1. Introduction

The theory of multiple membranes has been something of a
mystery for many years [1]. Now, it appears real progress has
been made with a newly proposed theory by Bagger, Lambert and
Gustavsson [2–5]. This breakthrough immediately attracted signif-
icant attention with a great deal of work exploring numerous av-
enues [6]. One of the key elements of the Bagger–Lambert theory
is the presence of a coupling given by the inverse of the level,
k of the Chern–Simons theory. At large k the theory becomes per-
turbative. Clearly, a tunable dimensionless parameter is not to be
expected from a theory of membranes since by definition M-theory
does not contain any free parameters. This parameter therefore en-
codes a property of a particular background. Its interpretation is
that the background is formed with a particular modding out by a
Zk action and is discussed in [7–9] (see also [10]). We will happily
accept the presence of a perturbative parameter in the theory and
without looking the gift horse in the mouth proceed to use it to
examine some quantum aspects of the theory.

An obvious question is whether the beta function vanishes to
give quantum consistency. In fact, through work by Kapustin and
Pronin [11]1 on properties of Chern–Simons theories coupled to
matter this question may be immediately answered and indeed
the beta function must vanish. (This has also been addressed di-
rectly at one loop by Gustavsson [12].) Here, we will be concerned
with the possibility of a finite shift in the level, k at one loop.
Pure Chern–Simons theories are known to produce such a shift in
the coupling at one loop once a careful regularisation is used (see,
e.g., [13,14]), while supersymmetric Chern–Simons theories have
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also been investigated [15] with the possible one loop shift ex-
plored in detail for a variety of different supersymmetries. (The
fermion content is crucial since integrating out massive fermions
is known to contribute to the shift through their effective ac-
tion [16].)

One must interpret this carefully especially since the effect
seems scheme dependent. We will follow the view espoused
in [17] for pure Chern–Simons where the shift could be seen from
a careful treatment of the phase of the partition function. In [17],
the partition function of pure Chern–Simons was calculated non-
perturbatively, where possible, and it was found to be a function
of the shifted level. This indicated that although the shift may be
derived at one loop, the calculation is picking up that the full non-
perturbative result will be a function not of k but of the shifted k.
In the present scenario, the most immediate physical effect caused
by such a shift will be on the moduli space which depends criti-
cally on k [7–9].

2. Bagger–Lambert theory

We now describe the theory of Bagger, Lambert and Gustavs-
son [2–5] using the conventions of Van Raamsdonk [18]. There are
eight scalars X I , I = 1, . . . ,8 valued in SO(4) or equivalently the
bifundamental of SU(2) × SU(2) as follows: X I = 1

2 X I
aσ

a where
σ a = (iσ i,1) and σ i are the Pauli matrices. (In what follows
a,b, c = 1, . . . ,4 and i, j,k = 1, . . . ,3.) There are eight fermions
and their conjugates similarly valued in SO(4) and two gauge fields
Aμ and Âμ valued in SU(2), i.e., Aμ = A+

μiσ
i and Âμ = A−

μiσ
i ,

where A+ and A− are the self-dual and anti-self-dual parts of the
SO(4) gauge field respectively. The gauge fields couple to matter
through the covariant derivative:

Dμ X I = ∂μ X I + i Aμ X I − i X I Âμ, (2.1)

and the action is given by:
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S =
∫

d3x tr

[(
Dμ X I)†

Dμ X I + iψ̄†Γ μDμψ

− 1

3
· 4π

k
iψ̄†ΓI J

(
X I(X J )† + X J ψ† X I + ψ

(
X I)†

X J )

− 2

3
·
(

4π

k

)2

X [I X J† X K ] X K † X J X I†

+ k

4π
εμνλ

(
Aμ∂ν Aλ + 2

3
i Aμ Aν Aλ

)

− k

4π
εμνλ

(
Âμ∂ν Âλ + 2

3
i Âμ Âν Âλ

)]
. (2.2)

The first line contains the usual kinetic terms, the second the
Yukawa couplings, the third the sextic interaction and final line
the two Chern–Simons actions for the vector potentials.

As described in [19] we may also consider a massive deforma-
tion of the theory that still preserves all the supersymmetries. This
is given by adding the following term to the action2:

Smass =
∫

d3x
(−μ2 tr

(
X I X I) + iμ tr(ψ̄Γ3456ψ)

)
. (2.3)

Naively one would expect the mass term for fermions to affect
the one loop shift in k [15,16]. However, as we shall see the pres-
ence of Γ3456 will mean that the mass deformation will actually
leave the one loop shift of k invariant. That is, the shift will be
independent of the fermion mass deformation that preserves su-
persymmetry.

3. One loop shift in the level

We begin by reviewing the known arguments for a perturba-
tive shift in the coupling in light of Bagger–Lambert theory and go
on to elucidate the effects of the extra structure present. Primar-
ily we follow the arguments in [14,15] where careful treatment
of the one loop correction can be found. There is also an excel-
lent description of how this shift arises when being careful with
the phase of the path integral and the associated introduction of
the eta invariant via the Atiyah Patodi Singer index theorem [17].
When the partition function can be calculated exactly it is then a
function of the shifted k. This is similar to various (1 + 1)d inte-
grable models where a finite shift in parameters makes the WKB
approximation exact [17]. This second approach provides insight
into the nature of the shift and faith that the one loop correction
is something physical, but is not directly extendible to the case of
Chern–Simons coupled to matter that is required here.

To start with, we must identify an appropriate parameter with
which to do perturbation theory. Fortunately, as mentioned previ-
ously, the Bagger–Lambert action does contain such a parameter; it
is the Chern–Simons coefficient, k, which we will take to be large
in order that there may be a perturbative regime. One might make
the objection that since k must be integer-valued in order that
gauge invariance is preserved, we should not really use it as a cou-
pling constant since it cannot be continuously varied. However, we
will take a leaf out of earlier work on perturbative Chern–Simons
theory and brush this subtlety aside. Indeed, as we shall see, an
important result is that quantum corrections impose that k can
change by addition of an integer, thus preserving large gauge in-
variance.

Consider, then, one of the Chern–Simons terms in (2.2). To reg-
ulate divergences, we introduce a Yang–Mills term −F 2/(2g2

YM). In
three dimensions, g2

YM has dimensions of mass which makes the

2 In fact, one must also add a mass-dependent potential in order for supersym-
metry to be preserved, but this will not play any role in our discussions.
gauge fields topologically massive. In order to obtain physical re-
sults, however, we will want to take g2

YM → ∞ which decouples
the Yang–Mills regulator. For this purpose, it is useful to define the
dimensional parameter m = g2

YM(k/4π) and consider the limit as
m → ∞. In order to perform calculations we must also fix a gauge,
which we take to be ∂μ Aμ = 0. This we do in the usual way by
adding ghosts (c, c̄) and the gauge-fixing term −(∂μ Aμ)2/α to the
action. Furthermore, we choose to work in Landau gauge where
α = 0, which has the dual advantages of radically simplifying the
gluon propagator and taming infrared divergences (see, e.g., [14]
and references therein).

Introducing renormalisation functions in the usual way (Zc̄ Ac
for the ghost–gluon vertex, Zc for the ghost kinetic term and Za
for the antisymmetric part of the gluon kinetic term) and a Ward
identity associated with the ghost–gluon vertex, we can then write
the renormalised Chern–Simons coupling as

k′ = k
Z 2

c̄ Ac

Za Z 2
c
. (3.1)

So, in order to determine the effect of renormalisation on the
Chern–Simons coefficient we need to examine the ghost self-
energy, ghost–gluon interaction and the gluon self-energy.

3.1. Gluon self-energy

In a general gauge, the classical A+ propagator is given by

Δμν = −4π i

k

m

p2(p2 − m2)

{
imεμνλpλ + ημν p2

− pμpν

(
1 − αk

4πm

p2 − m2

p2

)}
, (3.2)

which, in the m → ∞ limit (and in Landau gauge) reduces simply
to

Δμν = −4π

k

εμνλ pλ

p2
(3.3)

as expected. The propagator for A− is simply minus this.
For the renormalisation functions here, the symmetries of the

theory can be used to separate the gluon self-energy, Π
(1)
μν (at one

loop), into symmetric (Π
(1)
s ) and anti-symmetric (Π

(1)
a ) parts re-

spectively:

Π
(1)
μν = Π

(1)
a εμνλ pλ + 1

m
Π

(1)
s

(
ημν p2 − pμpν

)
, (3.4)

where Za = 1 − Π
(1)
a at one loop.

3.1.1. Gluonic contributions
In the case of pure Chern–Simons theory one can only have glu-

ons and ghosts running in the loop via diagrams (a)–(c) in Fig. 1
and this was covered in detail in [14]. Furthermore, the absence of
an A+ − A− propagator means that these arguments apply sepa-
rately to the self-dual and anti-self-dual parts of the gauge field
respectively. In this respect we can view the levels of the two
Chern–Simons theories as being essentially independent and see
what effect the renormalisation has on each in turn.

The calculations performed in [14] are therefore unchanged in
this scenario and we refer the reader to that paper for the full
details. Here we simply present the results: Π

(1)
a has a leading

term proportional to m/|m| = sgn(m). This can be related to sgn(k),
and when the contribution is evaluated in the m → ∞ limit one
obtains3

Π
(1)
a = 7

3k
C2 sgn(k). (3.5)

3 Note that in our conventions, f acd f bcd = C2δab so that C2(SU(N)) = N .
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Fig. 1. Processes contributing to the gluon self-energy at one loop with F 2 regularisation. (a) and (b) are corrections from virtual gluons; (c) is due to ghosts; (d) and (e) are
the exchange of virtual scalars, while (f) is the fermionic contribution.
3.1.2. Matter contributions
Of course, in Bagger–Lambert theory we also have contributions

from matter fields as shown in (d)–(f) of Fig. 1 and it is impor-
tant to ascertain how they contribute to the gluon self-energy. In
this context it is important to note that, as is well known [14],
F 2 regularisation does not regulate all the divergences in one loop
diagrams. As such, one may use a supplementary regularisation
scheme. Indeed, as far as the evaluation of integrals is concerned,
dimensional continuation was already used to deal with those aris-
ing from the gluonic contributions. For the matter fields, we may
be tempted to add a supersymmetrised F 2 term as a regulator in
a similar spirit to the treatment of supersymmetric Yang–Mills–
Chern–Simons theories in, e.g., [15,20]. However, this does not
seem to make much sense as we already have standard kinetic
terms for the fermions and scalars. Similarly, we could conceiv-
ably add mass-terms for the matter fields independently of the F 2

term. This is more like a regulator in the infrared and in any case
would not give any contributions to the quantities of interest as we
remove it. Thus, we will content ourselves with dealing with any
remaining divergences using a dimensional continuation of the in-
tegrals where necessary.4

To begin with, scalars contribute via diagrams (d) and (e) of
Fig. 1 and it is easily verified that they do not contribute to the
antisymmetric part of Πμν . A more generic way to view this is
that scalars are not parity violating. Secondly, fermions run in the
loop via the last diagram, (f) of Fig. 1, and we would like to look at
their contribution to Π

(1)
a . For these purposes it is enough to look

at the momentum structure involved.
Each fermion vertex comes with a factor of Γμ , while the

fermion propagators take the usual form Γμpμ/p2. This means
that after a little algebra

(f) ∝
∫

d3q
qμ(q − p)ν + qν(q − p)μ − ημνq · (q − p)

q2(q − p)2
, (3.6)

which is manifestly symmetric under the interchange of μ and ν .
The massless fermions in Bagger–Lambert thus do not contribute
to the antisymmetric part of Πμν at one loop.

Massive fermions, on the other hand, are known to contribute
to a shift in k, so it is interesting to note that even if we were
to add a standard mass term such as mψψ̄ψ to help regulate the
fermions, then these contributions vanish as we remove the regu-
lator mψ → 0. This is due to the fact that the antisymmetric part
of (f) generated by this mass is schematically mψ +O(m2

ψ), which
vanishes as mψ → 0. This is in accordance with expectations [16].

4 In fact, none of the integrals involved pose any problems and we can happily
evaluate them in d dimensions and simply set d = 3.
In conclusion, we can see that the matter fields do not con-
tribute to the antisymmetric part of the gluon self-energy at one
loop.

3.2. Ghost corrections

Now we must look at the contributions to the ghost self-energy
and the ghost–gluon interaction. Since the ghosts do not couple to
the matter fields it is obvious that the matter fields do not con-
tribute to the ghost self-energy or the ghost–gluon interaction at
all at one loop. Thus the one loop contributions to these quantities
are precisely the same as in pure Chern–Simons theory (with F 2

regularisation), a case which has previously been investigated in
detail in [14]. Thus we again spare the reader the details (referring
instead to [14]) and present the results here.

The relevant diagrams are given in Fig. 2, and there is only one
contribution to the ghost self-energy—that of Fig. 2(a). This evalu-
ates to give

Π
(1)
c = − 2

3k
C2 sgn(k). (3.7)

In terms of the c̄ Ac vertex corrections, many parts of the diagrams
in Fig. 2 (b) and (c) cancel against each other and the remainder
vanishes as m → ∞ giving Zc̄ Ac = 1. This is in any case expected
from general arguments [21].

As we can see, the matter fields in the game do not contribute
to the finite renormalisation of k and with Zc = 1 − Π

(1)
c at one

loop we get

k′ = k
(
1 + Π

(1)
a + 2Π

(1)
c

)
= k + C2 sgn(k)

= k + 2 sgn(k), (3.8)

where we have used that C2(SU(2)) = 2. Note the crucial presence
of sgn(k). In Bagger–Lambert theory we have two SU(2) theo-
ries with opposite levels, k and −k. The fact that the correction
depends on the sign of k means that the one loop corrections pre-
serve this structure, i.e., the new levels are k′ and −k′ . Without
this the SO(4) structure would be anomalous.

4. Mass deformation

We may also consider the mass-deformed version of Bagger–
Lambert theory described in Section 2 which (when taken together
with a mass-dependent potential) preserves N = 8 supersymme-
try [19]. As far as the quadratic terms go, this involves the ad-
dition of a term Smass given in (2.3) to the action. The mass-
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Fig. 2. Processes contributing to the ghost self-energy and the ghost–gluon vertex at one loop.
dependent potential is of fourth order in the scalars and there-
fore does not contribute to the quantities of interest to us at one
loop.

It is again clear that the scalar mass term cannot change the
contributions to Π

(1)
a since the scalars can still only give sym-

metric contributions and do not affect the ghosts at this level.
However, now that we have a mass term for the fermions, they
can in principle contribute. The reason is that the fermion propa-
gator is now schematically of the form

Γμpμ + μΓ3456

p2 − μ2
, (4.1)

and the terms arising from Fig. 1(f) which are proportional to μ
contain an odd number of Γμ

5 and can therefore contribute to

Π
(1)
a . Nonetheless, as we see below, the contribution does in fact

vanish.
A simple way to see this is that Γ3456 squares to one and is

traceless. Its eigenvalues are thus equal numbers of ±1 and so the
mass deformation of (2.3) is like adding equal numbers of fermions
with mass μ as with mass −μ. Since their antisymmetric con-
tribution to the gluon self-energy is proportional to their mass,
these contributions cancel out. It is reassuring to note that this
is in accordance with general arguments which give contributions
to k′ proportional to sgn(μ) [16]. The presence of equal numbers
of oppositely-signed massive fermions is thus expected to give no
overall contribution.

From a more covariant point of view, where the fermions are
still packaged into the single spinor ψ , the antisymmetric part of
Fig. 1(f) is easily calculated to be

(f)a ∝ tr(ΓμΓνΓλΓ3456). (4.2)

By Lorentz invariance this can only be proportional to εμνλ

and in order to fix the constant of proportionality we can con-
sider the case of μ = 0, ν = 1, λ = 2. By considering the relation
Γ0123456789(10) = −1 we can see that

Γ0123456 = ±Γ789(10), (4.3)

depending on the signature of spacetime, and since trΓ789(10) = 0
it is clear that the constant of proportionality is just zero. Thus
these massive fermions do not contribute to a shift in k.6 It is
quite satisfying that the supersymmetry preserving mass deforma-
tion leaves k invariant even though a canonical mass deformation
would certainly lead to a different shift in the one loop correction
to k.

5 Recall that the gamma matrices are split into Γμ for μ = 0,1,2 and ΓA for
A = 3, . . . ,10.

6 It is interesting to note here that we could have used this mass deformation as
a supersymmetric regulator for the matter fields and taken μ → 0 at the end of the
day. Of course this would give the same results as previously found in Section 3.
In conclusion, in both the original Bagger–Lambert theory and
the deformed version, one expects one loop quantum corrections
to shift the coupling by two:

k → k + 2 sgn(k). (4.4)

5. Discussion

In the proposed more general theory of [9] (see also [22]) with
only N = 6 supersymmetry manifest there is U(N) × U(N) bifun-
damental matter coupled to Chern–Simons. In that theory, the link
to Bagger–Lambert is that for N = 2 the theory is expected to have
extra symmetries which promote the N = 6 supersymmetry to
N = 8. However, as a starting point for the N = 6 theory one may
take N = 4 super-Yang–Mills plus Chern–Simons terms and inte-
grate out the massive fields. In doing so, as discussed in [9] the
fermions would cause a shift in k. This shift would then in that
theory be subsequently cancelled by the shift in k due to the one
loop correction from the Chern–Simons field as described above.
Thus, overall there would be no shift in k. From this perspective
the Bagger–Lambert theory as written above would be an effective
theory where one loop effects have already been included. One
cannot say a priori whether this is correct though there is now
more evidence as to the success of [9] with [23].

This Letter took the approach of looking at the possible shift in
k from a perturbative point of view using regularisation by addi-
tion of regulator terms such as the Yang–Mills term. In this context
it does not seem to be possible to regularise the theory in the UV
in a supersymmetric way. However, there may be a sense in which
it is possible to regulate the theory while preserving at least some
of the supersymmetry: One could consider regulating by replacing
the entire Bagger–Lambert action with a supersymmetric YM–CS
action of the sort encountered in [15].7 As long as the specific form
of this action preserves N � 2 supersymmetries8 then performing
a one loop renormalisation would lead to a cancellation between
bosons and fermions such that there is no overall shift in k [15].
Removing the UV regulator should be equivalent to integrating out
the massive fields and thus one would expect to recover Bagger–
Lambert theory in this limit à la [9] and without any shift in k.9 On
the other hand, it seems somewhat drastic to regulate by replacing
the entire action with something new.

Thus, although the two approaches of [2–5] and of [9] are
classically equivalent, they may not be so at the quantum level.
A standard regularisation by addition of regulator terms as we
have examined would seem to break the quantum equivalence and
lead to a one loop shift in k for BL. If one additionally makes the
assumption that the calculated shift is true for all k (which we

7 We would like to thank Seok Kim for illuminating discussions on this point.
8 Though it does not seem likely that we could preserve the full N = 8 SUSY, at

least explicitly.
9 Note that if it is possible to do this procedure with a YM–CS action preserving

only N = 1 supersymmetry, which is not entirely clear, then one would still see a
shift in k.
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imagine to be the case but certainly cannot derive given the per-
turbative nature of these calculations), then the moduli space at
k = 1 would become corrected which seems unphysical.
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