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Abstract

In 1969, Denniston gave a construction of maximal arcs of deglieeDesarguesin projective
planes of even ordeq, for all n dividing g. Recently, Mathon gave a construction method that
generalized that of Denniston. In this paper we use that method to give maximal arcs that are not
of Denniston type for alh dividing g, 4 < n < q/2, q even. It is the shown tlat there are a large
number of isomorphism classes of such maximal arcs whsrgpproximately,/q.
© 2003 Elsevier Ltd. All rights reserved.

Keywods: Maximal ar¢ Projective plane

1. Introduction

A maximal {q(n — 1) 4+ n;n}-arc in a projective pane of orderq is a sibset of
g(n — 1) + n points such that every line meets the set in @ points for some X n < q.
For such a m@mal arcn is called thedegree. If K is a maximal{q(n — 1) + n; n}-arc,
the set of lines external t& is a maximal{q(q — n + 1)/n; g/n}-arc in thedual plane
called thedual of K. It follows that a necessary condition for the existence of a maximal
{q(n — 1) + n; n}-arc in a projective plane of ordeyis thatn dividesq. Ball, Blokhuis
and Mazzocca have also shown that non-trivial maximal arcs do not exist in odd order
Desarguesin projective planedl].

In [8], Mathon gave a construction method for maximal arcs in Desarguesian projective
planes that generalized a previously known construction of DenniSjoi\e begin by
describing this construction method.
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Let Tr be the usual absolute trace map from the finite fieldgdnto GK2). We
represent the points of the Desarguesian projective plan@,B% via homogeneous
coordinateqa, b, ¢) over GKq), andlines similarly as triplegu, v, w] over GKq), and
incidence by the usual inner prodwat 4+ bv 4+ cw = 0. Fora, 8 € GKQ) such that the
absolute trace Teg) = 1, andr € GHQq), defineF, g, to be tre cnic

Fupr = (X, Y,2) : ax? +xy+ By? + 12% = 0}

and letF be the union of all such conics. Note that all the conicsFimave the point
Fo = (0,0, 1) as their nucleus.
For givenx # A/, define a composition

Fapr @ Fo g = Faga pop atn
where theoperatord is defired on GKq) x GF(q) by

EBb_)LaJr)Jb
Y

Given sone subsetC of 7, we sayC is closed if for everyF, g, # Fo g € C, we
have thatF, g0 o 1+ € C. In [8], the fdlowing theorem is proved.

Theorem 1 ([8, Theorem 2.4]). LetC be a closed set of conics BG(2, q), g even. Then
theunion of the points of the conics@together with I form thepoints of a degre&’|+ 1
maximal arc inPG(2, q).

In this paper several classes of examples of new maximal arcs were given using his
method. See alsdb] and [4] for further examples as well agsults on the geometric
structure and collineation stabilizers of the maximal arcs.

Suppose we choose € GF(q) such that Tr(w) = 1, and letA be a subset of Gg)*
suchthat AU {0} is closed under addition. Then the set of conics

{Fa,l,k S A}

together with the nucleus, is the setf points of a degrepA|+1 maximal arc in PG2, q).
These maximal arcs were constructed by DennistoB]in [

To describe closed sets of conics we will use the following notation. Suppose we have a
closed set of conics whereis the set of values thatranges over. Then there are functions
p: A— GFQ)andr : A— GF(q) such that the closed set obnics is described by the
equations

(POX® + Xy +T(MN)Y> +A1Z2=0: 1 € Al (1)

The following constructions of closed sets of conics are known. All ha@e = 1
for every . Let bp be a fixed element of absolute trace 1 in the field coordinatising the
projective plane.

(a) Degree q inPG(2,q™), with r(x) = bg 4+ bix + boa3 + .-+ + bm_122" 1,
L € GFq)* and fixedb; € Ker(Trgm_.q), i > 1, and Tgm_.q is the usual trace
from GRq™) to GHq) [5].

(b) Degree2™1 in PG(2, 22™), with r (1) = b + 22" ~1, 4 € {x e GF@22M* :
x2 + x € GF(2M)} [8].
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(c) Degree2?™2in PG(2, 2°™2), withr (1) = bo+ 13, 1 € {x € GF(2?M)* : x>+ x €
GF(2™} [8].
(d) Degree 8 inPG(2, 22™1), Choosea € GF(22™1y* sych that Tl + «) =

Tr (ﬁ) =Tr (Ha—lﬂz) — 1. Then takeh, r (1)) € {((x, 1), @2 1), (@ + o2, 1),
Lil+a+a®, 1+a,1+a), (1+a2, 14%0{) , <1+oz +a?, l+a—l+a2>} [4].

(e) “Sporadics” In [8], many examples of closed sets of conics were constructed in
PG(2, 32) and PG2, 64) by computer. In P@, 32), three non-Denniston maximal
arcs of degree 8 that arise from a closed set of conics were constructed, and a non-
Denniston maximal arc of degree 16. The dual of the later maximal arc is in fact the
Cherowitzo hyperoval. In P@, 64), 31 non-Denniston maximal arcs of degree 8 that
arise from closed sets of conics were constructed, and 90 non-Denniston maximal
arcs of degree 16.

Given a closed set of conicsdtiollowing two theorems can be used to construct more
exampes.

Theorem 2 ([5]). LetG be a closed set of conics PG(2, q). Then he equations of the
conics ofG give a closed set of conics RG(2, ™), forany m> 1, modd.

Lemma3 ([5]). Let G be a closed set of conics giving rise to a degée& n < q/2
maximal arckC in PG(2, q) that is not of Denniston type. Then there exist maximal arcs of
degree r that are not of type DennistonRx(2, q) for all r > 8, r dividing n.

In [4], the following test for when a closed set of conics is not of type Denniston was
given.

Lemma4 ([4, Conllary 2.2]). Let A be a abset ofGF(q) with functions pr : A —
GF(q) suchthat{p(A)xZ + xy +r(A)y2 + 122 = 0: 1 € A} is the set of guations for a
closed set of conics. Suppose that eitt@®.) + p(1"))/(A+1) or (r W) +r(A))/(A+ 1))
is a polynomial of degree d in and’, and thatl < d < |A| — 1. Then he closed set of
conics gives rise to a maximal arc which is not of Denniston type.

In the next setton a new construction of closed sets of conics will be given using certain
quadratic forms on projective spaces. Thomstruction (together with the dual maximal
arcs) will give maximal arcs not of Denniston type for aldividingq, 4 < n < q/2,

g even. In the fial section the isomorphism problem will be examined and it will be
shown that he new construction gives large numbers of examples when the degree is

approximately,/q in PG(2, g), g even.

2. A new construction of closed sets of conics

In this section we give a new construction of closed sets of conics. To do this we will
need thedllowing lemma.

Lemmas5. Let by, b, € GF(2M), by # 0, then he function Q: GF(2")* — GF(2) given
by QA) = Tr(biAr + bo1A3) is a guadratic form onGF(2")* considered as a projective
spacePGh — 1, 2) of dimension h- 1 over GF(2).
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Proof. To show thatQ is aquadratic form on PG — 1, 2) we firstnote thatQ (ki) =
kQ(x) = k2Q(n) for everyr € GF(2")* andk € GF(2). Further, if we @fine the form
B : GF(2"* x GF2")* — GF(2) by B(x, 1) = Q(A + 1) — Q(A) — Q(w) then it is easy
algebra to check that this is bilinear. The result follows]

Closed set®f conics, and so maximal arcs, may then be constructed as follows.

Theorem 6. Choose b, b1, b, € GF2") with by # 0 and Trbg) = 1. Define the
quadratic form Qi) = Tr(bix + bpa3) on GF(2M* considered as a projective space
PG(h — 1, 2), and let A be a subspace of the associated quadric. Then the set

(X% + xy+ (bo+ b1r + bpa®)y? + 122 = 0: 1 € A} (2)
is a closed set afonics giving rise to a maximal arc of degre®| + 1.

Proof. We show the set is a closed set of conics. It must first be shown that each of the
conics is inF by observing that for each conic the trace of the product of the coefficients
of x2 andy? is one. Note that we have chos@nso thatQ(x) = Tr(bix + boA3) = 0 for
everyi € A. Hence for eachh € A, Tr(bg + bix + baA%) = Tr(bg) + Tr(bih + bpad) =

Tr(bg) = 1, and the trace condition for a closed set of conics is satisfied. Closure under
addition is trivial to check. [(J

To find out how large a degree such maximal arcs may have, the question that then arises
is what is the type of thquadric. We solve this by counting the number of zeros of the
quadratic form. Here we have been very lucky in that Carl®zdhose to evaluate the sums

S(b]_, b2) — Z eﬂiTr(b]_X+b2x3) (3)

XeGF(2M)
for fixed by, by € GF(2"). Themain result of Carlitz’s paper is to prove the following.

Theorem 7 ([2]). In GF(2M), h = 2m + 1 for sone integer m, @1, by) is either—2M+1,
0or 2™ In GF2"), h = 2m for some iteger m, by, by) is either—2™+1 —_2m o, 2m
or 2™1 |n both cases for h each value does occur for somép O

With Q as above, the terms in EQ)({n the sum are-1if Q(x) = 1 and 1ifQ(x) = 0.
Hence iftg is the nunber of elements of GR")* suchthat Q(x) = 0, andt; is thenumber
suchthat Q(x) = 1, then we have that

to+t1=2"—1 and to—t; = S(by, bp) — 1,

and sotg = 2"1 4 S(by, by)/2 — 1 is thenumber of points of the quadric determined by
QinPGh-1,2).

Hence vhenh = 2m + 1, by, by can be chosen to give quadricsliemma 5of size
22m _pm _ 1 22M _ 1 or 2M 4 2™ _ 1. |t is easily shown that the type of a quadric is
determined by the number of points it contains. These three sizes correspond respectively
to

(@ pQ (2m — 1,2). The span of the points of a non-degenerate elliptic quadric
Q (2m — 1, 2) in same hyperplane P@m — 1, 2) with a point p not contained
in that hyperplane.
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(b) A (possibly degenerate) parabolic quadric.

(c) pQ*t(2m — 1, 2). The span of the points of a non-degenerate hyperbolic quadric
Q*(2m — 1, 2) in same hyperplane P@m — 1, 2) with a point p not contained in
that hyperplane.

Similarly, whenh = 2m, we get tke cases

() 1Q~(2m — 3,2). The span of the points of a non-degenerate elliptic quadric
Q (2m — 3,2) in some sbspace P@m — 3, 2) with a linel not meeting that
subspace.

(i) Q~(2m—1, 2). A non-degenerate elliptic quadric.

(iif) A degenerate parabolic quadric.
(iv) Q*t(2m— 1, 2). A non-degenerate hyperbolic quadric.

(v) 1QT(2m — 3,2). The span of the points of a non-degenerate hyperbolic quadric
Q*(2m — 3,2) in some sbspace P@m — 3, 2) with a linel not meeting that
subspace.

Note that in (b) and (iii) above it is not possible from the numerology to determine the
dimension of the radical of the quadric. However, in the following we will not be concerned
with these two cases.

The cases that give the largest subspaces contained in the above quadrics are (c) and (v),
which both contain maximal totallgingular subspaces of dimension Such a sbspace
contains 21 — 1 points, and so bfheorem Ggive maximal arcs of degreé21. Herce
we have the following theorem.

Theorem 8. In PG(2, q), q = 22 or q = 22™1 m > 2, there exist b, by, b, € GF(Q),
b, £ 0, and Ac GF(q), such hat the set

(X2 + xy+ (bp 4+ bir + b3 y2 + 222 =0: 1 € A} (4)
is a closed set afonics giving rise to a maximal arc of degr2&+?,

Corallary 1. In PG(2, 2", h > 4, there exist raximal arcs of degree n that are not of
Denniston type for all n dividing g with the possible exceptions eféior n = q/4.

Proof. Supposek is a degree 2+ maximal arc arising from the theorem. Then for
A # ) € Awe have that

(bo -+ bak + bpA3) + (bo + b1A’ + bpi'3)
A4 N
Sinceby # 0, this is a polynomial of degree 2, and since> 2, |A] > 7. Applying
Lemma 4stated in the introduction shows thitis not of Denniston type.
ConsideringA as the set of points of a projective space over(ZRve can take
subspacesA’ of A (in other words subsetd’ of A suchthat A’ U {0} is closed under
addition). If follows immediately that

= by + by(A2 + A1+ 12).

(X% + Xy + (bo 4+ bir + bpA®)y? + 122 = 0: 1 € A}

is a closed set ofonics giving rise to a degree\'| + 1 maximal arc K'. Exadly the
same polynomial argument applies to show t&tis not of Denniston type as long as
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|A'| — 1 > 2. Hence degrea maximal arcs are constructed for alldividing g, with
8 <n<2mtl

Now 2m+1 > /0, s0 these maximal arcs together with their duals give non-Denniston
maximal arcs for alh dividing g in the range 8< n < /8. Notethat in [5, Comllary 2]
it is shown that the dual of a non-Denniston maximal arc arising from a closed set of
conics cannot be constructed from a closed set of conics. In particular, the duals are not of
Denniston type.

Finally, a maximal arc of degree 2 that is of Denniston type is just a regular hyperoval.
Hyperovals thaare not regular are known for ajl= 2", h > 4 (see p, Chapter 8]). The
degreay/2 maximal arcs that are the duals of these are also not of Denniston type.

3. Isomorphism of the new maximal arcs

In [8, Table 1], 31 degree Baximal arcs in P@, 64) that arenot of Denniston type
and that arise from closed sets of conics are given. All of them can be understood as
being maximal arcs of the type givenTieorem 8and the corollary. However, of the 91
degree 16 non-Denniston maximal arcs in(R@®4) given in the same paper, only two can
be understood in this way. Of the classes of known examples (as listed in the introduction)
it is clear that the current constructiomciudes those of (c) as a subclass. Taking= 2
in the class (a) gives maximal arcs which are each a subset of a maximal arc of the current
construction. Otherwise, the current constion appears to ga&znew maxinal arcs.

We conclude by giving a lower bound on the number of maximal arcs arising from
Theorem 8First mnsider the casg = 22™1, Chooseby, by andb, to give the quadric
pQ*(2m—1, 2). ThenA can be chosen to be any maximal totally singular subspace of the
quadric. Now two conics have the same point set if and only if their quadratic equations
are scalar multiples of each other. It follows that each choic& gives rise ¢ a diginct
set of conics in the plane. Ib[ Theorem 6] it is shown that if a maximal a#C of degree
n < q/2 arisesfrom a closed set of conics, then there are no conics contained in the
maximal arc apart from those of the closed set. It follows that distinct maximal totally
singular subspaces ipQ*(2m — 1, 2) give rise to distinct point sets in RG 22™t1),

The number of maximal totally singular subspacep@ft(2m — 1, 2) is the same as
the number of maximal totally singular subspaces of the quaitim — 1, 2), which is
well knownto be 22+ 1)(2%+1) ... (2™ 1 4+ 1) (see B, Theorem 5.23]). Hence for given
bo, by andb, we haveN = 2(2+1)(22+ 1) ... (2™ 14+ 1) distinct maximal arcs of degree
2™1in PG(2, 22™1). Theorder of the collineation stabilizer of the plane Rg 22™+1)
isG = (2m+ 1)g3(q® — 1)(g%2 — 1), q = 22™1, Thenumber of isomorphism classes of
such maxinal arcs must then be at leddy G.

Now N > 2(2- 22,03 szl) = 2.2142+3+4m-1 _ omm-1)/2+1 _ 211/8qm/473/8,
andG < g° Herce N/G > 21V/8qm4-9-3/8 and so fo carefully choserbg, by and
b, there are at leastq®*~19 isomorphism classes of maximal arcs of degkg2q in
PG(2,q), q = 22™1 that arenot of Denniston type. Similar calculations for when
q = 2°™ show thafor givenby, by andb,, Theorem gjives 4 least 4™4~1%isomorphism
classes of maximal arcs of degrefg in PG(2, g), that arenot of Denniston type. Hence
we have the following theorem.
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Theorem 9. In PG(2, q), q = 22™1, thenumber of isomorphism classes of maximal arcs
of degree,/2q that are not of Denniston type is bounded beloveq§/4-1°. In PG(2, q),

q = 2°™, thenumber of isomorphism classes of maximal arcs of deg(é® that are not

of Denniston type is bounded below4ry™4-10,

Suppose, as in the proof d@orollary 1, instead of taking maximal totally singular
subspaces 0p QT (2m— 1, 2) andl Q*(2m— 3, 2) we take smaller dimension subspaces to
give our setsA to construct (smaller degree) maximal arcs. Then the number of subspaces
of a given dimension in the quadrics is well known (séeTheorem 22.5.1]) and similar
calculations to the above are possible. Hegrethe number of subspaces substantially
reduces with the dimension of the subspaddse above method then shows there are
many (more than- g™4) maximal arcs of degree aroundj using subspaces of quadrics.

But for small degrees (i.e. near to 8) the number of subspaces is of roughly the same order
asG and so we get little information on how many isomorphism classes there may be.

We mnclude by noting that classes of larger degree maximal arcs arising from closed
sds of conics may well exist. But the only example we know of with a non-Denniston
maximal arc of degree™? in a PG2, 22™1) having p(A) = 1 occurs in PG2, 512
forr(A) = 1+ A7 with 2 in the union of nine multiplicative cosets of G&* given by
A= {2473 i =0 .. 6, j=0,...,8}, wherea is a fixed element of GE12)
satisfyinga130 4 o« = 1.
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