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Abstract

In 1969, Denniston gave a construction of maximal arcs of degreen in Desarguesian projective
planes of even orderq, for all n dividing q. Recently, Mathon gave a construction method that
generalized that of Denniston. In this paper we use that method to give maximal arcs that are not
of Denniston type for alln dividing q, 4 < n < q/2, q even. It is then shown that there are a large
number of isomorphism classes of such maximal arcs whenn is approximately

√
q.
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1. Introduction

A maximal {q(n − 1) + n; n}-arc in a projective plane of order q is a subset of
q(n − 1) + n points such that every line meets the set in 0 orn points for some 2≤ n ≤ q.
For such a maximal arcn is called thedegree. If K is a maximal{q(n − 1) + n; n}-arc,
the set of lines external toK is a maximal{q(q − n + 1)/n; q/n}-arc in thedual plane
called thedual of K. It follows that a necessary condition for the existence of a maximal
{q(n − 1) + n; n}-arc in a projective plane of orderq is thatn dividesq. Ball, Blokhuis
and Mazzocca have also shown that non-trivial maximal arcs do not exist in odd order
Desarguesian projective planes [1].

In [8], Mathon gave a construction method for maximal arcs in Desarguesian projective
planes that generalized a previously known construction of Denniston [3]. We begin by
describing this construction method.
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Let Tr be the usual absolute trace map from the finite field GF(q) onto GF(2). We
represent the points of the Desarguesian projective plane PG(2, q) via homogeneous
coordinates(a, b, c) over GF(q), andlines similarly as triples[u, v,w] over GF(q), and
incidence by the usual inner productau + bv + cw = 0. Forα, β ∈ GF(q) such that the
absolute trace Tr(αβ) = 1, andλ ∈ GF(q), defineFα,β,λ to be the conic

Fα,β,λ = {(x, y, z) : αx2 + xy + βy2 + λz2 = 0}
and letF be the union of all such conics. Note that all the conics inF have the point
F0 = (0, 0, 1) as their nucleus.

For givenλ �= λ′, define a composition

Fα,β,λ ⊕ Fα′,β ′,λ′ = Fα⊕α′,β⊕β ′,λ+λ′

where theoperator⊕ is defined on GF(q) × GF(q) by

a ⊕ b = λa + λ′b
λ + λ′ .

Given some subsetC of F , we sayC is closed if for everyFα,β,λ �= Fα′,β ′,λ′ ∈ C, we
have thatFα⊕α′,β⊕β ′,λ+λ′ ∈ C. In [8], the following theorem is proved.

Theorem 1 ([8, Theorem 2.4]). LetC be a closed set of conics inPG(2, q), q even. Then
theunion of the points of the conics ofC together with F0 form thepoints of a degree|C|+1
maximal arc inPG(2, q).

In this paper several classes of examples of new maximal arcs were given using his
method. See also [5] and [4] for further examples as well as results on the geometric
structure and collineation stabilizers of the maximal arcs.

Suppose we chooseα ∈ GF(q) such that Tr(α) = 1, and letA be a subset of GF(q)∗
suchthat A ∪ {0} is closed under addition. Then the set of conics

{Fα,1,λ : λ ∈ A}
together with the nucleusF0 is the setof points of a degree|A|+1 maximal arc in PG(2, q).
These maximal arcs were constructed by Denniston in [3].

To describe closed sets of conics we will use the following notation. Suppose we have a
closed set of conics whereA is the set of values thatλ ranges over. Then there are functions
p : A → GF(q) andr : A → GF(q) such that the closed set ofconics is described by the
equations

{p(λ)x2 + xy + r (λ)y2 + λz2 = 0 : λ ∈ A}. (1)

The following constructions of closed sets of conics are known. All havep(λ) = 1
for everyλ. Let b0 be a fixed element of absolute trace 1 in the field coordinatising the
projective plane.

(a) Degree q inPG(2, qm), with r (λ) = b0 + b1λ + b2λ
3 + · · · + bm−1λ

2m−1−1,
λ ∈ GF(q)∗ and fixedbi ∈ Ker(Trqm→q), i ≥ 1, and Trqm→q is the usual trace
from GF(qm) to GF(q) [5].

(b) Degree2m+1 in PG(2, 22m), with r (λ) = b0 + λ2m−1−1, λ ∈ {x ∈ GF(22m)∗ :
x2 + x ∈ GF(2m)} [8].
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(c) Degree22m+2 in PG(2, 24m+2), with r (λ) = b0 +λ3, λ ∈ {x ∈ GF(22m)∗ : x2 + x ∈
GF(2m)} [8].

(d) Degree 8 inPG(2, 22m+1). Chooseα ∈ GF(22m+1)∗ such that Tr(1 + α) =
Tr

(
1

1+α

)
= Tr

(
1

1+α+α2

)
= 1. Then take(λ, r (λ)) ∈

{
(α, 1), (α2, 1), (α + α2, 1),

(1, 1 + α + α2), (1 + α, 1 + α),
(

1 + α2, 1
1+α

)
,
(
1 + α + α2, 1

1+α+α2

)}
[4].

(e) “ Sporadics”. In [8], many examples of closed sets of conics were constructed in
PG(2, 32) and PG(2, 64) by computer. In PG(2, 32), three non-Denniston maximal
arcs of degree 8 that arise from a closed set of conics were constructed, and a non-
Denniston maximal arc of degree 16. The dual of the later maximal arc is in fact the
Cherowitzo hyperoval. In PG(2, 64), 31non-Denniston maximal arcs of degree 8 that
arise from closed sets of conics were constructed, and 90 non-Denniston maximal
arcs of degree 16.

Given a closed set of conics the following two theorems can be used to construct more
examples.

Theorem 2 ([5]). Let G be a closed set of conics inPG(2, q). Then the equations of the
conics ofG give a closed set of conics inPG(2, qm), for any m≥ 1, m odd.

Lemma 3 ([5]). Let G be a closed set of conics giving rise to a degree8 ≤ n < q/2
maximal arcK in PG(2, q) that is not of Denniston type. Then there exist maximal arcs of
degree r that are not of type Denniston inPG(2, q) for all r ≥ 8, r dividing n.

In [4], the following test for when a closed set of conics is not of type Denniston was
given.

Lemma 4 ([4, Corollary 2.2]). Let A be a subset ofGF(q) with functions p, r : A →
GF(q) suchthat {p(λ)x2 + xy + r (λ)y2 + λz2 = 0 : λ ∈ A} is the set of equations for a
closed set of conics. Suppose that either(p(λ)+ p(λ′))/(λ+λ′) or (r (λ)+r (λ′))/(λ+λ′)
is a polynomial of degree d inλ andλ′, and that1 < d < |A| − 1. Then the closed set of
conics gives rise to a maximal arc which is not of Denniston type.

In the next section a new construction of closed sets of conics will be given using certain
quadratic forms on projective spaces. The construction (together with the dual maximal
arcs) will give maximal arcs not of Denniston type for alln dividing q, 4 < n < q/2,
q even. In the final section the isomorphism problem will be examined and it will be
shown that the new construction gives large numbers of examples when the degree is
approximately

√
q in PG(2, q), q even.

2. A new construction of closed sets of conics

In this section we give a new construction of closed sets of conics. To do this we will
need the following lemma.

Lemma 5. Let b1, b2 ∈ GF(2h), b2 �= 0, then the function Q: GF(2h)∗ → GF(2) given
by Q(λ) = Tr(b1λ + b2λ

3) is a quadratic form onGF(2h)∗ considered as a projective
spacePG(h − 1, 2) of dimension h− 1 overGF(2).
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Proof. To show thatQ is a quadratic form on PG(h − 1, 2) we first note thatQ(kλ) =
kQ(λ) = k2Q(λ) for everyλ ∈ GF(2h)∗ andk ∈ GF(2). Further, if we define the form
B : GF(2h)∗ × GF(2h)∗ → GF(2) by B(λ, µ) = Q(λ+µ)− Q(λ)− Q(µ) then it is easy
algebra to check that this is bilinear. The result follows.�

Closed setsof conics, and so maximal arcs, may then be constructed as follows.

Theorem 6. Choose b0, b1, b2 ∈ GF(2h) with b2 �= 0 and Tr(b0) = 1. Define the
quadratic form Q(λ) = Tr(b1λ + b2λ

3) on GF(2h)∗ considered as a projective space
PG(h − 1, 2), and let A be a subspace of the associated quadric. Then the set

{x2 + xy + (b0 + b1λ + b2λ
3)y2 + λz2 = 0 : λ ∈ A} (2)

is a closed set ofconics giving rise to a maximal arc of degree|A| + 1.

Proof. We show the set is a closed set of conics. It must first be shown that each of the
conics is inF by observing that for each conic the trace of the product of the coefficients
of x2 andy2 is one. Note that we have chosenA, so thatQ(λ) = Tr(b1λ + b2λ

3) = 0 for
everyλ ∈ A. Hence for eachλ ∈ A, Tr(b0 + b1λ + b2λ

3) = Tr(b0) + Tr(b1λ + b2λ
3) =

Tr(b0) = 1, and the trace condition for a closed set of conics is satisfied. Closure under
addition is trivial to check. �

To findout how large a degree such maximal arcs may have, the question that then arises
is what is the type of the quadric. We solve this by counting the number of zeros of the
quadratic form. Here we have been very lucky in that Carlitz [2] chose to evaluate the sums

S(b1, b2) =
∑

x∈GF(2h)

eπ iTr(b1x+b2x3) (3)

for fixedb1, b2 ∈ GF(2h). Themain result of Carlitz’s paper is to prove the following.

Theorem 7 ([2]). In GF(2h), h = 2m + 1 for some integer m, S(b1, b2) is either−2m+1,
0 or 2m+1. In GF(2h), h = 2m for some integer m, S(b1, b2) is either−2m+1, −2m, 0, 2m

or 2m+1. In both cases for h each value does occur for some b1, b2. �
With Q as above, the terms in Eq. (3) in the sum are−1 if Q(x) = 1 and 1 ifQ(x) = 0.

Hence ift0 is the number of elements of GF(2h)∗ suchthatQ(x) = 0, andt1 is thenumber
suchthat Q(x) = 1, then we have that

t0 + t1 = 2h − 1 and t0 − t1 = S(b1, b2) − 1,

and sot0 = 2h−1 + S(b1, b2)/2 − 1 is thenumber of points of the quadric determined by
Q in PG(h − 1, 2).

Hence whenh = 2m + 1, b1, b2 can be chosen to give quadrics inLemma 5of size
22m − 2m − 1, 22m − 1 or 22m + 2m − 1. It is easily shown that the type of a quadric is
determined by the number of points it contains. These three sizes correspond respectively
to

(a) pQ−(2m − 1, 2). The span of the points of a non-degenerate elliptic quadric
Q−(2m − 1, 2) in some hyperplane PG(2m − 1, 2) with a point p not contained
in that hyperplane.
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(b) A (possibly degenerate) parabolic quadric.
(c) pQ+(2m − 1, 2). The span of the points of a non-degenerate hyperbolic quadric

Q+(2m − 1, 2) in some hyperplane PG(2m − 1, 2) with a point p not contained in
that hyperplane.

Similarly, whenh = 2m, we get the cases

(i) l Q−(2m − 3, 2). The span of the points of a non-degenerate elliptic quadric
Q−(2m − 3, 2) in some subspace PG(2m − 3, 2) with a line l not meeting that
subspace.

(ii) Q−(2m − 1, 2). A non-degenerate elliptic quadric.
(iii) A degenerate parabolic quadric.
(iv) Q+(2m − 1, 2). A non-degenerate hyperbolic quadric.
(v) l Q+(2m − 3, 2). The span of the points of a non-degenerate hyperbolic quadric

Q+(2m − 3, 2) in some subspace PG(2m − 3, 2) with a line l not meeting that
subspace.

Note that in (b) and (iii) above it is not possible from the numerology to determine the
dimension of the radical of the quadric. However, in the following we will not be concerned
with these two cases.

The cases that give the largest subspaces contained in the above quadrics are (c) and (v),
which both contain maximal totallysingular subspaces of dimensionm. Such a subspace
contains 2m+1 − 1 points, and so byTheorem 6give maximal arcs of degree 2m+1. Hence
we have the following theorem.

Theorem 8. In PG(2, q), q = 22m or q = 22m+1, m ≥ 2, there exist b0, b1, b2 ∈ GF(q),
b2 �= 0, and A⊂ GF(q), such that the set

{x2 + xy + (b0 + b1λ + b2λ
3)y2 + λz2 = 0 : λ ∈ A} (4)

is a closed set ofconics giving rise to a maximal arc of degree2m+1.

Corollary 1. In PG(2, 2h), h ≥ 4, there exist maximal arcs of degree n that are not of
Denniston type for all n dividing q with the possible exceptions of n= 4 or n = q/4.

Proof. SupposeK is a degree 2m+1 maximal arc arising from the theorem. Then for
λ �= λ′ ∈ A we have that

(b0 + b1λ + b2λ
3) + (b0 + b1λ

′ + b2λ
′3)

λ + λ′ = b1 + b2(λ
2 + λλ′ + λ′2).

Sinceb2 �= 0, this is a polynomial of degree 2, and sincem ≥ 2, |A| ≥ 7. Applying
Lemma 4stated in the introduction shows thatK is not of Denniston type.

ConsideringA as the set of points of a projective space over GF(2) we can take
subspacesA′ of A (in other words subsetsA′ of A suchthat A′ ∪ {0} is closed under
addition). If follows immediately that

{x2 + xy + (b0 + b1λ + b2λ
3)y2 + λz2 = 0 : λ ∈ A′}

is a closed set ofconics giving rise to a degree|A′| + 1 maximal arcK′. Exactly the
same polynomial argument applies to show thatK′ is not of Denniston type as long as
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|A′| − 1 > 2. Hence degreen maximal arcs are constructed for alln dividing q, with
8 ≤ n ≤ 2m+1.

Now 2m+1 >
√

q, so these maximal arcs together with their duals give non-Denniston
maximal arcs for alln dividing q in the range 8≤ n ≤ q/8. Notethat in [5, Corollary 2]
it is shown that the dual of a non-Denniston maximal arc arising from a closed set of
conics cannot be constructed from a closed set of conics. In particular, the duals are not of
Denniston type.

Finally, a maximal arc of degree 2 that is of Denniston type is just a regular hyperoval.
Hyperovals thatare not regular are known for allq = 2h, h ≥ 4 (see [6, Chapter 8]). The
degreeq/2 maximal arcs that are the duals of these are also not of Denniston type.�

3. Isomorphism of the new maximal arcs

In [8, Table 1], 31 degree 8maximal arcs in PG(2, 64) that arenot of Denniston type
and that arise from closed sets of conics are given. All of them can be understood as
being maximal arcs of the type given inTheorem 8and the corollary. However, of the 91
degree 16 non-Denniston maximal arcs in PG(2, 64) given in the same paper, only two can
be understood in this way. Of the classes of known examples (as listed in the introduction)
it is clear that the current construction includes those of (c) as a subclass. Takingm = 2
in the class (a) gives maximal arcs which are each a subset of a maximal arc of the current
construction. Otherwise, the current construction appears to give new maximal arcs.

We conclude by giving a lower bound on the number of maximal arcs arising from
Theorem 8. First consider the caseq = 22m+1. Chooseb0, b1 andb2 to give the quadric
pQ+(2m−1, 2). ThenA can be chosen to be any maximal totally singular subspace of the
quadric. Now two conics have the same point set if and only if their quadratic equations
are scalar multiples of each other. It follows that each choice ofA gives rise to a distinct
set of conics in the plane. In [5, Theorem 6] it is shown that if a maximal arcK of degree
n < q/2 arisesfrom a closed set of conics, then there are no conics contained in the
maximal arc apart from those of the closed set. It follows that distinct maximal totally
singular subspaces inpQ+(2m − 1, 2) give rise to distinct point sets in PG(2, 22m+1).

The number of maximal totally singular subspaces ofpQ+(2m − 1, 2) is the same as
the number of maximal totally singular subspaces of the quadricQ+(2m − 1, 2), which is
well knownto be 2(2+1)(22+1) . . . (2m−1 +1) (see [6, Theorem 5.23]). Hence for given
b0, b1 andb2 we haveN = 2(2+1)(22+1) . . . (2m−1+1) distinct maximal arcs of degree
2m+1 in PG(2, 22m+1). Theorder of thecollineation stabilizer of the plane PG(2, 22m+1)

is G = (2m + 1)q3(q3 − 1)(q2 − 1), q = 22m+1. Thenumber of isomorphism classes of
such maximal arcs must then be at leastN/G.

Now N > 2(2·22 ·23 . . . 2m−1) = 2·21+2+3+···+m−1 = 2m(m−1)/2+1 = 211/8qm/4−3/8,
and G < q9. Hence N/G > 211/8qm/4−9−3/8, and so for carefully chosenb0, b1 and
b2 there are at least 2qm/4−10 isomorphism classes of maximal arcs of degree

√
2q in

PG(2, q), q = 22m+1, that arenot of Denniston type. Similar calculations for when
q = 22m show thatfor givenb0, b1 andb2, Theorem 8gives at least 4qm/4−10 isomorphism
classes of maximal arcs of degree

√
q in PG(2, q), that arenot of Denniston type. Hence

we have the following theorem.
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Theorem 9. In PG(2, q), q = 22m+1, thenumber of isomorphism classes of maximal arcs
of degree

√
2q that are not of Denniston type is bounded below by2qm/4−10. In PG(2, q),

q = 22m, thenumber of isomorphism classes of maximal arcs of degree2
√

q that are not
of Denniston type is bounded below by4qm/4−10.

Suppose, as in the proof ofCorollary 1, instead of taking maximal totally singular
subspaces ofpQ+(2m−1, 2) andl Q+(2m−3, 2) we take smaller dimension subspaces to
give our setsA to construct (smaller degree) maximal arcs. Then the number of subspaces
of a given dimension in the quadrics is well known (see [7, Theorem 22.5.1]) and similar
calculations to the above are possible. However, the number of subspaces substantially
reduces with the dimension of the subspaces. The above method then shows there are
many (more than∼ qm/4) maximal arcs of degree around

√
q using subspaces of quadrics.

But for small degrees (i.e. near to 8) the number of subspaces is of roughly the same order
asG and so we get little information on how many isomorphism classes there may be.

We conclude by noting that classes of larger degree maximal arcs arising from closed
sets of conics may well exist. But the only example we know of with a non-Denniston
maximal arc of degree 2m+2 in a PG(2, 22m+1) having p(λ) = 1 occurs in PG(2, 512)
for r (λ) = 1 + λ7 with λ in the union of nine multiplicative cosets of GF(8)∗ given by
A = {α17∗2 j +73∗i | i = 0, . . . , 6, j = 0, . . . , 8}, whereα is a fixed element of GF(512)
satisfyingα130 + α = 1.
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