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Abstract

For a locally compact group G we look at the group algebras C0(G) and C∗
r (G), and we let

f ∈ C0(G) act on L2(G) by the multiplication operator M(f ). We show among other things that the
following properties are equivalent:
1. G has a compact open subgroup.
2. One of the C∗-algebras has a dense multiplier Hopf ∗-subalgebra (which turns out to be unique).
3. There are non-zero elements a ∈ C∗

r (G) and f ∈ C0(G) such that aM(f ) has finite rank.
4. There are non-zero elements a ∈ C∗

r (G) and f ∈ C0(G) such that aM(f ) = M(f )a.
If G is abelian, these properties are equivalent to:
5. There is a non-zero continuous function with the property that both f and f̂ have compact support.
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Introduction

The background for this article is the observation in [11, Section 3] that the algebra C∞
c (G)

of smooth functions on a totally disconnected locally compact group G is a multiplier
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Hopf ∗-algebra as defined in [24]. Therefore, it is natural to classify all multiplier
Hopf ∗-algebras which are commutative or co-commutative; this is the same as answer-
ing the following question: When does C0(G) or C∗

r (G) have a dense multiplier Hopf
∗-algebra? It is well known that the answer is yes if G is compact or discrete and the main
results of Sections 3 and 5 are that in general the answer is yes if and only if G has a com-
pact open subgroup. If so, such a multiplier Hopf ∗-algebra is unique and can be described
explicitly as the algebra of polynomial functions on G.

We believe that multiplier Hopf ∗-algebras in general are the right framework for studying
totally disconnected locally compact quantum groups (what ever that is) and it is therefore
natural to first give a complete account for C0(G) and C∗

r (G).
C0(G) is treated in Section 3, the main tool is in Corollary 1.3 where it is shown that the

existence of functions satisfying some algebraic relations is equivalent to the existence of
a compact open subgroup.

To get the same results for C∗
r (G) is a little more tricky. For C0(G) one can quickly

show that elements of a multiplier Hopf ∗-subalgebra must have compact support and are
therefore integrable. It is not so easy to show that elements of a multiplier Hopf ∗-subalgebra
of C∗

r (G) automatically are integrable with respect to the Haar–Plancherel weight. However,
when this is proved, the results for C∗

r (G) follow from those of C0(G). In fact, we show
that if A is the unique dense multiplier Hopf ∗-algebra of C0(G) and L denotes the left
regular representation, then {L(f )|f ∈ A} is the unique dense multiplier Hopf ∗-algebra
of C∗

r (G).
For C∗(G) the situation is different. Here, the existence of a multiplier Hopf ∗-subalgebra

does not imply that G has a compact open subgroup. However, the corresponding uniqueness
result is true.

The algebras C0(G) and C∗
r (G) are dual as locally compact quantum groups and we shall

also see that many properties of this duality are equivalent with the existence of a compact
open subgroup.

It is well known that if a ∈ C∗
r (G), f ∈ C0(G) and M(f ) is the corresponding mul-

tiplication operator on L2(G), then aM(f ) is compact. Since the finite-rank operators are
dense in the algebra of compact operators it is natural to ask when aM(f ) �= 0 is of finite
rank. We show this is possible if and only if G has a compact open subgroup.

It is a consequence of the Heisenberg relations that if G = Rn then a and M(f ) as above
never commute unless one of them is zero. We show that in general aM(f ) = M(f )a �= 0
is possible if and only if G has a compact open subgroup.

Finally, as a bonus for the patient reader we look at the case where G is abelian and ask
whether one can have f ∈ Cc(G), f �= 0 and f̂ ∈ Cc(Ĝ). The answer should not surprise.

Some of the results here are probably folklore and known to those who have worked with
representations of p-adic groups.

1. Preliminaries

We start with fixing our notation regarding function spaces on G.

Definition 1.1. As usual C0(G) are the continuous complex functions on G vanishing at
∞ and Lp(G) is defined with respect to a fixed left Haar measure �. We will often write
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just ∫
f d� =

∫
f (x) dx.

The left and right action of G on such functions is given by

xf (y) = f (x−1y), fx(y) = f (yx). (1.1)

However, for functions in L2(G) we will instead use the left and right regular representations
given by

Lxf (y) = f (x−1y), Rxf (y) = �G(x)1/2f (yx) (1.2)

where �G is the modular function on G.

Many of the arguments are based on the following lemma:

Lemma 1.2. Suppose G is a locally compact group with a continuous action � by isometries
on a Banach space A. For a fixed non-zero vector a ∈ A and any subset U ⊂ G, denote by
FU(a) the linear span of the set {�x(a) | x ∈ U}.

(i) Suppose that FU(a) is finite dimensional for a neighborhood U of e. Then G has an
open subgroup H s.t. FH (a) is also finite dimensional.

(ii) The same conclusion holds if we have a non-negligible set C s.t. FC(a) is finite
dimensional.

(iii) If one further assumes that the functions x �→ 〈�x(a), �〉 are in C0(G) for a ∈ A,
� ∈ A∗, then the subgroup H is also compact.

Proof. Clearly V ⊂ U implies that FV (a) ⊂ FU(a). To prove (i), take a neighborhood U

s.t. FU(a) has minimal, positive dimension. Take a neighborhood V of e s.t. V = V −1 and
V 2 ⊂ U . Then FV (a) = FU(a) is invariant by the open subgroup H generated by V and
therefore FV (a) = FH (a).

For (ii), take a measurable set C with finite Haar measure �(C) > 0 s.t. FC(a) has minimal,
positive dimension. Clearly U = {y ∈ G |�(y−1C ∩ C) > 0} is a neighborhood of e which
satisfies

y ∈ U ⇒ FC(a) = Fy−1C∩C(a).

Therefore, the non-trivial linear space FC(a) is invariant by the open subgroup H

generated by U and also here FC(a) = FH (a) is finite dimensional.
As for (iii), let {bi} be a basis for FH (a), let �j ∈ A∗ s.t. 〈bi, �j 〉 = �ij and define

�ji(z) = 〈�z(bi), �j 〉. Then �ji ∈ C0(G) and for y, z ∈ H :

�z(bi) =
∑

k

�ki(z)bk ,
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�ji(yz) =
∑

k

�ki(z)〈�y(bk), �j 〉

=
∑

k

�jk(y)�ki(z).

So 1 = �11(yy−1) = ∑
k�1k(y)�k1(y

−1) is constant on H and in C0(G), so H must be
compact. �

Corollary 1.3. If f, g, fi, gi ∈ C0(G) are non-zero functions s.t.

f (xy)g(y) =
n∑
1

fi(x)gi(y) for all x, y ∈ G, (1.3)

then G has a compact open subgroup H and there are functions f ′
j ∈ C0(G) and g′

j ∈
C(H) s.t.

f (xy) =
n∑
1

f ′
j (x)g′

j (y) for all x ∈ G, y ∈ H . (1.4)

Proof. Pick a non-empty open subset U of G with g(y) �= 0 for y ∈ U , and we may
assume e ∈ U . We then have

fy =
∑

hi(y)fi, where hi(y) = gi(y)/g(y) for y ∈ U ,

so the result follows from Lemma 1.2 by taking A = C0(G) and the action given by
�y(f ) = fy . �

Lemma 1.4. Suppose that we have a continuous action of G as in Lemma 1.2, that we have
a finite set of non-zero elements a, ai ∈ A, and functions g, gi s.t.

g(y)�y(a) =
∑

gi(y)ai for y ∈ G. (1.5)

Then g has compact support.

Proof. We may assume that {ai} are linearly independent, so pick �i ∈ A∗ s.t. 〈ai, �j 〉=�ij .
Then,

gi(y) = g(y)〈�y(a), �i〉,
g(y)�y(a) = g(y)

∑
〈�y(a), �i〉ai ,

g(y)a = g(y)
∑

〈�y(a), �i〉�y−1(ai).

Pick �0 ∈ A∗ with 〈a, �0〉 = 1, then

g(y) = g(y)
∑

〈�y(a), �i〉〈�y−1(ai), �0〉 = g(y)c(y),

with c ∈ C0(G), which is possible only if g has compact support. �
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Corollary 1.5. With the assumptions in Corollary 1.3, g ∈ Cc(G).

We shall also need the following:

Lemma 1.6. Suppose G contains a subgroup H , that A is a vector space and that we have
functions g, gi : G �→ A and fi : G �→ C s.t.

	H (xy)g(y) =
n∑
1

fi(x)gi(y) for all x, y ∈ G. (1.6)

Then g has finite support in G/H , i.e. there is a finite set F s.t. g(y) = 0 for y /∈ FH .

Proof. We may assume that the set {fi} is linearly independent, so by [9, (28.14)] there is
a finite set F1 ={xi} s.t. the matrix {fi(xj )} is invertible. Then y /∈ F−1

1 H ⇒ gi(y)= 0 and
therefore also g(y) = 0. So we can take F = F−1

1 . �

Corollary 1.7. Suppose the functions f, g, fi, gi ∈ L2(G) satisfy

f (x)g(x−1y) =
n∑
1

fi(x)gi(y) for almost all x, y ∈ G. (1.7)

Then G has a compact open subgroup H and there are functions f ′
j ∈ C(H) and g′

j ∈
L2(G) s.t.

g(x−1y) =
m∑
1

f ′
j (x)g′

j (y) for x ∈ H, y ∈ G. (1.8)

Proof. Pick a set C such that 0 < �(C) < ∞ and f (x) �= 0 for x ∈ C. Then divide by f (x)

and apply part (ii) of Lemma 1.2 with A = L2(G) and the action given by Lx . �

Remark 1.8. The Kac–Takesaki operator on L2(G × G) is defined by Wf(x, y) = f (x,

x−1y). Therefore, (1.8) is equivalent to W(f ⊗ g) = ∑n
1fi ⊗ gi . The reader may want to

compare this with [2, Definition 1.8].

Remark 1.9. Our main results so far have been that the existence of certain functions
satisfying (1.3) is possible only if G has a compact open subgroup. Note, however, that this
conclusion is possible only with some restriction on the functions involved. On R or matrix
groups like GL(n, C) one clearly has unbounded functions satisfying (1.3), but there are
no compact open subgroups.

Remark 1.10. As we shall see later, the conditions studied here are in fact equivalent to the
existence of a compact open subgroup H . For the opposite implication, just take f =g=	H .
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2. Multiplier Hopf ∗-algebras

Multiplier Hopf ∗-algebras were introduced in [26], in this section we shall recall some
of the main definitions and results and refer to [24–26] or [13, Appendix] for more precise
statements.

Let A be a ∗-algebra over C, with or without identity, but with a non-degenerate product.
The multiplier algebra M(A) can be characterized as the largest algebra with identity in
which A sits as an essential two-sided ideal. We always let A⊗A denote the algebraic tensor
product. A comultiplication (or a coproduct) on A is a non-degenerate ∗-homomorphism
� : A → M(A ⊗ A) such that �(a)(1 ⊗ b) and (a ⊗ 1)�(b) are elements of A ⊗ A for all
a, b ∈ A. It is assumed to be coassociative in the sense that (�⊗ 
) ◦�(a)= (
⊗�) ◦�(a)

inside M(A ⊗ A ⊗ A); where 
 denotes the identity map, see [24] for a more precise
definition.

Definition 2.1. A pair (A, �) of a ∗-algebra A over C with a non-degenerate product and a
comultiplication � on A is called a multiplier Hopf ∗-algebra if the linear maps from A⊗A

defined by

a ⊗ b → �(a)(1 ⊗ b), (2.1)

a ⊗ b → (a ⊗ 1)�(b) (2.2)

are injective with range equal to A ⊗ A.

For any multiplier Hopf ∗-algebra, there is a counit ε : A �→ C which is the unique
∗-homomorphism satisfying

(ε ⊗ 
)(�(a)(1 ⊗ b)) = ab, (2.3)

(
 ⊗ ε)((a ⊗ 1)�(b)) = ab (2.4)

for all a, b ∈ A. There is also an antipode which is the unique linear map S : A �→ A

satisfying

m(S ⊗ 
)(�(a)(1 ⊗ b)) = ε(a)b, (2.5)

m(
 ⊗ S)((a ⊗ 1)�(b)) = ε(b)a, (2.6)

where m denotes multiplication defined as a linear map from A ⊗ A to A. The antipode is
an injective anti-homomorphism and satisfies the relation S(a∗) = S−1(a)∗ for all a ∈ A.

Definition 2.2. A right integral on A is a linear functional � s.t.

(� ⊗ 
)(�(a)(1 ⊗ b)) = �(a)b.

In general a right integral may not exist, but if it does there is also a left integral (defined
in a similar way). This will always be true in the cases we are studying. A multiplier Hopf
∗-algebra with a positive right integral is called an algebraic quantum group, (which should
not be confused with a quantization of an algebraic group).

A multiplier Hopf ∗-algebra has local units in the following sense:
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Lemma 2.3. If A is a multiplier Hopf ∗-algebra and F is a finite subset of A, then there
is b ∈ A s.t. ab = a for all a ∈ F .

Proof. See [6, Proposition 2.2]. �

3. Multiplier Hopf ∗-algebras in C0(G)

We start with C0(G) where the comultiplication, antipode and counit is given by

�(f )(x, y) = f (xy), S(f )(x) = f (x−1), ε(f ) = f (e)

and a Haar integral is given by f �→ ∫
f d� where � as before is a left Haar measure on G.

Standing Hypothesis 3.1. LetA be a ∗-subalgebra of C0(G) which is also invariant under
the antipode S. We also assume that

span{�(f )(1 ⊗ g) |f, g ∈ A} = A ⊗ A.

It can then be shown that A is a multiplier Hopf ∗-algebra with the coproduct inherited
from C0(G). We callA a multiplier Hopf ∗-subalgebra of C0(G). It is actually not necessary
to assume that A is invariant under the antipode S, for details on all this see [5].

The main results in this section is that such a multiplier Hopf ∗-subalgebra A of C0(G)

exists only if G has a compact open subgroup. If A also is dense in C0(G), it is unique and
can be described.

Definition 3.2. If H is a compact group, define P(H)= all polynomial functions on H , so
f ∈ P(H) ⇔ ∃fi, gi ∈ C(H) s.t.

f (hk) =
n∑
1

fi(h)gi(k) for h, k ∈ H . (3.1)

Thus P(H) equals the matrix functions corresponding to finite-dimensional (unitary)
representations of H .

Suppose G is a locally compact group and that H is a compact open subgroup.
Then C(H) ⊂ Cc(G) in an obvious way, this is used next.

Lemma 3.3. The following are equivalent:

(i) f ∈ span{x� | x ∈ G, � ∈ P(H)}.
(ii) ∃fi ∈ Cc(G), �i ∈ C(H) s.t.

f (xh) = ∑n
1fi(x)�i (h) for x ∈ G, h ∈ H .

Proof. (i) ⇒ (ii): If � ∈ P(H) satisfies (3.1) and f =x�, then for y ∈ G, h ∈ H :

f (yh) = 	xH (yh)�(x−1yh) = 	xH (y)
∑

fi(x
−1y)gi(h). (3.2)

So f satisfies (ii).
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(ii) ⇒ (i): If f satisfies (ii) and has support in
⋃m

1 xiH we have f = ∑
	xiH

f . So we
may suppose f =x� and have to show that � ∈ P(H). But this follows from �(hk) =
f (xhk) = ∑

fi(xh)gi(k). �

Lemma 3.4. If f satisfies (ii) above, fi, �i can be chosen s.t. also fi satisfies (ii) and
�i ∈ P(H).

Proof. First note that we can assume that {�i} is an orthonormal set in L2(H), so

fi(x) =
∫

H

f (xh)�i (h) dh,

fi(xk) =
∫

H

f (xkh)�i (h) dh =
∑
j

fj (x)

∫
H

�j (kh)�i (h) dh,

therefore fi satisfies (ii). Since span{fi} is RH -invariant and �i are the matrix functions
with respect to this finite-dimensional representation, it follows that �i ∈ P(H). �

Lemma 3.5. Suppose H, K are two compact open subgroups of G. Then f satisfies the
conditions of Lemma 3.3 with respect to H if and only if it does for K .

Proof. It is enough to show that the statement is true if H ⊂ K . Using Lemma 3.3 it
further suffices to show that under the natural embedding of C(H) into C(K) we have
P(H) mapped into P(K). If K = ⋃n

1kiH we have

	H (kl) =
n∑
1

	H (kki)	H (k−1
i l) for k, l ∈ K . (3.3)

Now suppose f ∈ P(H), so f (hk) = ∑m
1 fi(h)gi(k) for h, k ∈ H . Then we have for

k, l ∈ K that

f (kl) = 	H (kl)f (kl) =
∑

	H (kki)	H (k−1
i l)f (kkik

−1
i l)

=
∑

	H (kki)	H (k−1
i l)fj (kki)gj (k

−1
i l)

which shows that f ∈ P(K). �

Definition 3.6. The polynomial functions on G is the space P(G) of all functions f ∈
Cc(G) satisfying the conditions of Lemma 3.3 for some (hence all) compact open subgroups
of G.

Theorem 3.7. Suppose G has a compact open subgroup. Then P(G) is a multiplier Hopf
∗-subalgebra of C0(G) separating points of G which is invariant under the left and right
action given by f �→xf and f �→ fx .

Proof. If f, g ∈ P(G) there is a compact open subgroup s.t. the conditions of Lemma 3.3
hold for both. The same subgroup then holds for both f + g and fg.
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The antipode in C0(G) is given by S(f )(y) = f (y−1). If f =x� with � ∈ P(H),
then S(f )=x−1� where � ∈ P(xHx−1) is given by �(y) = �(x−1y−1x). So P(G) is
S-invariant. P(G) is obviously invariant under f �→xf , and if f satisfies Lemma 3.3 with
respect to H , then fx satisfies Lemma 3.3 with respect to xHx−1.

We next have to show that �(P(G))(P(G) ⊗ 1) = P(G) ⊗ P(G) etc. If f =x� and
g=y� with �, � ∈ P(H), then the function

h(s, t) := �(f )(g ⊗ 1)(s, t) = �(x−1st)�(y−1s) (3.4)

has support inside yH × Hy−1xH . By compactness we get Hy−1xH = ⋃m
1 hiy

−1xH ,
take zi = hiy

−1x and K = H
⋂

iziHz−1
i . Suppose �(�) = ∑n

1�j ⊗ �j , then

h(s, t) =
∑

i

	ziH
(t)�(x−1st)�(y−1s)

=
∑

i

	H (z−1
i t)	H (x−1st)�(x−1st)�(y−1s)

=
∑

i

	H (z−1
i t)	H (x−1szi)�(x−1sziz

−1
i t)�(y−1s)

=
∑
i,j

	H (z−1
i t)	H (x−1szi)�j (x

−1szi)�j (z
−1
i t)�(y−1s).

From this it follows that h ∈ C0(G) ⊗ C0(G). An easy computation shows that h ∈
P(G) ⊗ P(G) with respect to the subgroup K × K . So we have therefore proved that
�(P(G))(P(G)⊗1) ⊂ P(G)⊗P(G). Since the inverse of the map a ⊗b �→ (a ⊗1)�(b)

is given by a⊗b �→ (a⊗1)(S⊗
)�(b) it follows that �(P(G))(P(G)⊗1)=P(G)⊗P(G).
We leave other details to the reader. �

Proposition 3.8. f ∈ P(G) if and only if f ∈ C0(G) and there are non-zero functions
g, h, fi, gi, f

′
j , g

′
j ∈ C0(G) s.t. for all x, y ∈ G

(i) f (xy)g(y) = ∑m
1 fi(x)gi(y) and

(ii) f (y)h(xy) = ∑n
1f ′

j (x)g′
j (y).

Proof. If f ∈ P(G) it follows from (3.1) that (i) and (ii) hold with g =h=	H . Conversely
if (i) holds, it follows from Corollary 1.3 that there is a compact open subgroup H and
functions hi ∈ C0(G) and ki ∈ C(H) s.t. f (xy) = ∑n

1hi(x)ki(y) for y ∈ H . Finally, from
Corollary 1.5 we have f ∈ Cc(G), hence f ∈ P(G). �

The next characterization P(G) will also be useful.

Proposition 3.9. Suppose G has a compact open subgroup H . Then f ∈ P(G) if and only
if there are finitely many functions fi, gi, f

′
j , g

′
j ∈ C0(G) s.t.

(i) f (xy)	H (y) = ∑m
1 fi(x)gi(y) and

(ii) f (y)	H (xy) = ∑n
1f ′

j (x)g′
j (y).
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Proof. If f satisfies (ii) it follows from Lemma 1.6 that f =∑n
1 xi

�i with �i ∈ C(H) and
the sets {xiH } disjoint. We want to show that (i) implies that �i ∈ P(H):

�i (hk) = f (x−1
i hk) =

n∑
1

fj (x
−1
i h)gj (k) for all h, k ∈ H , (3.5)

so �i ∈ P(H) and f ∈ P(G) by Lemma 3.3.
Conversely, if f =z� with � ∈ P(H) one checks that f satisfies (i) and (ii), so again by

Lemma 3.3 this is true for any f ∈ P(G). �

Remark 3.10. Note that both (i) and (ii) are needed in general to characterize P(G): If
G is discrete and H = {e} then (i) is automatic, if G is compact and H = G then (ii) is
automatic.

Theorem 3.11. Suppose A is a multiplier Hopf ∗-subalgebra of C0(G) separating points.
Then G contains a compact open subgroup H and A = P(G).

Proof. It follows from Corollary 1.3 and Proposition 3.8 that G contains a compact open
subgroup H and that A ⊂ P(G).

Claim 1. If � is a measure on G with compact support and f ∈ A, then f ∗ � ∈ A.
Let C be the support of �. Since A separates points in G there is g ∈ A s.t. g(y) > 0 for

y ∈ C. There are functions fi, gi ∈ A s.t. for y ∈ C we have

f (xy−1)g(y) =
n∑
1

fi(x)gi(y),

f (xy−1) =
n∑
1

fi(x)gi(y)/g(y),

f ∗ �(x) =
n∑
1

fi(x)�(gi/g).

So f ∗ � ∈ A. In particular this means that A is invariant under f �→ fx and therefore
also under f �→xf . Moreover, it follows that if f ∈ P(G) and g ∈ A then f ∗ g ∈ A.

Claim 2. 	H ∈ A.
By Stone–Weierstrass ‖f − 	H ‖∞ < � < 1/2 for some positive function f ∈ A. Then

by Claim 1 g = f ∗ 	H ∈ A ∩ Cc(G/H) and ‖g − 	H ‖∞ < �. The support of g equals⋃N
i=0xiH with x0 = e. Take �i = g(xi) and define

�(x) = g(x)

n∏
i=1

[�0g(x) − �ig(x−1xi)]. (3.6)

Then � ∈ A, we have �(xi) = 0 for i �= 0, �(e) = �0
∏n

1[�2
0 − �2

i ] �= 0. So � = �(e)	H ,
hence 	H ∈ A.
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Claim 3. If f ∈ P(H) there is g ∈ A s.t. f = g | H .

By taking a minimal decomposition with fi, gi ∈ C(H) s.t.

f (hk) =
n∑
1

fi(h)gi(k) for h, k ∈ H ,

we may assume that {gi} is orthonormal and that {fi} is linearly independent. Since A is
dense in C0(G) there are hi ∈ A s.t.∫

H

gi(k)hj (k
−1) dk = �ij .

Then f ∗ hi is in A and for h ∈ H

f ∗ hi(h) =
∫

H

f (hk)hi(k
−1) dk

=
∫

H

∑
j

fj (h)gj (k)hi(k
−1) dk = fi(h).

From this it follows that

f (h) =
∑
j

fj (h)gj (e) =
∑
j

f ∗ hj (h)gj (e)

which proves the claim.
Finally it follows from Claim 2 + 3 that P(H) ⊂ A, and then from Lemma 3.3 that

P(G) ⊂ A. �

4. Totally disconnected groups

It is natural now to look these groups since they have a basis of neighborhoods of e

consisting of compact open subgroups. In addition, it was our discovery that the smooth
functions on G is a multiplier Hopf ∗-algebra that started this work.

Definition 4.1. If G is a totally disconnected group, define the smooth functions on G by

C∞
c (G) = ∪ {Cc(G/H) |H a compact open subgroup}

= span{	xH | x ∈ G, H a compact open subgroup}
= span{	xHy | x, y ∈ G, H a compact open subgroup}.

Theorem 4.2. If G is a totally disconnected group, C∞
c (G) = P(G).

Proof. If H is a compact open subgroup then 	H ∈ P(G), and since both C∞
c (G) and

P(G) are translation invariant C∞
c (G) ⊂ P(G).
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To prove the converse, for the same reason it suffices to show that P(H) ⊂ C∞
c (G).

So suppose f ∈ P(H) satisfies

f (hk) =
n∑
1

fj (h)gj (k) for all h, k ∈ H (4.1)

and we may assume that {gj } is an orthonormal set in L2(H). Then as in the proof of
Lemma 3.4 we get that {fj } is Rx-invariant for x ∈ H . This way we get a finite-dimensional
representation of H on X = span{fj }. Since H is totally disconnected, by [9, (28.19)] there
is a compact open subgroup K s.t. Rk = I on X for k ∈ K . This means that fj and therefore
also f ∈ C(H/K) ⊂ C∞

c (G). �

Remark 4.3. Note that if G is totally disconnected C∞
c (G) equals the space of regular

functions as defined by Bruhat in [3], but in general these spaces are different. For more
about functions on totally disconnected groups, see also [18, Chapter 1.1].

5. Multiplier Hopf ∗-algebras in C∗
r (G)

Definition 5.1. We have already defined the left and right regular representations of G on
L2(G) in Definition 1.1. For f ∈ L1(G) let

Lf =
∫

f (x)Lx dx, Rf =
∫

f (x)Rx dx.

Then C∗
r (G) is defined as the norm closure of {Lf |f ∈ L1(G)}. It is standard that

Lx ∈ M(C∗
r (G)) and we shall often identify an element x ∈ G with Lx . We shall also need

the weak closures

L(G) := {Lg | g ∈ G}′′ and R(G) := {Rg | g ∈ G}′′.
The comultiplication on C∗

r (G) is defined by

�(Lf ) =
∫

f (x)(Lx ⊗ Lx) dx

for f ∈ L1(G) and can be extended to a non-degenerate ∗-homomorphism C∗
r (G) �→

M(C∗
r (G) ⊗ C∗

r (G)), see [23, Proposition 4.3] or (in a more general setting) [12, (3.2)].
The antipode and counit are given by

S(Lf ) =
∫

�G(x−1)f (x−1)Lx dx, ε(Lf ) =
∫

f (x) dx,

where �G is the modular function of G. A left Haar integral is given by wG(Lf ) = f (e).
The antipode S can be extended to C∗

r (G), but not the counit ε. There is an extension of
wG to an (unbounded) weight on C∗

r (G). For more details we refer to [14, Chapter 7.2].
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We shall also need the modular automorphism group corresponding to this weight, it will
satisfy

t (Lf ) =
∫

�G(x)itf (x)Lx dx.

As usual we also use the notation

NwG
= {a |wG(a∗a) < ∞}, MwG

= span{a∗b | a, b ∈ NwG
}.

Standing Hypothesis 5.2. LetA be a ∗-subalgebra of C∗
r (G) which is also invariant under

the antipode S. We also here assume that

span{�(a)(1 ⊗ b) | a, b ∈ A} = A ⊗ A.

It follows thatA is a multiplier Hopf ∗-algebra with the coproduct inherited from C∗
r (G).

We call A a multiplier Hopf ∗-subalgebra of C∗
r (G). As in 3.1 it is actually not necessary

to assume that A is invariant under the antipode S, for details see [5].

First, we address some properties which are not so easy to prove as for C0(G). We saw
in Section 1 that elements of a multiplier Hopf ∗-subalgebra of C0(G) must have compact
support and are therefore automatically integrable with respect to Haar measure. We shall
see that the similar result is somewhat more complicated in C∗

r (G).

Proposition 5.3. LetA be a multiplier Hopf ∗-subalgebra of C∗
r (G). ThenA is -invariant

and every element a ∈ A is analytic with respect to the modular automorphism group t

of the weight wG.

Proof. For a, b ∈ A we have elements ai, bi ∈ A s.t.

a ⊗ b =
n∑
1

�(ai)(1 ⊗ bi). (5.1)

Since t (Lx) = �G(x)itLx , we have (t ⊗ −t ) ◦ � = � and

t (a) ⊗ −t (b) =
n∑
1

�(ai)(1 ⊗ −t (bi)). (5.2)

Multiply with 1 ⊗ b∗ to get

t (a) ⊗ b∗−t (b) =
n∑
1

(1 ⊗ b∗)�(ai)(1 ⊗ −t (bi)). (5.3)

Since ai, bi ∈ A, we have (1 ⊗ b∗)�(ai) = ∑
cij ⊗ dij , where the sum is finite and the set

{cij } is linearly independent. Take V0 = span{cij }, then (1 ⊗ b∗)�(ai) ∈ V0 ⊗ A and also
t (a) ⊗ b∗−t (b) ∈ V0 ⊗ C∗

r (G). With b �= 0 we see that there is � > 0 s.t. t (a) ∈ V0 for
| t | < �. From part (i) of Lemma 1.2 we see that t (cij ) ∈ V0 for all t ∈ R.
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Take

V1 = span{t (a) | t ∈ R} and

V2 = span

{∫ ∞

−∞
e−k(t−t0)

2
t (a) dt | t0 ∈ R, k > 0

}
.

If � is a linear functional on V1 which is zero on V2, we have∫ ∞

−∞
e−k(t−t0)

2
�(t (a)) dt = 0 (5.4)

for all t0 and k > 0. This is only possible if �(t (a)) ≡ 0, so � = 0 on V1. It follows
that V1 = V2, and from [21, Lemma 2.3] that a is analytic with respect to the modular
automorphism group t . �

Proposition 5.4. Let A be a multiplier Hopf ∗-subalgebra of C∗
r (G). Then all elements

of A are integrable with respect to the modular automorphism group t and A ⊂
NwG

∩ MwG
.

Proof. Take a ∈ A, we just proved that there is a finite-dimensional subspace V0 s.t.
t (a) ∈ V0 for all t . By Lemma 2.3 there is e ∈ A s.t. ex = x for all x ∈ V0. Now take
z ∈ NwG

s.t. ‖e − z‖ < (4 ‖e‖ + 2)−1 and y = z∗z. Then ‖e∗e − y‖ < 1
2 and

a∗a = a∗(e∗e − y)a + a∗ya� 1
2a∗a + a∗ya, (5.5)

so a∗a�2a∗ya. Since a is analytic with respect to wG, it follows from [21, Lemma 2.4] that
wG(a∗ya) < ∞. So wG(a∗a) < ∞ and a ∈ NwG

. Since A2 =A (as remarked above), we
also have a ∈ MwG

. �

Remark 5.5. Actually A is contained in the Pedersen ideal of C∗
r (G), but is in general a

proper subset. We shall not need this, but the reader may recognize a main ingredient of
[14, p. 175] in the above proof.

We now come to the first main result about C∗
r (G):

Theorem 5.6. Suppose C∗
r (G) contains a multiplier Hopf ∗-subalgebra A. Then G has a

compact open subgroup and every element of A is of the form L� with � ∈ Cc(G).

Proof. By assumption we have a, b, ai, bi ∈ A with

�(a)(1 ⊗ b) =
n∑
1

ai ⊗ bi �= 0. (5.6)

Then for all x, y ∈ G we have

(1 ⊗ yx−1)�(xa)(1 ⊗ b) =
n∑
1

xai ⊗ ybi . (5.7)
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We have a, b ∈ NwG
and there are �, � ∈ L2(G) such that the following expression is not

identically zero:

〈xa, wG〉〈yx−1b� | �〉 =
n∑
1

〈xai, wG〉〈ybi� | �〉. (5.8)

These functions are in C0(G) and satisfy Corollary 1.3, so G has a compact open subgroup
and the functions are in fact in Cc(G) by Corollary 1.5. With â(x)=�(x−1a) we then have
a = ∫

â(x)Lx dx. �

As in Section 3 we expect that C∗
r (G) has a unique dense multiplier Hopf ∗-subalgebra,

and this is true:

Theorem 5.7. Suppose G has a compact open subgroup H and thatA is a dense multiplier
Hopf ∗-subalgebra of C∗

r (G). Then

A = {L� |� ∈ P(G)}.

Proof. We just saw that A ⊂ {L� |� ∈ Cc(G)}. Let Â = {̂a | a ∈ A}. We want to prove
that this is a dense multiplier Hopf ∗-subalgebra of C0(G). It follows from our computations
in Theorem 5.6 that

span{�(̂a)(1 ⊗ b̂) | a, b ∈ A} = Â ⊗ Â .

We have a ⊗ b = ∑
�(ci)(1 ⊗ di) so â(x)̂b(x) = ∑

ĉi (x)d̂i(e), and therefore Â is an
algebra under pointwise multiplication. With b = S(a∗) we have b̂(x) = â(x), so Â is
conjugation invariant. By repeating such computations in various forms, the reader should
be convinced that {̂a | a ∈ A} is a multiplier Hopf ∗-subalgebra of C0(G). The conclusion
now follows from Theorem 3.11. �

Remark 5.8. In the last part of this section we show that if G has a compact open sub-
group H , the unique dense multiplier Hopf ∗-subalgebra A of C∗

r (G) can be characterized
using the conditional expectation E : C∗

r (G) �→ C∗
r (H). We believe this is useful for

generalizations.

Next we shall give an alternate description of A which is the dual of Proposition 3.9.
Two tools are needed: the projection

pH =
∫

H

Lh dh (5.9)

(we assume the Haar measure is normalized such that �(H) = 1) and the conditional
expectation E : C∗

r (G) �→ C∗
r (H) given by

E(a) = (
 ⊗ �)�(a) = (� ⊗ 
)�(a),

where � is the vector state given by �(a) = 〈a	H , 	H 〉. Note that

� ◦ E = (E ⊗ i) ◦ � = (i ⊗ E) ◦ �

and that for b ∈ C∗
r (H):

bpH = �(b)pH , �(b)(1 ⊗ pH ) = b ⊗ pH .
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Lemma 5.9. Suppose a, ai, bi ∈ C∗
r (G) satisfy

�(a)(1 ⊗ pH ) =
n∑
1

ai ⊗ bi . (5.10)

Then there is a finite set F s.t. E(x−1a) = 0 for x /∈ FH and a = ∑
x∈F xE(x−1a).

Proof. By multiplying (5.10) to the left with x−1 ⊗ y and applying E ⊗ � we get

	H (yx)E(x−1a) =
∑

�(ybi)E(x−1ai).

Now Lemma 1.6 gives a finite set F s.t. E(x−1a) = 0 for x /∈ FH.
To prove the last claim, choose F s.t. FH = ⋃

x∈F xH is a disjoint union and take
b=∑

x∈F xE(x−1a). Then E(y−1b)=E(y−1a) for all y ∈ G (look at y ∈ FH and y /∈ FH,
separately).

So E(cy−1b) = E(cy−1a) for all y ∈ G and c ∈ C∗
r (H). Since ∪yC∗

r (H) is dense in
C∗

r (G) and E is faithful it follows that a = b. �

Lemma 5.10. Suppose a = ∑n
1 xiai with ai ∈ C∗

r (H), xi ∈ G, x−1
j xi /∈ H for i �= j

and that

(a ⊗ 1)�(pH ) =
m∑
1

bk ⊗ ck . (5.11)

Then also each ai satisfies (5.11), in fact

(ai ⊗ 1)�(pH ) =
∑

k

E(x−1
i bk) ⊗ ck . (5.12)

Proof. Just use the map b ⊗ c �→ E(x−1
i b) ⊗ c on∑

(xiai ⊗ 1)�(pH ) =
∑

bk ⊗ ck. � (5.13)

Lemma 5.11. Suppose H is compact and that a, bi, ci ∈ C∗
r (H) satisfies

(a ⊗ 1)�(pH ) =
n∑
1

bi ⊗ ci . (5.14)

Then there is f ∈ P(H) s.t. a = Lf .

Proof. We may assume that {ci} is linearly independent, so there is a central projection e0 ∈
C∗

r (H) s.t. also {cie0} is linearly independent. Choose �j ∈ (C∗
r (H)e0)

∗ s.t. �j (cie0)=�ij

and note that �j can be considered an element of P(H). Use i ⊗ �j on (5.14) to obtain
bj =aL�j

∈ C∗
r (H)S(e0). So bi =Lfi

for some fi ∈ P(H), and (a⊗1)�(pH )=∑n
1 Lfi

⊗
ci . By (2.6) a = ∑n

1 Lfi
S(ci) and since {Lf |f ∈ P(H)} is an ideal in C∗

r (H), we have
a ∈ {Lf |f ∈ P(H)}. �
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Theorem 5.12. If G has a compact open subgroup H and a ∈ C∗
r (G) the following are

equivalent:

(i) a = L� with � ∈ P(G)

(ii) There are finitely many bi, ci, b
′
j , c

′
j ∈ C∗

r (G) s.t.

�(a)(1 ⊗ pH ) =
∑

bi ⊗ ci and (a ⊗ 1)�(pH ) =
∑

b′
j ⊗ c′

j .

Proof. That (i) implies (ii) is left to the reader (use Proposition 3.9, multiply with Lx ⊗Ly

and integrate). Conversely, if a satisfies (ii) it follows from the previous that a = ∑
k Lxk

ak

with xk ∈ G and ak ∈ C∗
r (H). By Lemma 3.4 and Lemma 5.11 we get �k ∈ P(H) s.t.

ak = L�k
, so f = ∑

k xk
�k is in P(G) and we have a = Lf . �

Remark 5.13. Note that as in Remark 3.10 both parts of (ii) are needed in general to
characterize A.

6. Multiplier Hopf ∗-algebras in C∗(G)

What happens if we look at C∗(G) instead of C∗
r (G)? Here, C∗(G) is the envelop-

ing C∗-algebra of L1(G) and the maps �, S, ε, t in Section 5 all extends to C∗(G),
cf. [10, Theorem 3.9] or [15] for an updated survey. If �r is the natural map C∗(G) →
C∗

r (G), we also get a weight on C∗(G) by a �→ �(�r (a)), but this weight is in general not
faithful so C∗(G) is not really a locally compact quantum group.

In Theorem 5.7 we showed that the existence of one finite set of elements in C∗
r (G)

satisfying (5.6) implies the existence of a compact open subgroup. However, this is not true
for C∗(G). Akemann and Walter proved (see [1] or [22]) that if G has property (T), then
there is a central minimal projection p0 ∈ C∗(G) s.t. �0(p0)=1 for the trivial representation
�0 and �(p0) = 0 for all other irreducible representations of G. Clearly,

�(p0)(1 ⊗ p0) = p0 ⊗ p0,

but there are groups with property (T) – e.g. SL(3, R) – which do not have compact open
subgroups.

Note that if G has a compact open subgroup H the analogue of Theorem 5.12 can be
proved the same way, since by [17, Proposition 1.2] there is a conditional expectation
E : C∗(G) �→ C∗(H) = C∗

r (H). The map � is then defined by �(a) = 〈E(a)	H , 	H 〉, the
proof of Theorem 5.12 can be repeated verbatim and we have:

Theorem 6.1. If G has a compact open subgroup H , a ∈ C∗(G) and U is the universal
representation of G the following are equivalent:

(i) a = Uf with f ∈ P(G).
(ii) There are finitely many bi, ci, b

′
j , c

′
j ∈ C∗(G) s.t.

�(a)(1 ⊗ pH ) =
∑

bi ⊗ ci and (a ⊗ 1)�(pH ) =
∑

b′
j ⊗ c′

j .
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7. Multiplication and Convolution Operators

The dual locally compact quantum groups C0(G) and C∗
r (G) have both natural repre-

sentations on L2(G) and we shall study properties of these representations which also turns
out to be equivalent to the existence of a compact open subgroup. It is well known, see
[19, Proposition 3.3] or [23, Lemme 5.2.8] (although the result is probably older) that if
a ∈ C∗

r (G) and f ∈ C0(G), then aM(f ) is a compact operator on L2(G). (See also [4] for
a study of multiplication and convolution operators over Lp(G).)

In this section we shall see that aM(f ) cannot be non-zero and of finite rank unless G

has a compact open subgroup. We shall also see that aM(f )=M(f )a �= 0 is possible only
if G has a compact open subgroup. We first need the following two results:

Theorem 7.1. For a closed subgroup H of G,

(i) C0(G) ∩ L∞(G/H) = C0(G/H) if H is compact and trivial otherwise.
(ii) C∗

r (G) ∩ L(H) = C∗
r (G) ∩ L∞(H\G)′ = C∗

r (H) if H is open and trivial otherwise.

Proof. The first statement is obvious. It follows from the Takesaki–Nielsen–Rieffel com-
mutant theorem [16, Theorem 2.6] that

L(H) = L(G) ∩ L∞(H\G)′. (7.1)

Suppose a ∈ C∗
r (G) ∩ L(H) with a�0. Then b := M(	U)aM(	U) �= 0 for some open

set U . So b is a compact operator L2(U) �→ L2(U) and by the spectral theorem there is
� �= 0 such that the eigenspace

H� := {� | b� = ��} (7.2)

is finite dimensional �= {0}. For � ∈ L∞(H\G), � ∈ H� then

bM(�)� = M(�)b� = �M(�)� (7.3)

so M(�)H� ⊂ H�. We therefore have a non-zero � ∈ L2(U) which is an eigenvector for all
M(�) with � ∈ L∞(H\G). Restricting to � ∈ C0(H\G) one realizes that there is x0 ∈ G

(not unique) s.t.

M(�)� = �(x0)� for all � ∈ C0(H\G). (7.4)

Let V = {x | �0(x) �= 0}, so �(V ) > 0 and �(s) = �(x0) for all s ∈ V , � ∈ C0(H\G). For
this it is necessary that V ⊂ Hx0, so V V −1 is an open subset of H by [8, (20.17)] and
therefore H is open. �

Theorem 7.2. Suppose a ∈ R(G) and f ∈ L∞(G) s.t. M(f )a �= 0 has finite rank.
Then G has a compact open subgroup.

Proof. Pick a measurable set C with 0 < �(C) < ∞ s.t. M(	Cf )a �= 0, therefore we may
assume that f ∈ L2(G). Pick �i , �i ∈ L2(G) s.t.

M(f )a� =
n∑
1

�i〈� | �i〉, for all �.
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There is � ∈ Cc(G) s.t. M(f )a� �= 0, using that aLx = Lxa we get

M(f )aLx�(y) =
n∑
1

�i (y)〈Lx� | �i〉 so

f (y)a�(x−1y) =
n∑
1

�i (y)〈Lx� | �i〉.

The reader should check that x �→ 〈Lx� | �i〉 is in L2(G), so by Corollary 1.3 we can
conclude that G has a compact open subgroup. �

Remark 7.3. We clearly have the same result with a ∈ L(G) instead.

Theorem 7.4. Suppose a ∈ C∗
r (G) and f ∈ C0(G) are both non-zero s.t. aM(f )=M(f )a.

Then G has a compact open subgroup.

Proof. Fuglede’s Theorem [7] implies that a∗M(f ) = M(f )a∗, so

B = {g ∈ L∞(G) |M(g)a = aM(g)}
is a weakly closed right invariant ∗-subalgebra of L∞(G), so by [20, Theorem 2] B =
L∞(H\G) for some closed subgroup H of G. Since f is a non-zero element of C0(G) ∩
L∞(H\G), we get from part (i) of Theorem 7.1 that H is compact. Since a is a non-zero
element of C∗

r (G) ∩ L(H), part (ii) of the same theorem gives that H is open. �

The following description may also be useful.

Definition 7.5. A non-zero self-adjoint projection p in a multiplier Hopf ∗-algebra is called
group-like (cf. [13] and [20, Theorem 10]) if

�(p)(p ⊗ 1) = �(p)(1 ⊗ p) = p ⊗ p.

Proposition 7.6. The following are equivalent:

(i) G has a compact open subgroup,
(ii) C0(G) has a group-like projection,

(iii) C∗
r (G) has a group-like projection.

Proof. If G has a compact open subgroup H , it is easy to check that 	H is a group-like
projection in C0(G) and that pH = L	H

is a group-like projection in C∗
r (G).

If p is a projection in C0(G), then p = 	A for a compact open set A. It is easy to see that
if p is group-like, then A is a subgroup of G. Finally, it follows from [20, Section 5] that if
p ∈ C∗

r (G) is group-like, then p = L	H
for some compact open subgroup H of G. �

Remark 7.7. Clearly (i–iii) above implies that C∗(G) has a group-like projection.
However, our remarks in Section 6 show that the reverse implication is false.
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8. Abelian Groups

We close with a quick look at abelian groups. It is a basic fact of classical Fourier analysis
that if we have a non-zero function f ∈ Cc(R

n), then its Fourier transform f̂ is analytic
and therefore does not have compact support. For abelian groups in general we have the
following:

Proposition 8.1. If G is abelian, the following are equivalent:

(i) G has a compact open subgroup,
(ii) There is a non-zero f ∈ Cc(G) with f̂ ∈ Cc(Ĝ).

Proof. If G has a compact open subgroup H , then f =	H ∈ Cc(G) and f̂ =	H⊥ ∈ Cc(Ĝ);
so (i) implies (ii).

The opposite implication will in fact follow from [8, (24.30)], but we will give a proof
that does not depend on the structure theory of locally compact abelian groups.

Suppose there is a non-zero f ∈ Cc(G) with f̂ ∈ Cc(Ĝ) and that U is a compact
neigborhood of e. Then there is g ∈ Cc(G) and � ∈ Cc(Ĝ) with gLyf = Lyf and
�L̂yf = L̂yf for all y ∈ U .

Hence L�̂M(g) is a compact operator and L�̂M(g)Lyf = Lyf for all y ∈ U . This
implies that span{Lyf | y ∈ U} is finite dimensional and it follows from Lemma 1.2 that
G has a compact open subgroup. �
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