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REDUCTION OF THE CODIMENSION OF ISOMETRIC 
IMMERSIONS IN SPACE FORMS 
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(Receiced 31 January 1985; in recked form 16 Ocrober 1985) 

$1. INTRODUCTION 

WECONSIDER C” immersionsf: M” --f Q: of an n-dimensional connected manifold M, into an 

N-dimensional simply connected complete space form Q:, N > n, of constant curvature c. 

The codimerrsion of the immersion can be reduced to r, if there exists a totally geodesic, (n + r)- 

dimensional submanifold L of Qy such thatf( M) c L. Let xi, . . . , x, be local coordinates in 

M. The space generated by the derivatives off of al! orders up to k, at aipoint p E M, is the k-th 
order oscularing space o2ffat p and it is denoted by Osc,. In particular, Osc, is the tangent space 

T, .LI, of A4 at p, and Osc, is the direct sum of TP M and the subspace generated by the vectors 

Z(X, 13, x, y E T, M, where CL is the second fundamental form of the immersion. Higher order 

osculating spaces were introduced by E. Cartan [2] and studied in [l], [6], [7], [9] and [13]. 

We want to establish sufficient conditions, on the osculating spaces, for reducing 

the codimension of an immersion. The simplest result in this direction is the classical prop- 

erty of curves in Euclidean space. Namely, if p is a regular curve in R,‘, whose curvatures 

k I,..., kj_ I do not vanish and kj is identically zero, then /I is contained in an affine 

j-dimensional subspace of R”. Equivalently, if at every point p of the curve dimOsc, = i, 

for each i, 1 I i Sj- 1 and dim O&c, = j- 1, then we can reduce the codimension to j- 2. 

Our main theorems are generalizations of results contained in [14]. Our first theorem 

shows that for an immersion of a compact manifold A4 “, n 2 2, if the dimension of the k-th 

order osculating space, k 2 2, is a constant less than n+ k, then we can reduce the 

codimension. 

THEORE.M 1. Let f: 34” -+ QT be an isomerric immersion of a compactkmanifold M”, II 2 2. 
Suppose there exist integers k, r, k 2 2 and 0 I r I k - 1, such rhar dim Osc, = n + r, for euery 
p E M. Then, the codimension can be reduced IO r. If c > 0, M needs only to be complete. 

The above result does not hold for curves, In fact consider the following example. 

Example 1. Let S’ be the unit circle and /I: S’ 4 R3 the immersion that to each point 

(cost, sin r) of S ‘, associates 

P(r) = (cos(cos t), sin(cos f), sin t). 

It is easy to see that dimO& s 2. However, we cannot reduce the codimension. 

If the ambient space QF is such that c I 0, then the hypothesis in theorem 1, on the 

compacity of .M, can be relaxed by considering M complete with bounded image f (M ) in QF. 

The following example shows that we really need this extra condition. 

Example 2. Let /I: R --* R,‘-l be a regular curve which is not :ontained in any affine 
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hyperplane. We consider f: R x R -+ R,V, defined byf(s, t) = (,3(s), t). Then dim Oft = 3, but 

we cannot reduce the codimension. 

If the ambient space is Euclidean and .Lf is a complete manifold with non-negative Ricci 

curvature, then we prove the following 

THEORE.M 2. Letf: .M” + R,‘, n 2 2, b e an isometric immersion ofa complete manifold S4, 

with non-negative Ricci curvature. Suppose there exist integers k and r. k 2 2 and 0 < r 5 k - 1 

such that dim Oic, = n + r, for every p in .M. Then, either 

(i) :M is isometric to a cylinder over a curve; or 
(ii) the codimension can be reduced to r. 

It is not difficult to see that theorem 2 does not hold if we eliminate the condition on the 

curvature [ 141. tMoreover, both theorems are the best possible, in the sense that the constant 

dimension of the k-th order osculating space cannot be increased to n + k. in fact, consider the 

following examples. 

Example 3. Letf: S’ x S1 -+ R6 be defined byf(s, t) = (b(s), /i’(t)), where b is the function 

of example 1. This is an immersion of a compact manifold whose second osculating space 

is 4-dimensional. However, the codimension cannot be reduced. 

Example 4. Letf: S1 x S1 x R + R’ be defined byf(s, t, u) = (p(s), P(t), u), where p is the 

functi$n of example 1. This is an immersion of a complete manifold, with Rice 3 0 and 

dimOsc = 5. However, the manifold is not isometric to a cylinder over a curve and the 

codimension cannot be reduced. 

The above theorems, which provide local criteria for the global problem of reducing the 

codimension, generalize the corresponding results for k = 2 obtai;ned in [14]. Refining the 

arguments used in [14], the theorems are proved by showing that Osc is parallel in .U. A result 

analogous to theorem 1, when the ambient space is a complete (not necessarily simply 

connected) space form, is considered in Remark 4. 

92. PRELI,MINARIES 

In this section we will consider basic results which will be used in the proofs of the main 

theorems. Let M” be a connected manifold immersed into an N-dimensional simply 

connected, complete, space form Q: of constant curvature c. We consider M with the metric 

induced by the immersion. The Riemannian connections of Q: and M “are denoted by V and 

V respectively and V’ denotes the connection of the normal bundle TM I. The second 

fundamental form of the immersion is denoted by r. 

The k-th osculating space of the immersion at PEM, O&r, is generated by X(p), 

(V,Y,(Vxt . . . (Q,_,X,) . . . Jp, where X, XI,. . . , X, are tangent vector fields on .Ci and r 

assumes all integer values from 2 to k, whenever k 2 2. If U is an open subset of M? where the 

dimension o$O&, is independent of PE CJ’, then we have a vector bundle over li, which we 

denote by Osc U. 

In the proofs of our mainfesults we show that O& M is parallel in -M, i.e. (V,<),E O~C, for 

every smooth section < in Osc .M and every X in TM. The reduction of the codimension is 

obtained as a consequence of the following well known result [S, 151. 

THEOREM A. Let M n be a connected submanifold immersed in a simply connected, complete, 
space form Q:. Let D be a j-dimensional distribution along M, such that T, M c D(p), for all 
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PE .M. Suppose that D is parallel along every curve in M. Then M lies in some j-dimensional 
totally geodesic submanifold of Q. 

In general, given an immersion f: Ad” -+ .Gs, the dimension of the osculating space 

O’s,, j 2 2, depends on the point p E .\I. The following lemma provides open and dense 

subsets of ,M, whose connected components have constant dimensional osculating spaces. 

LEMMA 1. Let f: .\I n 4 .l? .’ be an immersion. For any integer k 2 2 consider 

B{= pE.M;dimO&c,= n+i 
i 

, 

4 - n 
A’= U intBj, 

I=0 

A= A A’, 
j=2 

where 0 15 i < N - n and j 2 2. Then, AJ and A are open and dense subsets of M. Moreover, 

for any connected component C of A the dimension of O&r is independent of the point p E C for 
each j I k. 

Proof We need to show that for any open subset Vof M we have V n AJ # 0. Denote by 

f J the function defined on V by f’(p) = dim Ok,, PE V. Since dim Ok, I N, the image 
. 

off J IS a finite set of integers, therefore there exists an integer n + io, which is the maximum of 

f J. Let q. E V be such that dim O&,* = n + i,. Then there exists a neighborhood V0 of qo, 

V. c V, such that dim O&, 2 n + io, for all p E VO. Since u + i. is the maximum value off j on 

V, we get dim 0’~ V. = n + io. Hence V. c int Bb. Therefore, V. c V n A’ i.e. A’ is an open 

and dense subset of .M. Hence we conclude that A is also an open and dense subset of .M. 

The fact that the connected components of A have constant dimensional osculating 

spaces follows from the construction of A. q.e.d. 

As a consequence of the above lemma, we have the following result, which will be 

very useful in the next section. 

LE.MMA 2. Let f: .cI” -+ .\i. be an immersion. Suppose there exist integers k > 2 and 

r > 0, such that dim Osc .M = i 
k 

f r. 

(a) If r = 1, then Osc is parallel in .M. 
(b) If 1 < r I k - 1, then O!& is parallel in the set 

G = {pg.M; dimOk, > n+l;. 

Prfof We will use the notation introduced in Lemma 1. We observe that since 

dim Osc .M = n + r, where k > 1 and r > 0, it follows that Bi has empty interior. 

(a) If r = 1, th:n from Lemma 1 we have that A2 = int $ is an open andkdense subset 

ofk.W. Since dim Osc .Lf = n + 1 and k > 2, it follows that Osc A2 = . . . = Osc A2. Hence, 

Osc is parallel in the dense subset A’ of .M, and therefore is parallel in .M. 

(b) We consider f restricted to L and we apply Lemma 1 to this restriction. Then the set 

k 

A= n 6 int(pEL.:dimO&c,=n+i]c 
“2 I=2 

is an open and dense subset of L!. ‘Moreover, for any connected component C of A and any 
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integer j, 2 I j 5 k, dim O&c, is a constant independent of p E C. In particular 

n+2 I dimO&C 5 n+r. 

Therefore, since r 5 k - 1 and dim Ok C = n + r, for each component C, there exists 

an integer i, i I k- 1, such that 

o&c= . . . = 0;; *c = o$cc. 

Hence,kO& is parallel in each connected component.of A. Since A is dense in U, it follows 

that Osc is parallel in CJ. q.e.d. 

The following lemma can be found in (Cl43 lemma 2). 

LENA 3. Let f: +I * + QF be an isometric immersion and Wan open subset of M such th:t 
dim Osc W = n + 1. If at each point of W there exists some sectional curvature K # c, then Osc 
is parallel in W. 

As a consequence of Lemma 3 we obtain 

LEYMA 4. Let j : .M n + QF be an isometric immersion and Wan open subset ff .M where 
dim Osc, 5 n + 1, for any p E W. If there exists an integer k > 2 such that dim OSC, > n + 1, 

for any pi W, then the sectional curvature K in W is constant equal to c. 

Proof: Consider W = W, u W,, where 

Wi= pEw,dimO&,=n+i , i=O,l. 
1 

Then WI is an open set of iM and W, has empty interior, since dim Ok, > n + 1, for any 

pE w. 
Suppose that the set 

D = {PE WI; K(P) +c> 

is non empty. Then it follows from Lemma 3 that Ok is parallel in D. Hence Oic D = Oksc D, 
which contradicts the hypothesis. Therefore, K E c in W, . Since W, has empty interior, we 

conclude that K z c in W. q.e.d. 

We recall that the relative nullity space of an immersion at a point p E M is the set of 

tangent vectors X E Tp M such that a(X, Y) = 0, for all YE T, M. The relative nullity index 

v(p) is the dimension of the relative nullity space at p. The following fact about v will be used in 

the proofs of the main theorems. 

Remark 1. Let f: !M --t Q: be an isometric immersion. If the relative nullity index v is a 

constant 1 in an open set CJ of M, then the relative nullity distribution in U is involutive and the 

leaves of the foliation are totally geodesic in QF [lo, 121. IMoreover, generalizing Lemma 3.1 

in [ 1 l] and Lemma 2 in [4], one can show that every boundary point p’ of U, which is also a 

limit point of a leaf, has relative nullity index v(p) = 1. 

Remark 2. Let f: M” + Qr be an isometric immersion and V be an open subset of .M, 

where dim O& V = n + 1. Then, the sectional curvature at PE V, K (p) is not identically 

equal to c, if and only if, the relative nullity index V(P) < n - 1. Moreover, if K (p) E c then 

v(p)= n-l. 

Our next result is necessary for the proof of Lemma 6. 
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LEMMA 5. Let f: .W’ + av be an isometric immersion such that the dimension of Ode, 

and O”sc’b is independent of p E M, for some k 2 2. Suppose that for any smooth section n of 

Ott .\f and each vector X of the relative nullity space D, at p E !Lf, (vxn)r E O&z,. Then, for any 
smoorh secrion of 0:: ’ .\I, (o,y<), E 05c’b. 

Proof: For p;,Lf, let+?: be the k-th normal space of ,Cf at p, i.e. the orthogonal 

complement of Osc, in OSC,. It follows from the hypothesis that N ’ is a vector bundle over .M. 

In order to pry,“; the lemma, it suffices to show that for any vectqr field < in Nk and 

X E D,, (Vi<), E Osc,. Since 5 is locally a sum of termsf V+n, where n E Osc MYE TM and f is 

a smooth function, we may consider < = V,ln. 

Let X be a vector in the relative nullity space D,. Extend X to a vector field in a 

neighborhood of p. Then 

v’,< = vI,v:n = Rl(X, Y)q + vylv$n + v&n. 

Since X E D,, it follows from Ricci equation that R1(X, Y)r] = 0 at the point p. Therefore, 

v:s’ = V,lV;: rl+ V&,,,rl 

Now, by hypotke$s (V~V)~E Ok, for each PEAKS Therefore, (V:Viq),, and (Vix,yJq)P 

are vectors in Osc,. We conclude that (VI,<),EOSC~. q.e.d. 

Our last lemma is a generalization of ([ 141, lemma 4). 

LEMMA 6. Let f: M n --t Q,” be an isometric immersion, such that the dimension of O&, is 
independent of p E M, for some k 2 2. Let U be an open subset of M where the relative nullity 
index is a constant 1 > 0. Let 7: [O,ka] + M be a geodesic segment contained in a leaf of the 

relative nullity foliation of U. If Osc is parallel at y(a), then it is parallel for all t E[O, a). 

Proof. Let Xi, . . . , X, be tangent frame fields, defined in a neighborhood of y(t) in 

U, such that X,, . . . , X, span the relative nullity space D and X, = r’(t). Since the 

leaf of the relative nullity foliation, which contains y, is totally geodesic we may suppose 

V,,(,,Xi(t) = 0, 1 I i I n. 
(a) Fir;t we show that for any point p E U and any smooth section 5 of Ok M, we have 

(V,<), E Osc,, when X is a vector of the relative nullity space Dr. 
Let A be an open and dense subset of U, such that for any connected component C of A 

the dimension of Ok, is independent of the point PEC, for each j I k (see Lemma 1). We 

consider any such connected component C. Let v be a norm%1 vector field defined on a 

neighborhood of a point PEC, such that v is orthogonal to Osc C. Then, 

O = xi ( z(xrv x.sh V) = ( v*,a(Xr~ X,)7 u) + (z(X,, X,1, V$,V)> 

for any 1 5 r, s 5 n and 1 I i < 1. Since 

(a(X,, X,)3 Viiu ) = (a(XiX,), V’,,V ) 

and Xi is in the relative nullity, it follows from the above equality that 

( Vl,,a(X,, X,), v ) = 0. 

Therefore, for any vector field q in Ok C, PEC and X E D,, we have (Vxn&~O& p. Using 

Lemma 5 inductively, we obtain that (V,<),, E Ok,,, for any smooth section 5 of Ok C, p E C 
and XE D,. The proof of (a) is completed as a consequence of A being dense in II. 

(b) Let e,, . . . , eN_n be an orthonormal normal frame field defined along the geodesic 
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y(f), such that X1, . . , , X,, e, , . . . , e, span O& and V$ e, = 0, for all 1 I I I N - n. Since 

P,. Ok c O&, such frame exists. Now, for each r I m and b > m we consider the function 

fi’(t) = (V+e,, ed >. (2) 

We want to show that for any 1 5 i I n,fi(t) = 0 iffi‘(a) = 0. 

For i I I, this follows from part (a). Therefore, we only need to consider i > 1. 

Differentiating (2) along y, we obtain 

f:(r) = Xi (V&e,, ed > 

= ( R*(Xi 9 Xi)e,, e6 > + ( Vi,Vi,e,, e6 > 

+ (V?x,.Xile,j ed >. 

Since X, ED and V,,X,(r) = 0, the above equation reduces to 

f;(t) = ( V$V:,e,, 5 > - ( V+,,X, e,, cd > 

=Xi(V~;e,,e,)-(V~,e,,Vted)- i (Vx,XI,Xj)(V~je,,e,>. 
j=l 

From the choice of the normal frame field we have V$e,(t) = 0. Moreover, from part (a) 

( Vfie,, ed ) = 0 for any 1 I j 5 1. Hence the above expression reduces to 

fi(f) = - i ( O,Yixlf Xj)_fj(t), 1 < i < Il. 

j=l+l 

Sincef, (a) = 0, it follows from the uniqueness of solutions of such systems of equations that 

A (t) = 0 for t E [0, a). q.e.d. 

$3. PROOF OF THE MAIN THEOREMS 

Proofoftheorem 1. We will only consider k > 2, since the case k = 2, and therefore r = 1, 

was proved in [14]. 

If k > 2 and r = 1, then it follows from Lemma 2 (a) that O&is parallel in M. Hence, using 

Theorem A we reduce the codimension to 1. 

If k > 2 and r > 1, we consider the set 

U= 
1 

pEM;dimO&,>n+l . 
I 

Since 1 <_, r I k - 1, it follows from Lemma 2 (b) that O& is parallel in U and hence in the 

closure U. Let W = M - U. Using Lemma 4, we obtain that the sectional curvature in W is 
constant equal to c. Consider 

where Wi = { PE W; dim O&,, = n + i}. Then, W, has empty interior and W, is an open 

subset of M. Moreover, from Remark 2, we get that the dimension of relative nullity index 

v(p) = n - 1, for any p E W,. Therefore, WI is foliated by (n - l)-dimensional totally geodesic 

submanifolds of Q,“. 

Now, for any point PE W,, we consider a geodesic 7, tangent to the relative nullity 

foliation, such that y(0) = p. We claim that such a geodesic, which is also a geodesic of QT, 

cannot be extended indefinitely in WI. In fact, if c I 0, this follows from the compactness of 
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)M. If c > 0, the existence ofa closed geodesic entirely contained in WI implies that the relative 

nullity v EZ n mod 2, see [j]. This contradicts that I’ G n - 1 in WI. 

Hence 7 must hit the boundary of WV1 at a point ~(a). From Remark 1, we have that the 

relative nullity v{?(n)) = n - 1. Therefore ;:(a)$ WO, since the relative nullity in W, is n. Now, 

the boundary of W, is the union of W, with the boundary of W. It follows that l;(u) is a point 

in the boundary of W. Therefore, y(f) belongs to the boundary of ci, where Osc is parallel. 

Using Lemmap, we conclude that Osc is parallel at p. Since p is an arbitrary point in W,. we 

obtain that Osc is parallel in W,. 
Finally, since We has empty interior, we obtain that O!X is also parallel in W,, and 

threrefore in M. Applying theorem A to the (n + r)-dimensional parallel distribution O& in 

1M, we reduce the codimension to r. 

Remark 3. It is clear from the proof of theorem 1 that the compactness of M, for c 5 0, 

can be replaced by the weaker assumption that M is complete and the imagef( M) is bounded 

in Qc. Moreover, when c > 0, 1M needs only to be complete. 

Proof of theorem 2. Using exactly the same arguments as in the previous theorem we 

obtain that WI is foliated by (n- 1)-dimensional totally geodesic submanifolds of R”. 

Suppose there exists a point p E W1 such that any geodesic coming out from p, lying in the 

relative nullity foliation can be extended indefinitely. Then, the leaf of the relative nullity 

foliation passing through p is an (n - 1)-dimensional affine plane in R,‘. It follows from 

Cheeger’s splitting theorem [3], that Xi is isometric to a cyIinder over a curve. 

Otherwise, for any p E WI, there exists a geodesic coming out from p, lying in the relative 

nullity foliation, which hits the boundary of WI. In this case, as in the proof of theorem 1, we 

conclude that the codimension can be reduced to r. q.e.d. 

Remark 4. If the ambient space is a complete (not necessarily simply connected) space 

form M ,” of constant curvature c then, as an immediate consequence of theorem 1, one can 

show the following. 

THEOREM 1’. Let f: M” + A?,” be an isometric immersion of a compact, simply connected 
manifold M”, n 2 2. Suppose there exist integers k, r, k 2 2 and 0 I r I k - 1, such that 
dim O&c, = n + r, for every p E M. Then, there exists an (n + r)-dimensional manifold Lnc’ and a 
totally geodesic isometric immersion TK : L + A? such that f (M) c n(L). Ifc > 0, M needs only 
to be complete. 
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