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§1. INTRODUCTION

WE consiDER C* immersions f: M" — QY of an n-dimensional connected manifold M, intoan
N-dimensional simply connected complete space form QF, N > n, of constant curvature c.
The codimension of the immersion can be reduced to r, if there exists a totally geodesic, (n +r)-
dimensional submanifold L of Q¥ suchthat f(M) < L. Letx,, .. .,x,belocal coordinatesin
M. The space generated by the derivatives of f, ofalll( orders up to k, at axpoint peM,isthek-th
order osculating space of fat p and it is denoted by Osc,. In particular, Osc, is the tangent space
T, M, of M at p,and Osc, is the direct sum of 7, M and the subspace generated by the vectors
a(x, y), x, ye T, M, where « is the second fundamental form of the immersion. Higher order
osculating spaces were introduced by E. Cartan [2] and studied in [1], [6], [71. [9] and [13].

We want to establish sufficient conditions, on the osculating spaces, for reducing
the codimension of an immersion. The simplest result in this direction is the classical prop-
erty of curves in Euclidean space. Namely, if B is a regular curve in R¥, whose curvatures
ky,..., kj—, do not vanish and k; is identically zero, then § is contained in an affine
j-dimensional subspace of R", Equivalently, if at every point p of the curve dim O‘sc,J = i,
foreachi,1 £i<j—1and dim Ojscp = j—1, then we can reduce the codimension to j —2.

Our main theorems are generalizations of results contained in [14]. Our first theorem
shows that for an immersion of a compact manifold M ", n = 2, if the dimension of the k-th
order osculating space, k = 2, is a constant less than n+k, then we can reduce the
codimension.

THEOREM 1. Let f: M" — QY be an isometric immersion of a compact manifold M", n = 2.
Suppose there exist integers k,r, k = 2 and 0 < r < k— 1, such thar dim Osc, = n+r, for every
pE M. Then, the codimension can be reduced to r. If ¢ > 0, M needs only to be complete.

The above result does not hold for curves. In fact consider the following example.
Example 1. Let S! be the unit circle and 8:S! — R? the immersion that to each point
(cost, sint) of S*, associates
B(t) = {(cos(cost), sin(cos t), sint).

It is easy to see that dim Ogc = 2. However, we cannot reduce the codimension.

If the ambient space Q¥ is such that ¢ < 0, then the hypothesis in theorem 1, on the
compacity of M, can be relaxed by considering M complete with bounded image f (M )in Q7.
The following example shows that we really need this extra condition.

Example 2. Let f: R — R¥~! be a regular curve which is not sontained in any affine
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hyperplane. We consider f: R x R — R", defined by f (s, t) = {B(s), t). Then dim Oéc = 3, but
we cannot reduce the codimension.

If the ambient space is Euclidean and .M is a complete manifold with non-negative Ricci
curvature, then we prove the following

THeoreM 2. Let f: M" — R, n = 2, be an isometric immersion of a complete manifold M,
with non- negatwe Riccicurvature. Suppose there exist integerskandr.k 2 2and0 <r < k-1
such that dim Osc = n+r, for every p in M. Then, either

(1) M is isometric to a cylinder over a curve; or
(ii) the codimension can be reduced to r.

It is not difficult to see that theorem 2 does not hold if we eliminate the condition on the
curvature [ 14]. Moreover, both theorems are the best possible, in the sense that the constant
dimension of the k-th order osculating space cannot be increased to n + k. In fact, consider the
following examples.

Example3. Letf:S' x S' — R® be defined by f (s, t) = (B(s), B(¢)), where f is the function
of example 1. This is an immersion of a compact manifold whose second osculating space
is 4-dimensional. However, the codimension cannot be reduced.

Exampled. Letf:S' x S* x R > R7 be defined by f (s, ¢, u) = (B(s), B(t), u), where B is the
function of example 1. This is an immersion of a complete manifold, with Ricc = 0 and
dim Osc = 5. However, the manifold is not isometric to a cylinder over a curve and the
codimension cannot be reduced.

The above theorems, which provide local criteria for the global problem of reducing the
codimension, generalize the corresponding results for k = 2 obtaikned in [14]. Refining the
arguments used in  14], the theorems are proved by showing that Osc is parallel in M. A result
analogous to theorem I, when the ambient space is a complete (not necessarily simply
connected) space form, is considered in Remark 4.

§2. PRELIMINARIES

In this section we will consider basic results which will be used in the proofs of the main
theorems. Let M" be a connected manifold immersed into an N-dimensional simply
connected, complete, space form QY of constant curvature c. We consider M with the metric
induced by the immersion. The Riemannian connections of Q¥ and M "are denoted by V and
V respectively and V* denotes the connection of the normal bundle TM *. The second
fundamental form of the immersion is denoted by «.

The k-th osculating space of the immersion at pe M, Oscp, is generated by X(p),
(Vy ¢ (V... (Vi X.)...),, where X, X,. .., X, are tangent vector fields on M and r
assumes all integer values from 2 to k, whenever k = 2. If U is an open subset of M, where the
dimension ot; O's‘cp is independent of pe U, then we have a vector bundle over U, which we
denote by Osc U.

In the proofs of our main results we show that Osc M is parallelin M, ie. (V i), € Osc for
every smooth section ¢ in Osc M and every X in TM. The reduction of the codunensnon is
obtained as a consequence of the following well known result [8, 15].

THEOREM A. Let M " be a connected submanifold immersed in a simply connected, complete,
space form QY. Let D be a j-dimensional distribution along M, such that T, M < D({p), for all
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pe M. Suppose that D is parallel along every curve in M. Then M lies in some j-dimensional
totally geodesic submanifold of Q.

In general, given an immersion f: M" — M", the dimension of the osculating space
4 . . . .
Osc,, j = 2, depends on the point ps M. The following lemma provides open and dense
subsets of M, whose connected components have constant dimensional osculating spaces.

LemMa 1. Let f: M™— MY be an immersion. For any integer k = 2 consider

Bi= {pe.\/!; dimOécp= n-H},

N~-n

U int B,

A/
P
A= 0 4]

where 0 i< N—nandj=2 Then, A and A are open and dense subsets of M. Moreover,
for any connected component C of A the dimension ofOJscp is independent of the point peC for
each j < k.

Proof. We need to show that for any open subset ¥ of M we have V' ~ A4 # . Denote by
f7 the function defined on V by f/(p) = dim Ojscx,, pe V. Since dim Ojscp < N, the image
of f7is a finite set of integers, therefore there exists an integer n + iy, which is the maximum of
f7. Let goe V be such that dim Ojscq0 = n+ i, Then there exists a neighborhood ¥} of g,
Vo = V,such that dim Ojscp > n+ g, forall pe V. Since u + iy is the maximum value of f/ on
V, we get dim Osc V, = n + i. Hence ¥, < int B! . Therefore, Vo = V' A'ie. 47isan open
and dense subset of M. Hence we conclude that A4 is also an open and dense subset of M.

The fact that the connected components of A have constant dimensional osculating
spaces follows from the construction of A. g.ed.

As a consequence of the above lemma, we have the following result, which will be
very useful in the next section.

LemMa 2. Let f:M"— M~ be an immersion. Suppose there exist integers k > 2 and
r > 0, such that dimOsc M =n+r.

(@) If r =1, then Ogc is parﬁzllel in M.
(b) If 1 <r £ k-1, then Osc is parallel in the set

) 2
U={pesM;dimOsc, > n+1}.
Pr(k)of. We will use the notation introduced in Lemma 1. We observe that since
dim Osc M = n+r, where k > 1 and r > 0, it follows that B2 has empty interior.

(@) If r =1, thin from Lemma 1 we have that 42 = int ?f is an open andkdense subset
oko. Since dimOsc M = n+ 1 and k > 2, it follows that Osc A2 = ... = Osc A2. Hence,
Osc is parallel in the dense subset 4% of M, and therefore is parallel in M.

(b) We consider f restricted to U and we apply Lemma 1 to this restriction. Then the set

A=

=

o . j .

U int{pelU: dim Osc, = n+1i)
T, t P s
J i=2

is an open and dense subset of U. Moreover, for any connected component C of A and any
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integer j, 2 < j <k, dim Oécp is a constant independent of pe C. In particular
n+2<dimOscC < n+r.

. . k .
Therefore, since r < k—1 and dimOsc C = n+r, for each component C, there exists
an integer i, i < k— |, such that

OscC= ... = 0% C=O0scC.

k

Hence, Osc is parallel in each connected component.of 4. Since 4 is dense in U, it follows

that Osc is parallel in U. ged.
The following lemma can be found in ([14] lemma 2).

LE;{MA 3. Letf: M"— QY be an isometric immersion and W an open subset of M such that
dim Osc W = n+ 1. If at each point of W there exists some sectional curvature K # c, then Osc
is parallel in W.

As a consequence of Lemma 3 we obtain

LemMma 4. Let f: M " — QF be an isometric immersion and W an open subset l?f M where
dim Osc, < n+ 1, for any pe W. If there exists an integer k > 2 such that dim Osc, > n+ 1,
» yp g ,

for any pe W, then the sectional curvature K in W is constant equal to c.

Proof. Consider W = W, u W,, where

W, = {pe W;dimOgc:I,: n+i}, i=0,1.

. . . . . k
Then W, is an open set of M and W, has empty interior, since dim Osc, > n+ 1, for any
peW.
Suppose that the set

D = {peWy; K(p) #c}

is non empty. Then it follows from Lemma 3 that Oéc is parallel in D. Hence Oéc D= Ogc D,
which contradicts the hypothesis. Therefore, K = ¢ in W,. Since W, has empty interior, we
conclude that K = ¢ in W. q.ed.

We recall that the relative nullity space of an immersion at a point pe M is the set of
tangent vectors X € T, M such that «(X,Y) = 0, for all Ye T, M. The relative nullity index
v(p)is the dimension of the relative nullity space at p. The following fact about v will be used in
the proofs of the main theorems.

Remark 1. Let f: M — QY be an isometric immersion. If the relative nullity index vis a
constant /inan open set U of M, then the relative nullity distribution in U is involutive and the
leaves of the foliation are totally geodesic in Q¥ [10, 12]. Moreover, generalizing Lemma 3.1
in [11] and Lemma 2 in [4], one can show that every boundary point p of U, which is also a
limit point of a leaf, has relative nullity index v(p) = L.

Remark 2.2Let f:M"— Q¥ be an isometric immersion and ¥ be an open subset of M,
where dim Osc V = n+ 1. Then, the sectional curvature at pe ¥, K (p) is not identically
equal to ¢, if and only if, the relative nullity indexv(p) < n— 1. Moreover, if K (p) = ¢ then
v(ip)=n—1.

Our next result is necessary for the proof of Lemma 6.
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LEMMA 5. Let f:M"— QY be an isometric immersion such that the dimension of Osc
and Osc is independent of pe M, for some k = 2. Suppose that for any smooth section n of
O M and each vector X ofthe relanbe nullm space D,atpe M, ( _Xn)p € Ogcp. Then, for any
smooth section of Osc M, (V\;)peOsc

Proof. For pkeM, let +1:/f, be the k-th normal space of M at p, ie. the orthogonal
complement of Osc, in Osc,. It follows from the hypothesis that N “isa vector bundle over M.

In order to prove the lemma, it suffices to show that for any vector field £ in N* and
XeD,, (Vxi),e Osc,. Since ¢ is locally a sum of terms f Vi, where n € Osc MYeTMand fis
a smooth function, we may consider ¢ = V#n.

Let X be a vector in the relative nullity space D,. Extend X to a vector field in a
neighborhood of p. Then

Since X € D,,, it follows from Ricci equation that RL(X, Y )y = 0 at the point p. Therefore,
Vi =ViVxn +VELX il

Now, by hypothesns (V% n)peOsc for each pelf\/!x Therefore, (V#Vin), and (Vixnn),
are vectors in Osc We conclude that (V&),e Osc,. q.e.d.
Our last lemma is a generalization of ([14], lemma 4).

LEmMA 6. Let f: M ™ — QF be an isometric immersion, such that the dimension ofOsc is
independent of pe M, for some k > 2. Let U be an open subset of M where the relative nullity
index is a constant | > Q. Let +: [O,ka] — M be a geodesic segment contained in a leaf of the
relative nullity foliation of U. If Osc is parallel at +(a), then it is parallel for all te[0, a).

Proof. Let X,, ..., X, be tangent frame fields, defined in a neighborhood of y(¢) in
U, such that X,,..., X, span the relative nullity space D and X, == y'(¢). Since the
leaf of the relative nullity foliation, which contains v, is totally geodesic we may suppose
VooXi)=0,1<i<n

(a) Fll‘ft we show that for any point pe U and any smooth section & of Osc M, we have
(Vx&),€Osc,, when X is a vector of the relative nullity space D,.

Let A be an open and dense subset of U, such that for any connected component C of 4
the dimension of OJSC is independent of the point peC, for each j < k (see Lemma 1). We
consider any such connected component C. Let v be a normal vector field defined on a
neighborhood of a point peC, such that v is orthogonal to Osc C. Then,

0=X,{(2(X,, X,),v)=(Via(X,, X,),v)+{2(X,, X,), Vxv),
forany 1 <r,s<nand 1 <i<I Since
(a(X,, X,), Vxv ) = (a(X; X)), Vzv)
and X; is in the relative nullity, it follows from the above equality that
(Vza(X,, X,),v)=0.

Therefore, for any vector field 5 in Osc C,peCand XeD,, we have (V xn),eOsc p. Using
Lemma 5 inductively, we obtain that (V,¢), e Ogc for any srnooth section ¢ of Osc C,peC
and X e D,. The proof of (a) is completed as a consequence of A being dense in U.

(b) Lete,,...,ey_,bean orthonormal normal frame field defined along the geodesic
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v (¢), such thz}‘t Xy,...,X,,e,...,e,span Ogc andV,;L.e, =0, forall 1 I < N —n. Since
V, Osc < Osc, such frame exists. Now, for each r < m and 6 > m we consider the function
SO =(Vxe, e). 2

We want to show that for any 1 <i<n, f(t) = 0if f(a) = 0.
For i </, this follows from part (a). Therefore, we only need to consider i> [
Differentiating (2) along y, we obtain

fi)=X,(Vzie, e;)
= <RL(X1’ Xi)er’ €s > + <V:\L,iV&\en e&>

+ <V[lxl_xi]e', es).

Since X, €D and Vy X,(t) = 0, the above equation reduces to

f;([) = <V*ivzj\;,en €s > - <V%,\QXl € e6>

%

= Xl' <V§1'er’ €s > - <V§,en V)-%,-eé > - Z <VX,»X1’ Xj > <V§jer’ €s >
j=1
From the choice of the normal frame field we have Ve, (r) = 0. Moreover, from part (a)
{Vxe,, e;) =0 for any 1 <j <. Hence the above expression reduces to

n

fiy=—- Y <(VeX,, X; )50, I<i<n
j=t1+1
Since f; (a) = 0, it follows from the uniqueness of solutions of such systems of equations that
fi(®y =0 for te[0, a). q.e.d.

§3. PROOF OF THE MAIN THEOREMS

Proof of theorem 1. We will only consider k > 2, since the case k = 2, and thereforer = 1,
was proved in [14]. .

Ifk > 2and r = 1, thenit follows from Lemma 2 (a) that Osc is parallel in M. Hence, using
Theorem A we reduce the codimension to 1.

If k > 2 and r > 1, we consider the set

U= {peM; dim Osc, > n + 1}.

Since 1 <7 < k—1, it follows from Lemma 2 (b) that Ogc 1s parallel in U and hence in the
closure U. Let W = M - U. Using Lemma 4, we obtain that the sectional curvature in W is
constant equal to ¢. Consider

W= Ww,UW,

where W, = {pe W, dim Ogcp = n+1i}. Then, W, has empty interior and W, is an open
subset of M. Moreover, from Remark 2, we get that the dimension of relative nullity index
v(p) = n— 1, forany pe W, . Therefore, W, is foliated by (n — 1)-dimensional totally geodesic
submanifolds of Q7.

Now, for any point pe W;, we consider a geodesic y, tangent to the relative nullity
foliation, such that y(0) = p. We claim that such a geodesic, which is also a geodesic of Q7,
cannot be extended indefinitely in W, . In fact, if ¢ < 0, this follows from the compactness of
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M.Ifc > 0, the existence of a closed geodesic entirely contained in W, implies that the relative
nullity v = n mod 2, see [5]. This contradicts that v = n—1 in W.

Hence y must hit the boundary of W at a point y(a). From Remark 1, we have that the
relative nullity v{;{a)) = n— 1. Therefore y(a) ¢ W}, since the relative nuility in W is n. Now,
the boundary of W, is the union of W, with the boundary of W. It follows that y(a) is a point
in the boundary of W. Therefore, y(a) belongs to the boundary of U, where Osc is parallel.
Using Lernmaké, we conclude that Osc is parallel at p. Since p is an arbitrary point in W, we
obtain that Osc is parallel in W, .

Finally, since W, has empty interior, we obtain that Osc is also parallel in Wo,kand
threrefore in M. Applying theorem A to the (n + r)-dimensional parallel distribution Osc in
M, we reduce the codimension to r.

Remark 3. It is clear from the proof of theorem 1 that the compactness of M, forc¢ £ 0,
can be replaced by the weaker assumption that M is complete and the image f (M ) is bounded
in QF. Moreover, when ¢ > 0, M needs only to be complete.

Proof of theorem 2. Using exactly the same arguments as in the previous theorem we
obtain that W, is foliated by (n— 1)-dimensional totally geodesic submanifolds of R".

Suppose there exists a point pe W' ! such that any geodesic coming out from p, lying in the
relative nullity foliation can be extended indefinitely. Then, the leaf of the relative nullity
foliation passing through p is an (n— 1)-dimensional affine plane in RY. It follows from
Cheeger’s splitting theorem [37], that M is isometric to a cylinder over a curve.

Otherwise, for any pe W}, there exists a geodesic coming out from p, lying in the relative
nullity foliation, which hits the boundary of W, . In this case, as in the proof of theorem 1, we
conclude that the codimension can be reduced to r. qed.

Remark 4. If the ambient space is a complete (not necessarily simply connected) space
form M Y of constant curvature ¢ then, as an immediate consequence of theorem 1, one can
show the following.

THEOREM 1'. Let f: M™ — MY be an isometric immersion of a compact, simply connected
manifold M", n > 2. Suppose there exist integers k, r, k> 2 and 0 <r < k-1, such that
dim O§cp = n+r, forevery pe M. Then, there exists an (n + r)-dimensional manifold L"*" and a
totally geodesic isometric immersion nt: L — M such that f (M) < =n(L). If ¢ > 0, M needs only
to be complete.
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