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A b s t r a c t - - W e  consider a cyclic-service queueing system (polling system) with time-limited ser- 
vice, in which the length of a service period for each queue is controlled by a timer, i.e., the server 
serves customers until the timer expires or the queue becomes empty, whichever occurs first, and then 
proceeds to the next queue. The customer whose service is interrupted due to the timer expiration is 
attended according to the nonpreemptive service discipline. For the cyclic-service system with struc- 
tured batch Poisson arrivals (MX/G/1) and an exponential timer, we derive a pseudoconservation 
law and an exact mean waiting time formula for the symmetric system. (D 2006 Elsevier Ltd. All 
rights reserved. 

K e y w o r d s - - P o l l i n g  system, Structured batch arrival, Compound Poisson process, Time-limited 
service, Exponential timer, Exhaustive service, Nonpreemptive discipline. 

1. I N T R O D U C T I O N  

In cyclic-service queueing systems (polling systems) with nonzero switchover times, Watson [1] 

and Ferguson and Aminetzah [2] have first found an equation expressing a weighted sum of 

mean waiting times, called the pseudocoaservation law. Using the s toch~ t i c  decomposition of 

the workload in vacation systems, pseudoconservation laws have systematically been derived by 

Boxma and Groenendijk [3] for basic service disciplines, such as exhaustive, gated, one-limited 

(nonexhaustive),  and one-decrementing (semiexhaustive) services. After them, these pseudocon- 

servation laws have been extended to various service disciplines and a compound Poisson process 

with correlated arrivals as reviewed in survey articles by Takagi [4]. These pseudoconservation 

laws can be used to obtain simple and yet accurate approximations for the individual  mean wait- 

ing times in asymmetric  systems and also useful for optimizat ion problems in flexible service 

disciplines with controllable parameters,  e.g., [5]. On tile other hand, t ime-l imited service polling, 

systems have gained much a t tent ion in view of both the applications and the theoretical analysis. 

The term time-limited service refers to the fact tha t  the server serves a queue only up to an 

amount  of t ime controlled by a t imer during each service period, tha t  is, the server serves waiting 

customers (messages or packets) unti l  the t imer expires or the queueing buffer becomes empty, 

whichever occurs first, and then proceeds to the next queue. The limited t ime is also called the 
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maximum server at tendance (MSA) time by Leung and Eisenberg [6]. The time-limited service 
disciplines are classified as exhaustive (or nongated) and gated time-limited services and further- 
more, as nonpreemptive and preemptive-resume service disciplines with respect to the interrupted 
service caused by timer expiration as in [17]. The main merit of the time-limited service is that  
the MSA time can be arbitrarily adjusted. Such a flexible schedule is effective for the performance 
optimization, and has a potential applicability to communication systems with multiple grades 
of service requirements in multimedia broadband networks. 

In this paper, we will derive a pseudoeonservation law for a cyclic-service system with structured 
batch Poisson arrivals and an exponential time-limited service, which is an extension of the 
recent result for the M / G / 1  polling system analyzed in [8]. The rest of the paper is organized 
as follows: in Section 2, we describe the model and notation in detail. After preliminaries in 
Section 3, we derive a pseudoconservation law and an exact mean waiting time formula for 
the symmetric polling system in Section 4. In Section 5, we give some remarks and provide 
a general pseudoconservation law combining the previous well-known results for the standard 
service disciplines. 

2.  M O D E L  A N D  N O T A T I O N  

We consider an M X / G / 1  cyclic-service queueing system with N infinite capacity buffers which 
are denoted by Q1, Q 2 , . . . ,  QN and assume that  the system has a Poisson arrivals process at 
rate A such that  each arrival contains Gi customers in Qi, i = 1 , 2 , . . . ,  N, simultaneously. The 
generating functions (GFs) of the joint probability distribution (joint PD), g(k l ,  k2 . . . .  , k g )  := 
Pr{G1 = kl ,  G2 = k2, . . . ,  a N  = k g } ,  k i  ~_ O, i -~ 1, 2 . . . .  , N and the GF of the marginal 
distribution are denoted by, respectively, 

G ( z l , z 2 , . .  ~ ~ X N  ~ := E ,zZ, Nj _- C(z>, 

G i ( z )  := G(z l  = 1, . . . ,  zi = x,  . . . ,  ZN = 1). 

Some moments of the joint PD for {Gi} are denoted by 

: =  [ ~ 1 7 6  = Ef t , I ,  : =  
g' [ Ozi j , = l  [ OziOzj J 

.(2) [020(,)  l = E [ Gi (Gi  - 1)], 
' :=L 04 J,=, 

= E[GiGj] ,  for i r j,  

where the z = 1 stands for (zl = 1, . . . ,  zi = 1, . . . ,  zN ---- 1). The maximum length of a service 
period of a single server at Qi, i -- 1, 2 , . . . ,  N is limited by a given time Ti called the MSA 
time; in other words, the server serves the customers in Qi until either the time limit expires, 
or tile queue becomes empty, whichever occurs first, and then proceeds to Qi+l mod (N),  where 
customers arriving at currently in service can possibly be served in the same service period, i.e., 
exhaustive service discipline. 

Furthermore, the service on the customer being served is completed during the current service 
period, i.e., nonpreemptive discipline. We assume that  the MSA time Ti for Qi, i = 1 , 2 , . . . ,  N 
is exponentially distributed with mean T, :=  1/a~. The Laplace-Stieltjes transform (LST) and 
the distribution function (DF) of the MSA time T~, i = 1, 2 , . . . ,  N are denoted by T,*(s) := 
a i / ( s  + ~,) and Ti( t ) ,  respectively. The time-limited schedule can be parameterized by a vector 
of (T1, f ) , .  �9 �9 f 'g ) .  The LST of the DF, the mean, and the second moment  of the service time H~, 

i = 1 , 2 , . . . ,  N of a customer at Qi are denoted by H*(s ) ,  hi, and ..~h (2), respectively. Each arrival 
is also considered as a supercustomer whose service time (B) has the LST B*(s )  of the DF, the 
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mean, and the second moment  given by, respectively, 

B*(s) := (H~(s), H~(s ) , . . . ,  H;v(s))  , 

N 

b := E g i h i ,  
i = l  

N N i - 1  

b(2) := E ~gi i [ h(2) +' gi(2)ai~2"~) + 2 E hi E g i , j h j .  
i=1  i=2  j = l  

The tota l  load offered to the  sys tem is then given by 

N 

/5 := Ab = ~ Pi, 
i = l  

P i : = A i h i ,  h i : = A g i ,  i = l , 2 , . . . , N .  

The  LST of the  DF, the mean, and the second moment  of the  switchover t ime Di, i = 1, 2 , . . . ,  N 
needed by the server to switch from Qi to Qi+I are denoted  by D~(s), di, and d~ 2), respectively. 
The  switchover t imes are independent  of the  arrival  and service processes. The  mean and the 
variance of the  to ta l  switehover t ime during a cycle of the server are then given by, respectively, 

N N 

b :-- E <  4 :-- E (< - 
i=1  i=1 

We refer to an ins tant  the  server arrives at  Qi from Q i -  1 as a polling instant of Q,. Fur thermore ,  
we define the  polling cycle time (C) as the  t ime between the server 's  visi t  to the  same queue in 

successive cycles, the  service period (Si) of Qi as the  t ime between the arrival  of the  server at  Q, 
and his subsequent  depar ture  from Qi, and the intervisit time (I i)  for Qi as the  t ime between 
the server 's  depar tu re  from Qi and the next polling instant  of Qi- 

REMARK 2.1. We do not  consider a batch t ha t  contains no customers  at  all, i.e., g(0, 0 , . . . ,  0) = 0. 
Some special cases are as follows; if each arrival  contains only customers  for a single queue, we 

have gi,j = 0 for i ~ j ,  N > i, j > 1. Fur thermore ,  if each arrival  contains a single customer,  we 

have g, = 1 and g}2) = 0 for N > i > 1. If the number  of customers contained in each arrival is 

independent  for different queues, we have gi,y = gigj for i # j ,  N > i, j > 1, see [9]. 

3 .  P R E L I M I N A R I E S  

The nonpreemptive,  t ime- l imi ted schedule is closely related to the  Bernoull i  schedule witll  
pa rameters  (Pl,P2,. . . ,PN).  From correspondence of the t i rne-l imited service to the  Bernoulli  
schedule, we have the  following results: 

Pi :=  Pr{Ti > Hi} = H*(ai), Pi := 1 - H~(ai). (1) 

We define the following LSTs and GFs  for i = 1 , 2 , . . . ,  N:  

F;(s)  := E [e -sH` [Ti > Hi] - H~'(s + a i )  
H ; ( ~ z )  ' 

['/*(s) := E [e -sH' [ Ti < Hi] = H:(s)  - H;(s  + a,) 
- 1 - H;(a i )  ' 

Q r , ( ~ )  :=  F:(~ - ~adx) ) ,  c&,(x) :=  ~ ; ( A  - ~ a i ( x ) ) ,  

QI,(z)  := p , F * ( A -  )~Gi(x)), QZ,(x) := p i l ~ * ( A -  AGi(x)), 

QH,(X) := H;(A - AGi(x)). 

(2) 
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REMARK 3.1. One sees tha t  H~'(s) = piF*(s) +!~iH;(s) and F;(s)(H?(s)) = H;(s)  only for 
H;(s) = e -~h~ (i.e., Hi(t) is a unit  d is t r ibut ion  with the  mean hi),  t ha t  is, F~(s)(H:(s)) has a 

bias to Hi(s) ,  and Pi (Pi) is not independent  of Hi. 

Fur ther ,  we define the  following random variables for i = 1, 2 , . . . ,  N: 

Ki  := the  number  of customers at  the  polling instant  at  Qi,  

Ni := the number  of customers  served during Si, 

Li := the  number  of remaining customers in Qi when the server leaves Qi. 

Then,  we have 
E(Li)  = E(t'(i) - (1 - p~)E(Ni), (3) 

which can be derived from the following known equations in [10]: 

E(K~) + AiE(S~) - E(Ni)  + E(Li) ,  E(Si)  = hiE(Ni) ,  

b (4) 
E(Si)  = piE(C),  E ( / / )  = (1 - pi)E(C),  E(C)  - (1 - /5~ 

In the next section, we will use Lemma 1 on the following GFs  defined by: for m _> 0, 

Pi(x) := G F  of the PD {pi(m)} of the  number  (m) of customers  in Qi 

at  an a rb i t r a ry  epoch, 

P(-(x) := G F  of the PD {p~-(m)} of the number  of customers  in Qi 

jus t  before an arrival epoch, 

Hi(x)  := G F  of the  PD {Tri(m)} of the  number  of customers  in Qi 

jus t  after a depar tu re  epoch of a customer from the  system, 

ri~-(x) := G F  of the PD {Try-(m)} of the  number  of customers  in Q~ 

jus t  before a depar tu re  epoch of a customer from the system. 

LEMMA 1. 
1 - G i ( x )  

Hi(x)  = Pi(x)Ri(x),  Ri(x) . -  gi(1 - x) ' (5) 

PROOF. Let a set Sm := { m +  1 , m + 2  . . . .  } and S C := { 0 , 1 , . . . , r n }  for rn k 0 with respect  

to the  number  of customers in Qi- Then using the exit  ra te  (rout) from the set Sm and the 

entry  rate  (tin) into Sin, t ha t  is, from the discre te-s ta te  level-crossing analysis  regarding the s ta te  

{m + 1}, we get 

T o . t  : =  ;~dow.~7('~ + 1) = Xgi~,(-~) ,  

rm := Aup E p : ( ( j )  P r { a i  = k} 
j = 0  k = r n - j + l  

= ) , } -~p i ( j )  1 - P r { a i  = k }  , 

j=O k=O 

where Ad . . . .  (Aup) is the  long run ra te  of downward (upward) jumps,  e.g., see [11] and [12], and 

we have used the PASTA (Poisson arrivals see t ime averages) p roper ty  for the second equation 

with Aup. Equat ing  the exit  and ent ry  rates,  we obta in  

giTri(m) = ~ _ , p , ( j )  1 - ~ Pr{G~ = k} . (6) 
j=0 k=0 

Finally,  tak ing  the generat ing function of (6) we get (5) .  | 
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The  GF Ri(x) represents the GF for the forward (also backward) recurrence t ime in the 
discrete-time renewal process, where the interval between two successive renewal points is given 
by C~. A probabilistic interpretat ion for (5) is given as follows: first of all, we assume the FIFO 
discipline for Q/. Then,  Pi(x)R~(x) represents the GF for the number  of all customers placed 
before an arb i t ra ry  tagged customer chosen randomly from an arriving batch in Q~ when the 
tagged customer  has arrived at  Q~ because of the PASTA property, while Hi(x) is the GF for the 
number  of customers being behind the tagged customer in Qi just  after the tagged customer 's  
depar ture  epoch. Both GFs should be equal in s teady state. Note here tha t  (5) holds for any 
service mechanism with nonbatch and nonpreemptive  services, since the number  of customers 
in Q{ is independent  of service disciplines as FIFO,  LIFO, and so on. Equat ion (5) for the 
t ime-limited service polling system is a generalized result including one for the M x / c / 1  single- 
queue without  vacation t imes in [13], and also follows from the result derived by Takine and 
Takahashi  [14] as a special case of a batch Markovian arrival process (BMAP).  

4. Q U E U E I N G  ANALYSIS 

We will derive Theorem 1 for the t ime-limited service system using the GFs formulated on 
both service-beginning and customer-depar ture  epochs. In what  follows, an epoch is a polling 
instant, a service completion or a service beginning for a customer in Qi. We consider a sequence 
of pairs of random variables (Y~, Jn), n = 1, 2 , . . .  defined as follows: Y~ denotes the number  of 
customers at  the n TM epoch, while Jn = 0 if the epoch marks a polling instant  of Qi, Jn = 1 if the 
epoch marks  a service completion of a customer in Qi, and J~ = 2 if the epoch marks  a service 
beginning for each customer. 

THEOREM 1. PSEUDO-CONSERVATION LAW. 
For a stable M x  /G/1 cyclic-service system with an exponential time-limited service specified 

by a vector (211,272,..., ~['N ), the following relationship among the mean waiting times holds: 

N [ ) ~ b  (1 , (c~{))l E(W~ ) 1-i-: 7 
i = 1  

- 2(1 fi) E pg'hl2) +~{ {] ~ { = 2  y=l 2 ( 1 - f i )  
i = 1  / = 1  

E hi 2pig~ + 2 A i g / ~ d  H ; ( ~ , ) +  i , ] g r  - H : ( c ~ d )  . 
do~ i 

PROOF. First of all, we define the following GFs: 

(7) 

�9 { (x ) :=  lim E [ x  Y" IJn =0],  
~---+oo 

I]/(x) = lim E Ix Y~ I = 1], 

YI~ +(x) := lim E [xY-I & = 2 ] ,  
k = l  / 

where 12+(0) = 0. Then we obtain a functional relationship between YIi(x) and I I+(x) ,  

1 = r i U x ) Q . , ( x ) l  n / ( x )  = (8) 

and a functional relationship with H +(x) ,  

+ 1 + 1 
n,+(x) = ~ [ ~ ( x )  - ~{(0)] + n / ( x ) Q s , ( x ) ~  - ~ / (1 )xQA(O) - ; ,  (9) 
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where 
Pr{Jn  = 0} _ _ _ ( 1  - /5 )  (10) 

lm.i:.2 r Pr{Jn  = 2} AiD 
ts 

Note here tha t  1/,{ is nothing but  the mean number  of customers served in one service-period 
at Q,, i.e., 1/~ = E ( N  O. Combining (8), (9), and L e m m a  1, we obtain finally 

= [ ),,p~b] ( x -  Qf,(x))n~(x)P~(x) = (1 -~ )QH, (X)  4~{(x) + - -  - 1 . 
AiD 1 - /5  

(11) 

Therefore, taking the first derivative of both sides of (11) with respect to x and applying Litt le 's  
formula to P((1) lead to 

(I)'i(1) - i - - 3  1 + Ai~-~ H*(e~) + (1 - H{*(~)) [ ~ - g i  + AiE(W,)  . (12) 

Furthermore,  it follows from the decomposit ion theorem for vacation systems tha t  

N ;,b(2) N ~h(2) /5~, b [ ,__~ ] 
~ P ~  i + + _ _  /5_ 2 

E p,E(W~) - 2 (1 - /5 )  2hi ~ 2 (1 - /5 )  P, 
i = l  ' =  

N 

+ Z h,E(LO, 
i = l  

E(Li) = 69'i(I ) Ai(l - pOD 
1-/5 ' 

(13) 

(14) 

where we have used (3), (4), and E(Ki)  -- (I)~(1) for derivation of (14), see [15] and [8]. Hence, 
arranging (12)-(14), we reach (7). II 

Next we give an exact mean waiting t ime formula for the symmetr ic  polling system 

1 [/sgh(2) + g(2)h~ 
E ( W ) =  2 [ 1 - / 5 - A g D { 1 - H * ( a ) } ]  [ gh + ( N - l )  g[2lhg 

+ ( 1 - / 5 ) ? + D  l + A g h + 2 A g  H * ( a ) + T ( 1 - g * ( a ) )  , 

(15) 

where g := g~, g(2) := g}2), g{21 := gi,j, i , j  = 1 , 2 , . . . , N  (i # j) .  

REMARK 4.1. Relationship (7) reduces to equation (9) in Theorem 1 in [8] sett ing g, = 1, 
g}2) = gi,j = 0, and Ai = Agi. Similarly, formula (15) reduces to equation (18) in Theorem 2 
in [8] setting g = 1, g(2) = g[2] = 0, and/5 = Np. If  all the switchover t imes are zero, (7) reduces 
to the conservation law for M X / G / 1  queueing systems with multiple customer  classes. 

REMARK 4.2. A necessary and sufficient condition tbr stabili ty of the t ime-limited service polling 
system is given by 

/ 5 < 1  and A i <  1 - / 5 + p i  f o r i 6 { 1 , 2  . . . .  ,N} .  (16) 
# iD + hi ' 

An intuitive proof of (16) is given as follows: Under a si tuation tha t  the queue length of Q~ is 
infinite at a polling instant  at Qi, the probabil i ty denoted by p(n) tha t  n customers in Q, are 
served during one service-period is given by p(n) n - l -  = Pi Pi, n = 1 , 2 , 3 , . . . .  Then the average 
max imum number  of customers served in one service-period equals ~n~176 np(n) = 1//~i. Recall 
here tha t  Georgiadis and Szpankowski [17] have proved the following necessary and sufficient 



A Pseudoconservation Law 177 

condition for the polling system with ki-limited service at Qi, in which the number of customers 
served at Qi per visit of the server is exhaustively limited by ki: 

tS< 1 and hiE(C)  <k i ,  f o r i c  {1,2 , . .  ,N}.  (17) 

Thus, replacing k{ in (17) by 1//~i, we get 

1 
/5<  1 and hiE(C)  < - - ,  f o r i E  {1,2,.  

Pi 
, N } ,  (18) 

which leads to (16) using E(C)  = / ) / (1  - /5) ,  where h i E ( C )  represents the average number of 
customers arrived at Q~ during one cycle-time. In a stable system, )hE(C)  should be less than 
the average maximum number of customers served in one service-period. The second relationship 
in (16) is identical with the stability condition (necessary condition) for the polling system with 
Bernoulli schedules as given in [16]. 

5 .  C O N C L U D I N G  R E M A R K S  

Under the gated time-limited service, the server serves at most those customers tha t  are found 
at the polling instant of a queue. For the polling system with gated time-limited services, it 
remains as an open problem to derive the pseudoconservation law, tha t  is, the similar relationship 
to (7) has not been obtained even for the M I G I 1  polling system with gated time-limited service 
as discussed in [8]. 

Lastly, combining Theorem 1 and the well-known results for exhaustive, gated, limited, and 
decrementing service disciplines, we give the following general pseudoconservation law for the 
M x / G / 1  polling system with combined basic service disciplines: 

lib (I - H~(ai))} E(W{) + Zw = C + Zc 
iET 

Ib [2p~g~ 21{gi~_~aH~(ai) . (2)(1 -t-g i H*(a i ) ) ]  
2 (1 _ t3) ~e~r hi + - , 

(19) 

N 
C 2 /~) E [ ^ ]1(2) _(2)L2~ 1 N i-1 + Zh'  

+ r> -  p7 , 

(20) 
b E tbEg}2)h, I b E  [(1 2p,)g}2)h, ' l  ,2 h h(2)] 

iEG,L ZEL lED -- - - t  gi) gi i i J 
Z c . -  + + 1 - p 2(1 - p) 2(1 - p) 

Zw:= E P i E ( W i ) + E P i  1 fro-t) E ( W i ) + E p i  1 -i: 7 E(W,) ,  
iEE,G iEL lED 

where E, G, L, D, and T stand for the index sets of queues with exhaustive, gated, one-limited, 
one-decrementing, and time-limited service disciplines, respectively. The relationship Zw = 

C + Z c  is given in [4]. 
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