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We introduce a new model for first order phase transitions accounting for non-constant
densities of the phases during the process. The resulting initial and boundary value
problem for a PDE system is recovered by thermodynamical principles. The resulting
system presents some singularities and strong nonlinearities accounting for internal
constraints, ensuring in particular the positivity of the pressure and the temperature.
Physical consistency for the order parameter comes from a maximum principle argument.
Existence of a weak solution is proved by a regularization-passage to the limit procedure.
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1. Introduction

This paper deals with a first order phase transition problem (ice–water phase change) in which the different phases are
characterized by non-constant densities. In the literature many differential models have been investigated under the hypoth-
esis of constant densities for the ice and water phases and of a constant transition temperature providing a vertical melting
line (see [21] for some references on the subject). The novelty of this paper consists in removing these restrictions (see
[7,13] for a fairly different model), taking into account the evolution of the density during the ice–water phase transition.
This leads to a melting line with a negative slope, so to describe the experimental diagram in the picture. As a consequence
the pressure of the phases plays a role in the thermo-mechanical behavior of the system and is included as a new variable.
Note that, towards physical consistency, the positivity of the pressure p has to be guaranteed. In our framework this is
obtained by the presence of an internal constraint included in the energy functional. The resulting PDE system is recovered
by the classical conservation laws of the mass and momentum and a new law on the second order structure, motivated
by the actions of micro-forces resulting from motions at the microscopic level. As far as thermal properties of the system,
we describe the evolution of the entropy (see, e.g., [2,4]). The main advantage of this approach consists in the possibility
to prove directly the positivity of the absolute temperature, avoiding any a posteriori maximum principle argument, and
to get energy and dissipation estimates directly by the variational formulation of the problem. The evolution of the phase
transition is described by an order parameter, as it is usually done in the phase-field theory (cf. among others [14,15,18]). In
particular, we are referring to some fairly recent theories in which microscopic movements and microscopic forces respon-
sible for the phase transition process are included in the momentum and energy balance [9,11,17]. Hence, which is new in
this framework, the physical consistency of the phase transition is not ensured by internal constraint (as it is done for the
pressure), but it comes directly by the evolution equation due to the choice of the energy potentials.

Here is the outline of the paper. In Section 2 we introduce the model. In Section 3 we make precise the variational
formulation and the main existence result. In Section 4 a maximum principle argument shows that the phase parameter
remains bounded during the evolution. In Section 5 we introduce the approximated problem and state the corresponding
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existence result, by use of a fixed point argument. In Section 6, after proving suitable a priori estimates on the approximated
solution, we pass to the limit and get the existence of a solution for the original problem.

2. The model

In any phase transition, a transformation from a more ordered material structure to a less one or vice versa is shown.
Moreover, the structure order for many materials increases if the temperature goes below a critical value. Actually, in
the solid–fluid first order phase transition, the solid phase has a greater structure due to the crystal symmetry group.
Landau [16] suggested that the symmetry or the structure of the material should be measured by a new unknown χ ,
which he called order parameter. Hence, as usually thermal effects are considered in phase transitions model, so that the
state variables are the order parameter and the absolute temperature θ . The resulting model consists into two differential
equations, the balance equation governing the evolution of the order parameter and the heat equation. They are written in
some bounded domain Ω , where the system is assumed to be located. Actually, to describe the general ice–water phase
transition the variation of the density of the material is taken into account. Indeed, as the density of the water and the
ice are different, the phase transition cannot be described by a model in which the density is considered as a constant
coefficient, as in the classical phase transition works. Thus, in addition to θ and χ we consider the density ρ as a new
variable for which there holds the so-called continuity equation

ρt + divρv = 0, (2.1)

v being the velocity. Assuming the phenomenon of the phase transition in a quasi-static regime, the motion equation reads

div(Te − p1) + ρb = 0, (2.2)

where p is the pressure, 1 the identity matrix, Te the extra-stress, and b the body forces. Considering the ice and the water
as incompressible viscous materials, the extra-stress can be written as

Te = ν(χ)ε(v), (2.3)

where the viscosity ν(χ) is a positive scalar function (we will assume to be constant in the sequel), and ε(·) is the symmet-
ric tensor, defined by εi j(v) = 1

2 (∂xi v j + ∂x j vi), v = (v1, v2, v3) (we restrict ourselves to small perturbations assumption).
Since we have assumed the hypothesis of incompressibility both for ice and water, it is correct to suppose that div v is

different from 0 only during the phase transition.
Now, let us introduce the equation describing the evolution of the order parameter, which is obtained by the balance

law on the order structure, resulting from the principle of virtual power taking into account motion at the microscopic level
and dual force at the same microscopic level (see [6,8–11,17]), given by

c1ρχt = c2 div(ρ∇χ) − ρ F ′(χ) − ρ(θ + λp)G ′(χ), (2.4)

where the constants ci , i = 1,2, are strictly positive, while the coefficient λ is a small constant. Note in particular that λ is
connected to the slope of line splitting up ice and water. The functions F and G characterize the order and the feature of
the phase transition. In particular, in the case of a first order transition, as ice–water, they are addressed as follows [7]

F (χ) = χ4

4
− χ3

3
, G(χ) = χ4

4
− 2χ3

3
+ χ2

2
. (2.5)

Introducing the first principle of thermodynamics we are able to deduce in particular an evolution equation for the tem-
perature. Letting e the internal energy, h the specific internal heat power, defined also as the rate at which the heat is
absorbed per unit mass, P i

χ the internal structure order power density, and P i
v the internal mechanical power, the first

principle assumes the form

ρet = ρh + P i
χ + P i

v . (2.6)

Let us recall that the above quantity h may be specified, by the heat balance law as follows

ρh = −div q + ρr, (2.7)

q being the heat flux vector, which is governed by the Fourier law

q = −k0∇θ, k0 > 0, (2.8)

while r is the external heat supply. Hence, the internal order structure power P i
χ follows from (2.4)

P i
χ = ρ

(
c1

(χ)2
t + Ft(χ) + (θ + λp)G ′(χ)χt + c2∇χ · ∇χt

)
. (2.9)
2
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Finally, P i
v is given by

P i
v = p

ρt

ρ
+ ν(χ)∇v · ∇v. (2.10)

The second law of thermodynamics implies that there exists a state function η, called entropy function, satisfying

ρηt � ρ
h

θ
+ 1

θ2
q · ∇θ. (2.11)

Then from (2.6)–(2.10), it follows that

ρ
(
et − Ft − θGt − γχ2

t

) − p

(
ρt

ρ
+ λρGt

)
− ν(χ)∇v·∇v −

(
c2(∇χ)2

2

)
t
= κ0
θ + ρr. (2.12)

Moreover, the second law (2.11) yields the inequality

ρθηt � ρet − P i
χ − P i

v + 1

θ
q·∇θ. (2.13)

Then, we obtain from (2.13)

ρ(ψθ + η)θt − ργχ2
t + ρ

(
ψχ − F ′ − θG ′)χt − p

(
ρt

ρ
+ λρĠ(χ)

)
− ν(χ)∇v·∇v + ρ(ψ∇χ − c2∇χ) · ∇χt − κ0

θ
|∇θ |2 � 0. (2.14)

First, we let

η = −ψθ , (2.15)
ρt

ρ
+ λρGt(χ) = 0 (2.16)

so that there exists a constant ρ0, which represents the water density, such that

ρ = ρ0

1 + λρ0G(χ)
. (2.17)

The density ρ is given by two contributions ρ0 and ρ1, such that

1

ρ
= 1

ρ0
+ 1

ρ1
(2.18)

where

1

ρ1
= λG(χ). (2.19)

Moreover, in (2.14) we consider

F ′ + θG ′ = ψχ, (2.20)

and

ψ∇χ = c2∇χ. (2.21)

At the end we get

ρ
(
eθ θt − θGt − γχ2

t

) − ν(χ)∇v·∇v −
(

c2(∇χ)2

2

)
t
= κ0
θ + ρr

from which we obtain the entropy equation

ρ

(
eθ

θ
θt − Gt − γ

θ
χ2

t

)
− ν

θ
(χ)∇v·∇v −

(
c2(∇χ)2

2θ

)
t
= κ0

θ

θ + ρ

r

θ
. (2.22)

The differential system which describes the ice–water phase transition is given by Eqs. (2.2), (2.4), (2.16), (2.22). In the
small perturbations framework, the terms of second order are disregarded. Then we obtain the following differential system
written in the domain Ω .
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0 = 1

ρ0
div(−p1 + Te) + b, (2.23)

c1χt = c2 div(∇χ) − F ′(χ) − (θ + λp)G ′(χ), (2.24)
eθ

θ
θt − Ġ(χ) = κ0

ρ0

 log θ + r

θ
. (2.25)

Note that in particular, by (2.18), ρ and ρ0 are related by the equation (see also (2.19))

1

ρ
− 1

ρ0
= λG(χ). (2.26)

Finally, accounting for a constraint on p ensuring that p � 0, we rewrite the continuity equation as follows

−div v + λρ0Gt(χ) + ∂ I[0,+∞)(p) � 0 (2.27)

where ∂ I[0,+∞)(p) is the empty set for p negative, ∂ I[0,+∞)(p) = 0 if p > 0 and ∂ I[0,+∞)(0) = (−∞,0]. This relationship
proves that ∂ I[0,+∞)(p) is not empty, thus that pressure p is non-negative. When pressure p is null, relationship (2.27)
gives a negative right-hand side for continuity equation (2.1). The quantity of mass present at a point decreases due to the
apparition of voids. This is the cavitation phenomenon in fluids.

The resulting system (2.22)–(2.27) is complemented with suitable initial and boundary conditions. More precisely, it is
assumed that a known traction t is applied on a part of the boundary, say Γ2, while no heat flux appears through the
boundary, i.e.

q · n = 0 on ∂Ω (2.28)

and

(Te − p1) · n = t on Γ2. (2.29)

Then, velocities are fixed to be zero on the remaining part of the boundary, say Γ1,

v = 0 on Γ1. (2.30)

Finally, for χ we assume, as usual, homogeneous Neumann boundary condition

∂nχ = 0 on ∂Ω. (2.31)

3. The variational formulation and main analytical results

In this section, we make precise the analytical problem we are dealing with and state our main results. We let Ω be
a bounded and smooth domain in R

3 and denote by Γ its boundary ∂Ω . We assume that Γ = Γ1 ∪ Γ2, the measure of
Γ1 being strictly positive. Hence, denoting by T a fixed final time, we investigate the evolution of the phenomenon we
are considering in the cylinder Q := Ω × (0, T ). Throughout the paper, given a Banach space X , we denote by X ′ 〈·,·〉X the
duality pairing between X ′ and X , and by ‖ · ‖X both the norm in X and in any power of it. Henceforth, we introduce the
Hilbert triplet

V ↪→ H ↪→ V ′, V := H1(Ω), H := L2(Ω),

H being identified as usual with its dual space. Then, let us take

W = {
v ∈ H1(Ω)3, v = 0 in Γ1

}
.

To write the abstract version of our problem, the following bounded operators are used

A : W → W ′, W ′ 〈Au,v〉W =
3∑

i, j=1

εi j(u)kijεi j(v), (3.1)

A : V → V ′, V ′ 〈Au, v〉V =
∫
Ω

∇u · ∇v. (3.2)

We recall that the viscosity matrix K = (kij) is symmetric and positive definite. Thus, the Poincaré inequality yields that
there exists C > 0 such that

W ′ 〈Au,u〉W � C‖u‖2 . (3.3)
W
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We introduce F , G : R → R such that

F , G ∈ C2(R), F � c∗, G � 0, (3.4)

F ′, G ′ � 0 in (−∞,χ∗), F ′, G ′ � 0 in
(
χ∗,+∞)

(3.5)

where c∗,χ∗,χ∗ ∈ R, χ∗ < χ∗ . In particular, [χ∗,χ∗] denotes the range of admissible values for the parameter χ .
Let us list assumptions on initial and boundary data. We have (here 0 < θ∗ < θ∗)

θΓ ∈ L2(0, T ; H1/2(Γ )
) ∩ H1(0, T ; H−1/2(Γ )

)
, θ∗ � θΓ � θ∗, (3.6)

θ0 ∈ H, ln θ0 ∈ H, (3.7)

χ0 ∈ V , χ0 ∈ [
χ∗,χ∗] a.e. in Ω. (3.8)

Hence, we introduce the harmonic extension of θΓ , defined for a.e. t by

θH (t) ∈ V , θH |Γ = θΓ , 
θH (t) = 0 in Ω. (3.9)

The general theory for harmonic functions and (3.6) ensure that

θH ∈ H1(0, T ; H) ∩ L2(0, T ; V ), θ∗ � θH � θ∗. (3.10)

As a consequence, it is a standard matter to infer that

ln θH ∈ L∞(Q ) ∩ H1(0, T ; H) ∩ L2(0, T ; V ). (3.11)

In addition, let

f ∈ L2(0, T ; W ′),
R ∈ L2(0, T ; H) (3.12)

with

W ′ 〈f,v〉W =
∫
Ω

b · v +
∫
Γ2

t · v.

Finally, we use the notation β : R → 2R for the subdifferential ∂ I[0,+∞) . Actually, we could extend our results to more
general graphs

β = ∂β̂, β̂ being a lower semicontinuous, convex, proper function,

dom β ⊆ [0,+∞), 0 ∈ β(0).

Remark 3.1. Note that, to ensure the physical constraint on the pressure p � 0, we have to require that the domain of the
operator β , acting on p, is included in [0,+∞).

Here is the problem we are dealing with.

Problem. Find (θ,χ,v, p) fulfilling for a.e. t ∈ [0, T ] the following system

χt + Aχ + F ′(χ) + G ′(χ)(θ + p) = 0 in V ′, (3.13)

A(v) + ∇p = f in W ′, (3.14)

−G ′(χ)χt + div v + β(p) � 0 a.e. in Ω, (3.15)

θt − G ′(χ)χt + A log θ = R in V ′
0,

ln θ = ln θΓ a.e. in Γ (3.16)

combined with initial conditions

χ(0) = χ0, θ(0) = θ0. (3.17)

In particular it is used the following notation

W ′ 〈∇p,v〉W = −
∫
Ω

p div v. (3.18)



566 E. Bonetti et al. / J. Math. Anal. Appl. 384 (2011) 561–577
The following existence result holds.

Theorem 3.2. Let (3.4), (3.6)–(3.8), and (3.12) hold. Then, there exist

θ ∈ H1(0, T ; V ′) ∩ L∞(0, T ; H), ln θ ∈ L2(0, T ; V ), (3.19)

χ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)
)
, (3.20)

v ∈ L2(0, T ; W ), (3.21)

p ∈ L2(0, T ; H) (3.22)

solving for a.e. t ∈ [0, T ] (3.13)–(3.16) combined with (3.17). In particular, (3.13) also holds a.e. in Ω .

Theorem 3.2 will be proved in the next sections. First, it is introduced an approximated system, regularizing nonlinear-
ities and adding some dissipative terms. Then, by use of the Schauder fixed point theorem, it is proved the existence of a
solution for the regularized system, at least locally in time. Hence, suitable a priori estimates allow us to extend the exis-
tence of a solution on the whole time interval [0, T ]. Finally, we pass to the limit (w.r.t. to the approximating parameter),
using a priori (uniform) estimates, compactness tools, and semicontinuity arguments.

Concerning the solutions to (3.13)–(3.16), exploiting a maximum principle argument, we can deduce that the χ -
component of the solution is uniformly bounded and belongs (see (3.8)) to [χ∗,χ∗] a.e. Let us point out that the physical
constraint on χ is not a priori ensured as an internal constraint but it results from the evolving of the solution itself, whose
existence is stated by Theorem 3.2.

Theorem 3.3. Under the same assumptions of Theorem 3.2, let (θ,χ, p,v) be a solution to (3.13)–(3.16), (3.17) given by Theorem 3.2.
Then, the following bound holds a.e. in Q

χ∗ � χ � χ∗. (3.23)

4. A maximum principle (proof of Theorem 3.3)

The prove of Theorem 3.3 is based on a maximum principle, following the argument presented in [5] for a different
model. However, for the sake of completeness we detail the proof, as some differences are introduced in our case.

A Lipschitz function H : R → R is fixed, sufficiently smooth (of class C1) and such that

H(x) = 0 if x ∈ [
χ∗,χ∗], H ′(x) > 0 otherwise. (4.1)

Then, let (θ,v,χ, p) be a solution to (3.13)–(3.16), (3.17) introduced by Theorem 3.2. As χ turns out to belong to
L∞(0, T ; V ) (cf. (3.20)) we are allowed to use as test function H(χ) in (3.13). After integrating over (0, t), we get

t∫
0

∫
Ω

χt H(χ) +
t∫

0

∫
Ω

∇χ · ∇H(χ) +
t∫

0

∫
Ω

(
F ′(χ) + G ′(χ)(θ + p)

)
H(χ) = 0. (4.2)

Denoting by Ĥ the primitive of H vanishing at χ∗ , integrating by parts in time and using (3.8), it is straightforward to
obtain

t∫
0

∫
Ω

χt H(χ) =
∫
Ω

Ĥ
(
χ(t)

) −
t∫

0

Ĥ(χ0) =
∫
Ω

Ĥ
(
χ(t)

)
� 0. (4.3)

Using the chain rule (cf. (4.1)) leads to

t∫
0

∫
Ω

∇χ · ∇H(χ) =
t∫

0

∫
Ω

H ′(χ)|∇χ |2 � 0. (4.4)

Analogously, the last integral is non-negative, i.e.

t∫
0

∫
Ω

(
F ′(χ) + G ′(χ)(θ + p)

)
H(χ) � 0. (4.5)

Indeed, F ′ , G ′ , and H have the same sign (cf. (3.4) and (4.1)) and θ > 0, p � 0. Let us point out that the positivity of θ and
p comes from the presence of the logarithm in (3.16) and the assumptions on the domain of the operator β . Therefore, all
the integrals in (4.2) vanish identically. In particular, we can deduce that Ĥ(χ(t)) = 0 a.e. in Ω , and for every t , so that
(3.23) follows.
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5. The approximated problem

In this section, we regularize system (3.13)–(3.16), approximating the nonlinearity β and adding some viscosity terms in
the equations. Let us fix an approximating parameter ε > 0. Then, we introduce the Moreau–Yosida approximation of the
operator β (cf. [1])

βε(w) := 1

ε

(
w − ρε(w)

)
,

where ρε : R → R is the ε-resolvent operator associated to β , defined for every w ∈ R as the unique solution of the
inclusion

ρε(w) − w + β
(
ρε(w)

) � 0.

In particular, βε is a Lipschitz continuous function. Then, we replace F and G by new functions, we still denote by F and G ,
such that in addition to (3.4) they satisfy

F ′, G ′ ∈ L∞(R). (5.1)

Let us point out that we are allowed to add the assumption (5.1) as, due to Theorem 3.3, a solution of the problem is such
that χ ∈ [χ∗,χ∗].

To write the approximated system, we introduce in addition

χ1ε ∈ H, v0ε ∈ W ∩ H2(Ω)3,

p0ε ∈ V , p0ε ∈ dom β a.e., (5.2)

such that

ε1/2‖χ1ε‖H → 0, ε1/2‖v0ε‖W → 0, ε1/2‖p0ε‖V → 0, (5.3)

as ε ↘ 0.
During this section, to simplify notation, we do not make precise the dependence on ε of the solutions (χ, θ,v, p). Here

is the PDE system we are dealing with in (0, T ),

εχtt + χt + εAχt + Aχ + F ′(χ) + G ′(χ)(θ + p) = 0 in V ′, (5.4)

εA(vt) + A(v) + ∇p = f in W ′, (5.5)

θt + ln θ − G ′(χ)χt = R in V ′
0, ln θ = ln θΓ a.e. in Q , (5.6)

ε(pt + Ap) + βε(p) = G ′(χ)χt − div v in V ′. (5.7)

Eqs. (5.4), (5.6) are combined with initial conditions (3.17) and

χt(0) = χ1ε, v(0) = v0ε, p(0) = p0ε. (5.8)

The following theorem is proved.

Theorem 5.1. Let ε > 0 and (3.4), (3.6)–(3.8), (3.12), and (5.1), (5.2), (5.3) hold. Then, there exists a solution (θ,χ,v, p) to (5.4)–(5.7)
combined with (3.17), (5.8).

Remark 5.2. Note that in the model proposed in [13] Eq. (5.7) is considered without the presence of the potential βε and
the term div v. In our case, after proving existence of a solution for the approximated parabolic equation, we can pass to
the limit as ε converging to 0.

5.1. A fixed point argument

To prove the existence of a solution for the approximated problem, we exploit a fixed point argument. Before proceeding
let us point out that in this section the symbol c is used to denote possibly different positive constants depending on the
data of the problem but also on ε. In particular, we use the notation c(M) to put in evidence the dependence of a constant
c on the constant M . Then, let us point out that we are proceeding with formal estimates. Our argument could be made
rigorous following the analogous procedure exploited in [3].

We first consider, for M > 0 and for a final time T̂ to be fixed later,

χ̂ ∈ H1(0, T̂ ; H), (5.9)

v̂ ∈ L2(0, T̂ ; W ), (5.10)
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such that

‖χ̂‖H1(0,T̂ ;H) + ‖̂v‖L2(0,T̂ ;W ) � M. (5.11)

First step. We first fix χ̂ and v̂ in (5.7) in place of χ and v, and state Cauchy condition (5.8). Then, by monotonicity of βε

and fairly standard results for parabolic equations (note that the right-hand side of (5.7) belongs to L2(0, T̂ ; H)) there exists
a unique solution p = T1(χ̂ , v̂). Formally testing the resulting equation by pt and integrating over (0, t) lead to

ε‖pt‖2
L2(0,t;H)

+ ε

2

∥∥∇p(t)
∥∥2

H − ε

2
‖∇p0ε‖2

H +
t∫

0

∫
Ω

βε(p)pt �
t∫

0

∥∥G ′∥∥∞‖χ̂t‖H‖p‖H + c

t∫
0

‖̂v‖W ‖p‖H . (5.12)

Then, by the chain rule

t∫
0

∫
Ω

βε(p)pt =
∫
Ω

β̂ε

(
p(t)

) −
∫
Ω

β̂ε(p0ε), (5.13)

where βε = ∂β̂ε . Note that, by definition of the Yosida regularization of β (see [1]) there holds 0 � β̂ε(x) � β̂(x) for any x
belonging to the closure of dom(β). Thus, exploiting the Gronwall lemma and by virtue of (5.11), we are able to deduce
that

‖p‖2
H1(0,T̂ ;H)∩L∞(0,T̂ ;V )

� c(M), (5.14)

and, secondly, by a comparison in (5.7) and recalling that βε is Lipschitz continuous

‖p‖L2(0,T̂ ;H2(Ω)) � c. (5.15)

Note that in order to apply the Gronwall lemma to (5.12) and to deduce (5.14), the following standard inequality is used

∥∥p(t)
∥∥

L∞(0,t;H)
�

t∫
0

‖pt‖H .

Second step. We fix χ̂ in (5.6) in place of χ . Using the results by [5], we can infer that there exists a unique solution θ =
T2(χ̂ ) for the resulting equation, combined with (3.17). Note in particular that G ′(χ̂ )χt + R in (5.6) belongs to L2(0, T̂ ; H)

due to (3.12), (5.9), and (5.1). Then, we test by (θ − θH ) + (ln θ − ln θH ) and integrate over (0, t).
In the following, we will argue formally. To make our argument rigorous, we should proceed as in [5] and regularize the

logarithm by a function Lnε : R → R defined as follows

Lnεr := εr + lnε r, lnε being the Moreau–Yosida regularization of ln . (5.16)

Then, owing to the fact that a priori bounds can be proved on Lnε independently of ε one can pass to the limit (see [3]).
Integrating by parts in time, there holds

1

2

∥∥θ(t) − θH (t)
∥∥2

H − 1

2

∥∥θ0 − θH (0)
∥∥2

H +
t∫

0

∫
Ω

∇ ln θ · ∇θ +
t∫

0

∫
Ω

θt ln θ +
t∫

0

∫
Ω

∣∣∇(ln θ − ln θH )
∣∣2

�
t∫

0

(∥∥G ′∥∥∞‖χ̂t‖H + ‖R‖H
)‖θ − θH‖H +

t∫
0

(∥∥G ′∥∥∞‖χ̂t‖H + ‖R‖H
)‖ln θ − ln θH‖H −

t∫
0

∫
Ω

θHt(θ − θH )

+
t∫

0

∫
Ω

θt ln θH +
t∫

0

∫
Ω

∣∣∇ ln θH · ∇(ln θ − ln θH )
∣∣ +

t∫
0

∫
Ω

|∇ ln θ · ∇θH |. (5.17)

We first observe that, formally,

t∫
0

∫
Ω

∇ ln θ · ∇θ =
t∫

0

∫
Ω

|∇θ |2
θ

= 4

t∫
0

∫
Ω

∣∣∇θ1/2
∣∣2

. (5.18)

Then, using the chain rule, after introducing Ln(r) := ∫ r ln(s)ds, we get
1
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t∫
0

∫
Ω

θt ln θ =
∫
Ω

Ln
(
θ(t)

) −
∫
Ω

Ln(θ0) �
∫
Ω

Ln
(
θ(t)

) − c, (5.19)

where Ln turns out to be convex and bounded from below. Hence, let us handle the integrals on the right-hand side
of (5.17). We first observe that (‖G ′‖∞‖χ̂t‖H + ‖R‖H ) belongs to L2(0, T̂ ) (see (5.9), (5.1), and (3.12)). Then, the Young
inequality is used to deal with

t∫
0

(∥∥G ′∥∥∞‖χ̂t‖H + ‖R‖H
)‖ln θ − ln θH‖H � 1

8

t∫
0

‖ln θ − ln θH‖2
H + c

( t∫
0

∥∥G ′∥∥2
∞‖χ̂t‖2

H + ‖R‖2
H

)

� 1

8

t∫
0

‖ln θ − ln θH‖2
H + c. (5.20)

The next integral is bounded as follows (cf. (3.10))

−
t∫

0

∫
Ω

θHt(θ − θH ) � c‖θH‖2
H1(0,T ;H)

+
t∫

0

‖θ − θH‖2
H . (5.21)

Integrating by parts we infer that (cf. (3.10)–(3.11) and (3.7))

t∫
0

∫
Ω

θt ln θH =
∫
Ω

(θ − θH )t ln θH +
t∫

0

∫
Ω

θHt ln θH

=
∫
Ω

(θ − θH )(t) ln θH (t) −
∫
Ω

(θ − θH )(0) ln θH (0) −
t∫

0

∫
Ω

(θ − θH )∂t ln θH +
t∫

0

∫
Ω

θHt ln θH

� 1

8

∫
Ω

∣∣(θ − θH )(t)
∣∣2 + c

t∫
0

∫
Ω

|θ − θH |2 + c

∫
Ω

∣∣ln θH (t)
∣∣2

+ c

t∫
0

∫
Ω

(|∂t ln θH |2 + |ln θH |2 + ‖∂tθH‖2
H

) + c

� 1

8

∫
Ω

∣∣(θ − θH )(t)
∣∣2 + c

t∫
0

∫
Ω

|θ − θH |2 + c. (5.22)

Analogously, using (3.10), (3.11), and the Young inequality we have

t∫
0

∫
Ω

|∇ ln θ · ∇θH | �
t∫

0

∫
Ω

∣∣∇(ln θ − ln θH ) · ∇θH
∣∣ + |∇ ln θH · ∇θH |

� 1

8

t∫
0

∫
Ω

∣∣∇(ln θ − ln θH )
∣∣2 + c

t∫
0

∫
Ω

|∇θH |2 + c

t∫
0

∫
Ω

|∇ ln θH |2

� 1

8

t∫
0

∫
Ω

∣∣∇(ln θ − ln θH )
∣∣2 + c. (5.23)

Moreover, it is now easy to verify that

t∫
0

∫
Ω

|∇ ln θH |∣∣∇(ln θ − ln θH )
∣∣ � 1

8

t∫
0

∫
Ω

∣∣∇(ln θ − ln θH )
∣∣2 + c. (5.24)

Combining in (5.17) the above estimates, we can apply the Gronwall lemma and the Poincaré inequality to yield
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∥∥∇θ1/2
∥∥

L2(0,T̂ ;H)
+ ‖θ − θH‖L∞(0,T̂ ;H) + ‖ln θ − ln θH‖L2(0,T̂ ;V ) � c(M) (5.25)

so that by (3.10)–(3.11)

‖θ‖L∞(0,T̂ ;H) + ‖ln θ‖L2(0,T̂ ;V ) � c(M). (5.26)

Hence, after observing that

∇θ = 2θ1/2∇θ1/2,

from (5.25) and (5.26) we can deduce

‖∇θ‖L2(0,T̂ ;L4/3(Ω)) � c(M).

Eventually (cf. (5.26)), also due to a comparison in (5.6), it follows

‖θ‖H1(0,T̂ ;V ′
0)∩L∞(0,T̂ ;H)∩L2(0,T ;W 1,4/3(Ω)) + ‖ln θ‖L2(0,T̂ ;V ) � c(M). (5.27)

Third step. Fix p = T1(χ̂ , v̂) (see (5.14) and (5.15)) in (5.5) and find the unique v = T3(p) solving the resulting equation
with (5.8). The existence of such a solution is a standard result in the theory of parabolic equation. Note that, testing by vt ,
and integrating over (0, t) we are able to infer that

1

2
‖vt‖2

L2(0,t;W )
+ 1

2

∥∥v(t)
∥∥2

W � 1

2
‖v0ε‖W + c

(‖f‖2
L2(0,t;W ′) + ‖p‖2

L2(0,t;H)

)
� c

(
1 + ‖χ̂t‖2

L2(0,T̂ ;H)
+ ‖̂v‖2

L2(0,T̂ ;W )

)
� c(M). (5.28)

Note that in (5.28) we have in particular used the Young inequality. Hence, testing formally by Av and integrating over
(0, t) it is now a standard matter to eventually deduce (cf. (5.2))

‖v‖H1(0,T ;W )∩L∞(0,T ;H2(Ω)3∩W ) � c. (5.29)

Fourth step. Finally, fixing θ (cf. (5.27)) and p (cf. (5.14)–(5.15)) in (5.4) there exists a unique corresponding solution χ =
T4(θ, p). Testing the resulting equation by χt and integrating over (0, t) we can deduce

ε

2

∥∥χt(t)
∥∥2

H − ε

2
‖χ1ε‖2

H + ε‖χt‖2
L2(0,t;V )

+ 1

2

∥∥∇χ(t)
∥∥2

H − 1

2
‖∇χ0‖2

H

�
t∫

0

∫
Ω

∣∣F ′(χ)
∣∣|χt | +

t∫
0

∫
Ω

∣∣G ′(χ)
∣∣|θ ||χt | +

t∫
0

∫
Ω

∣∣G ′(χ)
∣∣|p||χt |

� c

( t∫
0

‖χt‖H +
t∫

0

‖θ‖H‖χt‖H +
t∫

0

‖p‖H‖χt‖H

)
(5.30)

(here c depends in particular on ‖F ′‖∞ and ‖G ′‖∞). Thus, the Gronwall lemma and (5.27) and (5.14) lead to

‖χt‖L∞(0,T̂ ;H) + ‖χt‖L2(0,T̂ ;V ) � c(M), (5.31)

and by a comparison in (5.4)

‖χ‖H2(0,T̂ ;V ′) � c. (5.32)

5.2. The operator T

We define the operator T as follows. Fixing (χ̂ , v̂) as in (5.9)–(5.10) and (5.11), we let

(χ,v) = T (χ̂ , v̂) = (
T4

(
T2(χ̂ )

)
, T3

(
T1(χ̂ , v̂)

))
,

where Ti are defined by the above detailed constructing procedure. Note that a fixed point for T should provide a solution
for our problem. Hence, (5.31) leads to

‖χ‖H1(0,T̂ ;H) � T̂ 1/2‖χ‖W 1,∞(0,T̂ ;H) � T̂ 1/2c(M), (5.33)

and analogously (cf. (5.28))

‖v‖L2(0,T ;W ) � T̂ 1/2‖v‖ ∞ ̂ � T̂ 1/2c(M). (5.34)
L (0,T ;W )
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In particular, by choosing T̂ sufficiently small it is ensured that (χ,v) = T (χ̂ , v̂) satisfies (5.11), i.e.

‖χ‖H1(0,T̂ ;H) + ‖v‖L2(0,T ;W ) � M. (5.35)

Hence, to apply the Schauder theorem it remains to prove that T is compact and continuous with respect to the topology
of H1(0, T̂ ; H) × L2(0, T̂ ; W ). The fact that T is compact follows from (5.31)–(5.32) and (5.28)–(5.29). To prove that T is
continuous, let us take (χ̂n, v̂n) satisfying (5.9), (5.10), (5.11), such that

χ̂n → χ̂ , v̂n → v̂,

strongly in the topology of H1(0, T̂ ; H) × L2(0, T̂ ; W ), and show that the analogous convergence is ensured for the corre-
sponding T (χ̂n, v̂n) = (χn,vn). We denote by pn, θn,χn,vn the solution obtained in the procedure of the construction of the
operator T , once (χ̂n, v̂n) is fixed. Proceeding as above (cf. (5.14)–(5.15), (5.27), (5.29), (5.31)–(5.32)) we can deduce that
the following estimates hold independently of n

‖pn‖H1(0,T̂ ;H)∩L∞(0,T̂ ;V )∩L2(0,T̂ ;H2(Ω)) + ‖θn‖H1(0,T̂ ;V ′
0)∩L∞(0,T̂ ;H)∩L2(0,T̂ ;W 1,4/3(Ω)) + ‖ln θn‖L2(0,T̂ ;V )

+ ‖vn‖H1(0,T̂ ;W )∩L∞(0,T ;(W ∩H2(Ω))3) + ‖χn‖H2(0,T̂ ;V ′)∩H1(0,T̂ ;V )∩W 1,∞(0,T̂ ;H) � c. (5.36)

Thus, using weak and weak star compactness results, we infer that, at least for some subsequences still denoted by the
index n for the sake of simplicity,

pn → p weakly star in H1(0, T̂ ; H) ∩ L∞(0, T̂ ; V ) ∩ L2(0, T̂ ; H2(Ω)
)
, (5.37)

θn → θ weakly star in H1(0, T̂ ; V ′
0

) ∩ L∞(0, T̂ ; H) ∩ L2(0, T̂ ; W 1,4/3(Ω)
)
, (5.38)

ln θn → η weakly in L2(0, T̂ ; V ), (5.39)

vn → v weakly star in H1(0, T̂ ; W ) ∩ L2(0, T̂ ; (W ∩ H2(Ω)
)3)

, (5.40)

χn → χ weakly star in H2(0, T̂ ; V ′) ∩ H1(0, T̂ ; V ) ∩ W 1,∞(0, T̂ ; H). (5.41)

Hence, strong compactness theorems ensure, in particular, that

pn → p strongly in C0([0, T̂ ]; H
)
, (5.42)

θn → θ strongly in L2(0, T ; H) ∩ C0([0, T̂ ]; V
)
, (5.43)

χn → χ strongly in H1(0, T̂ ; H) ∩ W 1,∞(
0, T̂ ; V ′), (5.44)

vn → v strongly in L2(0, T ; W ). (5.45)

The above convergences allow us to pass to the limit in the equations (written for the index n) and prove that, at the limit
n → +∞, (χ,v) = T (χ̂ , v̂), concluding the proof of the continuity of T , as (5.44)–(5.45) hold. In particular, let us briefly
comment about the identification of nonlinear terms in the passage to the limit procedure. Due to (5.39) and (5.43) we can
identify ln θ = η (as the logarithm is monotone). Hence, due to (5.44) we can prove also that F ′(χn) and G ′(χn) strongly
converge to F ′(χ) and G ′(χ), respectively, e.g. in L2(0, T̂ ; H) (see (3.4) and (5.1)). Finally, also for βε we can pass to the
limit exploiting (5.42) and the regularity of βε .

6. The existence result

The existence result stated by Theorem 3.2 is proved passing to the limit as ε ↘ 0 in the approximated system (5.4)–(5.7).
We first proceed by performing a priori estimates on the approximated solutions independently of ε and then passing to
the limit by compactness and semicontinuity arguments. Analogous estimates actually allow us to extend the solution to
the whole interval (0, T ), as they do not depend on T̂ but just on the final time. Thus, we will avoid to repeat the procedure
and, formally, we directly write all the estimates and the passage to the limit procedure on the whole time interval (0, T ).
Finally, let us point out that in the sequel we denote by c possibly different positive constants not depending on ε.

6.1. A priori estimates

First a priori estimate. We test (5.4) by χt , (5.5) by v, (5.7) by p, and (5.6) by (θ −θH)+δ(ln θ − ln θH ) (δ > 0 to be fixed later).
Then, we integrate over (0, t) and add the resulting equations. Observing that some terms cancel we get (cf. in particular
(5.19))
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ε

2

∥∥χt(t)
∥∥2

H − ε

2

∥∥χt(0)
∥∥2

H + ε

t∫
0

‖∇χt‖2
H +

t∫
0

‖χt‖2
H + 1

2

∥∥∇χ(t)
∥∥2

H − 1

2
‖∇χ0‖2

H +
t∫

0

∫
Ω

F ′(χ)χt + ε

2

∥∥v(t)
∥∥2

W

− ε

2

∥∥v(0)
∥∥2

W +
t∫

0

‖v‖2
W + ε

2

∥∥p(t)
∥∥2

H − ε

2
‖p0ε‖2

H + ε

t∫
0

‖∇p‖2
H + 1

2

∥∥(θ − θH )(t)
∥∥2

H − 1

2

∥∥(θ − θH )(0)
∥∥2

H

+
t∫

0

∫
Ω

G ′(χ)χtθH +
t∫

0

∫
Ω

|∇θ |2
θ

−
t∫

0

∫
Ω

∇ ln θ · ∇θH +
t∫

0

∫
Ω

∂tθH (θ − θH ) + δ

∫
Ω

(
Ln

(
θ(t)

) − Ln
(
θ(0)

))

+ δ

t∫
0

∥∥∇(ln θ − ln θH )
∥∥2

H − δ

t∫
0

∫
Ω

G ′(χ)χt(ln θ − ln θH ) − δ

t∫
0

∫
Ω

θt ln θH − δ

t∫
0

∫
Ω

∇ ln θH · ∇(ln θ − ln θH )

� c

( t∫
0

‖R‖H
(‖θ − θH‖H + δ‖ln θ − ln θH‖H

) +
t∫

0

‖f‖W ′ ‖v‖W

)
. (6.1)

In particular, we have exploited the fact that

t∫
0

∫
Ω

βε(p)p � 0.

We first infer that (cf. (3.10))∣∣∣∣∣
t∫

0

∫
Ω

G ′(χ)χtθH

∣∣∣∣∣ �
t∫

0

∥∥G ′∥∥
L∞‖θH‖H‖χt‖H

� 1

8

t∫
0

‖χt‖2
H + c‖θH‖2

L2(0,T ;H)
. (6.2)

Then, analogously proceeding as in (5.23), we obtain (cf. (3.11))∣∣∣∣∣
t∫

0

∫
Ω

∇ ln θ · ∇θH

∣∣∣∣∣ � δ

8

t∫
0

∥∥∇(ln θ − ln θH )
∥∥2

H + c
(‖θH‖2

L2(0,T ;V )
+ ‖ln θH‖2

L2(0,T ;V )

)
. (6.3)

Hence, we proceed as follows∣∣∣∣∣
t∫

0

∫
Ω

∂tθH (θ − θH )

∣∣∣∣∣ �
t∫

0

‖∂tθH‖H‖θ − θH‖H

� c

t∫
0

‖θ − θH‖2
H + c‖θH‖2

H1(0,T ;H)
, (6.4)

and (also exploiting Poincaré’s inequality with constant C(Ω))

δ

∣∣∣∣∣
t∫

0

∫
Ω

G ′(χ)χt(ln θ − ln θH )

∣∣∣∣∣ � δ

t∫
0

∥∥G ′∥∥
L∞‖χt‖H‖ln θ − ln θH‖H

� δ

8

∥∥∇(ln θ − ln θH )
∥∥2

H + 2δC(Ω)2
∥∥G ′∥∥2

L∞

t∫
‖χt‖2

H . (6.5)
0
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Following the argument used in (5.22) we get

δ

∣∣∣∣∣
t∫

0

∫
Ω

θt ln θH

∣∣∣∣∣ � 1

8

∥∥(θ − θH )(t)
∥∥2

H + c
(‖θ − θH‖2

L2(0,t;H)
+ ‖ln θH‖2

H1(0,T ;H)
+ ‖θH‖2

H1(0,T ;H)
+ 1

)
. (6.6)

Finally, we handle with the last integral∣∣∣∣∣δ
t∫

0

∫
Ω

∇ ln θH · ∇(ln θ − ln θH )

∣∣∣∣∣ � δ

8

t∫
0

∥∥∇(ln θ − ln θH )
∥∥2

H + c‖ln θH‖2
L2(0,T ;V )

. (6.7)

After recalling that (3.10)–(3.11) and (3.12), (5.2), (5.3) hold, choosing δ sufficiently small, and applying the Young inequality,
we can infer that

‖χt‖2
L2(0,t;H)

+ ∥∥∇χ(t)
∥∥2

H + ‖v‖2
L2(0,t;W )

+ ∥∥(θ − θH )(t)
∥∥2

H + ‖ln θ − ln θH‖2
L2(0,t;V 0)

+ ∥∥∇θ1/2
∥∥2

L2(0,t;H)

+ ε
(∥∥χt(t)

∥∥2
H + ‖∇χt‖2

L2(0,t;H)
+ ∥∥p(t)

∥∥2
H + ‖∇p‖2

L2(0,t;V )
+ ‖vt‖2

L2(0,t;W )

)
� c

(
1 + ‖θ − θH‖2

L2(0,t;H)

)
. (6.8)

Eventually, the Gronwall lemma ensures that

‖χ‖H1(0,T ;H)∩L∞(0,T ;V ) � c, (6.9)

‖v‖L2(0,T ;W ) � c, (6.10)

‖θ − θH‖L∞(0,T ;H) � c, (6.11)

‖ln θ − ln θH‖L2(0,T ;V 0) � c, (6.12)∥∥∇θ1/2
∥∥

L2(0,T ;H)
� c, (6.13)

ε1/2(‖χt‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖p‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖v‖L∞(0,T ;W )

)
� c. (6.14)

In addition, by a comparison we can deduce that

‖θt‖L2(0,T ;V ′) � c. (6.15)

Now, (3.10), (3.11), (6.12), and (6.15) yield

‖θ‖H1(0,T ;V ′)∩L∞(0,T ;H) � c, (6.16)

‖ln θ‖L2(0,T ;V ) � c. (6.17)

Second a priori estimate. Recalling that ∇θ = 2θ1/2∇θ1/2, (6.16) and (6.13) entail

‖θ‖L2(0,T ;W 1,4/3(Ω)) � c. (6.18)

Third a priori estimate. By a comparison in (5.5) we deduce that (cf. (6.10), (6.14))

‖∇p‖L2(0,T ;W ′) � c. (6.19)

It follows that for any u ∈ W there holds∣∣∣∣∣
t∫

0

∫
Ω

p div u

∣∣∣∣∣ � c. (6.20)

Hence, we choose v∗ ∈ W such that (cf. Remark 6.1)∫
Ω

div v∗ =
∫
Γ

v∗ · n �= 0, (6.21)

and introduce a seminorm in H defined by

m(v) =
∫

v div v∗. (6.22)
Ω
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In particular, let us point out that m is a norm for constant functions. Moreover, there holds

m(p) � c, (6.23)

due to (6.20). Now, we are in the position of applying the result by [20] leading to

‖φ‖H � c(Ω)
(
m(φ) + ‖∇φ‖W ′

)
,

for any φ ∈ H with ∇φ ∈ W ′ . In particular, owing to (6.22) and (6.23), the following bound for the pressure p follows

‖p‖L2(0,T ;H) � c. (6.24)

Remark 6.1. Let us now make precise how to construct v∗ as in (6.21). We follow the argument introduced in [12]. Assuming
that Ω is regular (e.g. Lipschitz) one can take for x ∈ Γ2 the ball Bε(x) centered in x with radius ε, such that Bε(x) ∩ Γ1 is
empty. Then, considering the Lipschitz parametrization (x1, x2) → (x1, x2, φ(x1, x2)). The associated normal vector is

n = (∂x1φ,−∂x2φ,1)

(1 + |∇φ|2)1/2
.

Then, take

v∗ = (0,0, η)

without η(y) = exp(− 1

1− |x−y|2
ε2

) if |x − y| � ε, and 0 otherwise. It results that v∗ ∈ W . In addition, it is proved that

1

(1 + |∇φ|2)1/2
� 1

(1 + L2)1/2
,

where L is the Lipschitz constant associated to φ. It follows∫
Ω

div v∗ =
∫
Γ2

v∗ · n =
∫

Γ2∩Bε(x)

η

(1 + |∇φ|2)1/2
�= 0.

Remark 6.2. Note that in the case of a model assuming Dirichlet boundary condition for the velocity v on the whole
boundary Γ (taking e.g. v = 0 on Γ ), from (6.19) we could deduce just that p is bounded in a quotient space, i.e. in L2

modulus constant functions.

Fourth estimate. We test (5.7) by ξ = βε(χ) and integrate over (0, t). By monotonicity of βε and its definition (recalling that
β = ∂ I[0,+∞)), also integrating by parts, we get

ε

t∫
0

〈Ap, ξ〉 + ε

t∫
0

∫
Ω

ptξ � 0. (6.25)

Hence, exploiting the Young inequality and (6.9), (6.10) we get

‖ξ‖L2(0,T ;H) � c. (6.26)

6.2. Passage to the limit

This section is devoted to the passage to the limit in (5.4)–(5.7) as ε ↘ 0. Note that here we explicitely write the
dependence on ε of the solutions (θε,χε, pε,vε). Owing to (6.9), (6.10), (6.19), (6.16), (6.17), and (6.18) we can apply
well-known weak and weak star compactness results to deduce the following convergences (at least holding for some
subsequences still denoted by the index ε)

θε → θ weakly star in H1(0, T ; V ′
0

) ∩ L∞(0, T ; H) ∩ L2(0, T ; W 1,4/3(Ω)
)
, (6.27)

ln θε → η weakly in L2(0, T ; V ), (6.28)

pε → p weakly in L2(0, T ; H), (6.29)

vε → v weakly in L2(0, T ; W ), (6.30)

χε → χ weakly star in H1(0, T ; H) ∩ L∞(0, T ; V ). (6.31)
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Hence, by virtue of (6.14) it is proved

εχεt → 0 strongly in L2(0, T ; V ) ∩ L∞(0, T ; H), (6.32)

εvε → 0 strongly in L∞(0, T ; W ), (6.33)

εpε → 0 strongly in L2(0, T ; V ) ∩ L∞(0, T ; H). (6.34)

Note that by a comparison in the equations there holds

ε
(‖χεtt‖L2(0,T ;V ′) + ‖Avεt‖L2(0,T ;W ′) + ‖pt‖L2(0,T ;V ′)

)
� c, (6.35)

independently of ε. Thus, using (6.32)–(6.34), we deduce

εχεtt → 0 weakly in L2(0, T ; V ′), (6.36)

εAvεt → 0 weakly in L2(0, T ; W ′), (6.37)

εpεt → 0 weakly in L2(0, T ; V ′). (6.38)

Actually, note that also the following strong convergences hold due to (6.32) and (6.34)

εAχεt → 0 strongly in L2(0, T ; V ′), (6.39)

εApε → 0 strongly in L2(0, T ; V ′). (6.40)

Moreover, owing to (6.26) there holds (recall that ξε = βε(pε))

ξε → ξ weakly in L2(0, T ; H). (6.41)

In addition, by strong compactness (cf. [19]) (6.27) and (6.31) lead to

θε → θ strongly in L2(0, T ; H) ∩ C0([0, T ]; V ′
0

)
, (6.42)

χε → χ strongly in C0([0, T ]; H
)
. (6.43)

Thus, combining (6.13), (6.16) with (6.42) (implying in particular that, at least for some subsequence, θε a.e. converges to θ ,
and thus θ

1/2
ε ), we also deduce

θ
1/2
ε → θ1/2 weakly in L2(0, T ; V ). (6.44)

Now, exploiting the above convergences we can pass to the limit (weakly) in (5.4)–(5.7).
We first deal with (5.4) observing that (6.43) and (5.1), (3.4) imply (at least for some subsequence)

F ′(χε) → F ′(χ), G ′(χε) → G ′(χ) strongly in Lp(
Ω × (0, T )

)
, p < +∞. (6.45)

Thus, we are able to pass to the limit in (5.4) by (6.31), (6.36), (6.39), (6.42), and (6.45) getting at the limit (3.13). Hence, to
show that (3.20) holds and (3.13) is solved a.e. we formally proceed by testing (3.13) by Aχ . After integrating over (0, t), it
is now a standard matter to get Aχ bounded in L2(0, T ; H), from which the result easily follows.

Hence, (6.33), (6.37), and (6.29) entail that we can pass to the limit weakly in (5.5) in W ′ to get (3.14).
Eq. (3.16) is obtained passing to the weak limit in V ′

0 in (5.6) making use of (6.27), (6.28), (6.45), (6.31), and (6.30). Then,
to identify η in (6.28) with ln θ , we exploit a semicontinuity argument (cf. [1]), as the logarithm is monotone and (6.42)
and (6.28) hold.

Finally, we deal with (5.7) to get at the limit (3.15). Due to (6.30), (6.31), (6.45), (6.38), (6.41), and (6.40) and passing to
the limit in (5.7) we eventually write

ξ = G ′(χ)χt − div v, (6.46)

in which it remains to identify ξ ∈ β(p). Exploiting the monotonicity of β and (6.41), (6.29), we proceed by semicontinuity
showing that

lim sup
ε↘0

t∫
0

∫
Ω

ξε pε �
t∫

0

∫
Ω

ξ p. (6.47)

Testing (5.7) by pε and integrating over (0, t) yields
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lim sup
ε↘0

t∫
0

∫
Ω

ξε pε = lim sup
ε↘0

−ε

2

∥∥pε(t)
∥∥2

H + ε

2

∥∥pε(0)
∥∥2

H − ε

t∫
0

∫
Ω

|∇pε|2

+
t∫

0

∫
Ω

G ′(χε)χεt pε −
t∫

0

∫
Ω

div vε pε. (6.48)

We first point out that (5.3) and (6.14) imply that

lim sup
ε↘0

−ε

2

∥∥pε(t)
∥∥2

H + ε

2

∥∥pε(0)
∥∥2

H − ε

t∫
0

∫
Ω

|∇pε|2 � 0. (6.49)

Now, we have to deal with lim supε↘0
∫ t

0

∫
Ω

G ′(χε)χεt − ∫ t
0

∫
Ω

div vε pε . To this aim we test (5.4) by χεt , (5.5) by vε , (5.6)
by θε , and then combine the resulting equations integrating in time. Thus, we can rewrite

lim sup
ε↘0

t∫
0

∫
Ω

G ′(χε)χεt pε −
t∫

0

∫
Ω

div vε pε

= lim sup
ε↘0

−ε

t∫
0

∫
Ω

χεttχεt − ε

t∫
0

∫
Ω

|∇χεt |2 −
t∫

0

∫
Ω

|χεt |2 − 1

2

∥∥∇χε(t)
∥∥2

H + 1

2

∥∥∇χε(0)
∥∥2

H −
t∫

0

∫
Ω

F ′(χε)χεt

− 1

2

∥∥θε(t)
∥∥2

H + 1

2

∥∥θ(0)
∥∥2

H −
t∫

0

∫
Ω

∣∣∇θ
1/2
ε

∣∣2 +
t∫

0

∫
Ω

Rθε +
t∫

0

W ′ 〈f,vε〉W −
t∫

0

∫
Ω

|∇vε|2

− ε

2

∥∥∇vε(t)
∥∥2

H + ε

2

∥∥∇vε(0)
∥∥2

H . (6.50)

Let us deal with the right-hand side of (6.48). We first observe that due to (5.3) and integrating by parts in time, we have

lim sup
ε↘0

−ε

t∫
0

∫
Ω

χεttχεt = lim sup
ε↘0

−ε

2

(∥∥χεt(t)
∥∥2

H − ‖χ1ε‖2
H

)
� 0. (6.51)

Then, we have

lim sup
ε↘0

−ε

t∫
0

∫
Ω

|∇χεt |2 � 0, (6.52)

and analogously (cf. also (5.3))

lim sup
ε↘0

−ε

2

∫
Ω

∣∣∇vε(t)
∣∣2 + ε

2

∫
Ω

∣∣∇v(0)
∣∣2 � 0. (6.53)

By weak convergence and lower semicontinuity results (see (6.31)) it follows

lim sup
ε↘0

−
t∫

0

∫
Ω

|χεt |2 = − lim inf
ε↘0

t∫
0

∫
Ω

|χεt |2

� −
t∫

0

∫
Ω

|χt |2, (6.54)

and

lim sup
ε↘0

−1

2

∫ ∣∣∇χε(t)
∣∣2 = −1

2
lim inf
ε↘0

∫ ∣∣∇χε(t)
∣∣2 � −1

2

∫ ∣∣∇χ(t)
∣∣2

. (6.55)
Ω Ω Ω
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Combining (6.31) and (6.45) yields

lim
ε↘0

−
t∫

0

∫
Ω

F ′(χε)χεt = −
t∫

0

∫
Ω

F ′(χ)χt . (6.56)

Hence, by lower semicontinuity (6.27) and (6.44) lead to

lim sup
ε↘0

−1

2

∫
Ω

∣∣θε(t)
∣∣2 � −1

2

∫
Ω

∣∣θ(t)
∣∣2

, (6.57)

and

lim sup
ε↘0

−
t∫

0

∫
Ω

∣∣∇θ
1/2
ε

∣∣2 � −
t∫

0

∫
Ω

∣∣∇θ1/2
∣∣2

. (6.58)

Analogously, (6.30) implies

lim sup
ε↘0

−
t∫

0

∫
Ω

|∇vε|2 � −
t∫

0

∫
Ω

|∇v|2. (6.59)

Finally, (6.27) and (6.30) give

lim
ε↘0

t∫
0

∫
Ω

Rθε +W ′ 〈f,vε〉W =
t∫

0

∫
Ω

Rθ +W ′ 〈f,v〉W . (6.60)

Eventually, combining (6.48)–(6.60), (6.47) follows from which we can identify ξ ∈ β(p), concluding our passage to the limit
procedure and the proof of Theorem 3.2.

Remark 6.3. As far as uniqueness, this is not expected as the pressure is not uniquely determined during the evolution. Note
that in the case of a phase transition in which the pressure is known the reader may refer to the uniqueness result proved
in [5] for a PDE system coupling (3.13), without the term G ′(χ)p, and (3.16).
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