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Let 7 be the set of vertices of a convex non-degenerate polyhedron in Rn, n�2.
We suggest an algorithm to construct smooth convex algebraic hypersurfaces of
degree as small as possible, going through 7. � 1997 Academic Press

INTRODUCTION

The standard algebraic interpolation problem in Rn is to find an
algebraic hypersurface of degree as small as possible, passing through a
given finite set 7. The convex algebraic interpolation problem is: Given a
finite set 7/Rn in convex position, we look for a smooth convex algebraic
hypersurface of degree as small as possible, going through 7. A Hermite-
type convex algebraic interpolation problem is to find a smooth convex
algebraic hypersurface, going through 7 and tangent at 7 to given hyper-
planes. A modification of this problem��interpolation by convex piecewise
algebraic curves and surfaces��was treated in [2�6, 11]. In [8] a solution
to the convex algebraic interpolation problem in R2 is presented: namely,
a family of convex curves of degree [(m+1)�2], going through all vertices
of a convex m-gon, is constructed. This algorithm gives a solution to the
Hermite-type convex algebraic interpolation problem in R2 as well, but in
general does not work for higher dimensions.

In the present paper we suggest an approach to both ordinary and
Hermite-type convex algebraic interpolation problems in any dimension
n�2 using hyperbolic hypersurfaces. The advantage is that, given a real
polynomial of degree >2, it is hard to check whether the polynomial defines
a convex hypersurface or a hypersurface with a convex connected compo-
nent (see Section 2 below) and the hyperbolicity is a well-controllable
property. An explicit equation of convex hypersurfaces that we construct
below can be found from some systems of non-linear equations which have
a simple linear approximation.
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I am very grateful to Professor D. Levin for introducing to the subject
and inspiring this work and to Professor N. Alon for helpful discussions.
I thank the referee for his useful remarks and suggestions.

Throughout the article we number statements and equations separately.

1. FORMULATION OF RESULTS

To simplify the notation in the following we denote an algebraic hyper-
surface and a polynomial, defining it by the same symbol.

A finite set 7/Rn is called convexly located if no point of 7 belongs to
the convex hull of the other points. The convex hull C(7) of 7 is a convex
polyhedron.

A connected component of a smooth algebraic hypersurface in Rn is
called convex if all its finite subsets are convexly located. An algebraic
hypersurface H is said to be convex interpolatory for a convex set 7 if H
has a smooth convex connected component containing 7. If such a com-
ponent of H is bounded then the hypersurface H will be called bounded
convex interpolatory for 7.

Let 7/Rn be a convexly located set of m points. We denote by d(7) the
minimal number of disjoint proper faces of C(7) such that they all are
simplices (not necessary equidimensional) and their union contains 7. Such
a set of faces we will call a covering set. It is easy to see that for n=2

d(7)�
m+1

2
. (1)

If n=3 then from [1]

d(7)< 2
3m, (2)

and the constant 2�3 is tight. For any n�4,

d(7)<m, (3)

and this estimate is asymptitically tight; i.e., there are examples with

d(7)=m&O(m1�[n�2]).

These examples, shown to me by Professor N. Alon, are presented in the
proof of Theorem 5 below.

Our main result is the following

Theorem 1. Let 7/Rn be a set of m>n convexly located points, and
dim C(7)=n. Then there exists a hypersurface in Rn of degree d(7), convex
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interpolatory for 7, and there exists a hypersurface in Rn of degree
�d(7)+1, bounded convex interpolatory for 7.

Theorem 2. Let 7=[z1 , ..., zm]/Rn, m�n, be a convexly located set,
and let L1 , ..., Lm be a set of hyperplanes in Rn such that

Li & C(7)=[zi], i=1, ..., m.

There exist a hypersurface F/Rn of degree m, convex interpolatory for 7,
and a hypersurface G/Rn of degree �m+1, bounded convex interpolatory
for 7, such that F and G are tangent to Li at zi for all i=1, ..., m.

The same approach allows us to solve a problem of the mixed type as
well. For a proper nonempty subset 7$/7 let us denote by d(7$, 7) the
minimal number of proper faces of C(7) such that they all are simplices
and their union contains 7"7$.

Theorem 3. Let 7$=[z1 , ..., zp] be a subset of a convexly located set
7/Rn of m�n points. Let L1 , ..., Lp be a set of hyperplanes in Rn such that

Li & C(7)=[zi], i=1, ..., p.

There exist a hypersurface F/Rn of degree p+d(7$, 7), convex inter-
polatory for 7, and a hypersurface G/Rn of degree �p+d(7$, 7)+1,
bounded convex interpolatory for 7, such that F and G are tangent to Li at
zi for all i=1, .., p.

In the case n=2 Theorem 1 gives a convex interpolatory curve for 7 of
degree [(m+1)�2], whereas, actually, in [8] a bounded convex inter-
polatory curve of the same degree was constructed. The following state-
ment specifies this result.

Theorem 4. For any convexly located set 7/R2 of m�4 points there
exist a convex interpolatory curve of degree [m�2] and a bounded convex
interpolatory curve of degree [(m+1)�2].

The following statement together with estimates (1), (2), (3) shows how
optimal are the results of Theorems 1 and 4 with respect to the degree of
interpolatory hypersurfaces.

Theorem 5. (1) For any m�4 there exists a convexly located set
7m/R2 of m points such that there is no convex smooth curve through 7m

of degree <[m�2].
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(2) For any m�10 there exists a convexly located set 7m/R3 of m
points such that there is no convex smooth surface through 7m of degree
<[(2m&4)�3].

(3) For any n�4 and m�n+1 there exists a convexly located set
7m/Rn of m points such that there is no convex smooth hypersurface
through 7m of degree less than m&s0 , where

s0=min {s�n+1 | s+\s&[(n+1)�2]
s&n ++\s&[n�2]&1

s&n +�m= .

Remarks. (1) In the case of odd m there may not exist a bounded
convex interpolatory curve of degree (m&1)�2. For example, five points on
a hyperbola determine this hyperbola as the unique conic curve through
the chosen points.

(2) In the third statement of Theorem 5

m&s0�\s0&1&[(n+1)�2]
s0&1&n ++\s0&2&[n�2]

s0&1&n +&1,

where the right-hand side is a polynomial in s0 of degree [n�2]. Hence the
statements of Theorems 1 and 5 mean that there are convexly located sets
7/Rn, n�4, of m points with d(7)=m&O(m1�[n�2]).

(3) The convex interpolatory curves and hypersurfaces, which we
construct in the proofs of Theorems 1�4, are not unique. For instance, by
Theorem 4, given a convexly located set 7/R2 of m=2k+1 points, there
exists a convex interpolatory curve Ck of degree k through 7. For k�3 the
space of curves of degree k (being the space of polynomials in two variables
of degree k, taken up to a constant factor) has dimension k(k+3)�2>
2k+1; hence the set of curves of degree k, going through 7, is a projective
space of a positive dimension. and hereby any such curve, sufficiently close
to Ck , is a convex interpolatory for 7 as well.

2. HYPERBOLIC POLYNOMIALS

Let q be a point in the real projective space RPn. A real homogeneous
polynomial F(x0 , ..., xn) of degree d is called q-hyperbolic (strict q-hyper-
bolic) if the hypersurface F=0 in RPn intersects any straight line through
q at d real points counting multiplicities (resp., at d distinct real points).

Lemma 1. Any q-hyperbolic polynomial is the limit of strict q-hyperbolic
polynomials of the same degree.
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Proof. In fact, this statement is due to Nuij [9]. We will present here
the required family of strict q-hyperbolic polynomials in a slightly modified
form, suggested in [10]. Let F(x1 , ..., xn) be a q-hyperbolic polynomial of
degree d, and let q=(1, 0, ..., 0). Then according to [9] the polynomials

T!F(x0 , ..., xn)=\Id+!x1

�
�x1+

d

b } } } b\Id+!xn
�

�xn+
d

F(x0 , ..., xn), (4)

where Id is the identity operator, are strict q-hyperbolic for all constants
! # R"[0], while T0F=F. K

Lemma 2. Let F be a strict q-hyperbolic polynomial of degree d if d=2k
then the hypersurface F in RPn consists of k smooth connected components
homeomorphic to the (n&1)-sphere Sn&1. Each connected component bounds
in RPn a domain homeomorphic to the n-dimensional ball Dn and containing
q, and all these balls form an ascending sequence. If d=2k+1 then the
hypersurface F consists of k+1 smooth connected components, k of them are
homeomorphic to Sn&1 and situated as described above; one more component
is homeomorphic to RPn&1 and does not bound any part of RPn.

Proof. The fact is well known in real algebraic geometry. We will
explain it shortly. First, it is known (see, for example [13]) that a smooth
real hypersurface consists of orientable components homologous to zero in
RPn, and, in the case of odd degree, contains one more component realiz-
ing a non-zero homology class. At last, note that the natural projection of
a strict q-hyperbolic hypersurface onto the space RPn&1 of lines going
through q is a d-sheeted covering, which completes the proof because
RPn&1 can be covered either by RPn&1 or by Sn&1, and, for n>2, a com-
ponent RPn&1 cannot bound anything in RPn, because it intersects any
(projective) straight line L through q at one point and hence does not
divide L into two or more connected components. K

In particular, a strict q-hyperbolic hypersurface of degree >1 has a
unique component homeomorphic to Sn&1 which bounds a component of
RPn"F homeomorphic to a ball. We will call it the inner component.

Lemma 3. Given a strict q-hyperbolic hypersurface F, let S be its inner
component. For any hyperplane H/RPn, the set S"H/Rn=RPn"H con-
sists either of one or two convex components of the affine hypersurface F"H.

Proof. Note that F is q$-hyperbolic with respect to any point q$ belong-
ing to the ball bounded by the inner component. Therefore any straight
line in RPn meets the inner component at at most two points, and we are
done. K
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3. PROOF OF THEOREM 1

3.1. Construction of a Convex Interpolatory Hypersurface

Let _1 , ..., _d , d=d(7), be a covering set of faces of C(7). Through these
faces one can draw hyperplanes H1 , ..., Hd such that

Hi & C(7)=_i , i=1, ..., d.

Let H� 1 , ..., H� d/RPn be the projective closures of H1 , ..., Hd , respectively.
It is clear that the hypersurface

F=H� 1 } } } H� d

is q-hyperbolic with respect to any point q in the interior of C(7). In order
to get a strict q-hyperbolic polynomial we apply the deformation (4). The
problem is how to keep these hyperbolic hypersurfaces from passing
through 7. So we will slightly modify the deformation (4).

Let 7=[z1 , ..., zm]. In a neighborhood of each point zi , i=1, ..., m, on
the straight line (qzi) we introduce a local coordinate si such that the
coordinate of zi is 0.

Lemma 4. There exist =>0 and smooth families H� 1, s� , ..., H� d, s� of hyper-
planes, depending on parameters

s� =(s1 , ..., sm), |si |<=, i=1, ..., m,

such that H� j, 0=H� j , j=1, ..., d, and, for any pair zi # H� j , the hyperplane H� j, s�

meets the line (qzi) at the point with coordinate si .

Proof. This follows immediately from the fact that the points of 7
belonging to H� j are verices of a simplex, hence are linearly independent. K

Let us consider the family of hypersurfaces T!Fs� , where the operator T!

is defined by (4), q is assumed to be (1. 0, ..., 0), and

Fs� =H� 1,s� } } } H� d, s� ,

s� =(s1 , ..., sm), |!|<$, |s1| , ..., |sm |<=,

with some fixed positive $, =. These are strict q-hyperbolic hypersurfaces of
degree d for all !{0. Now we seek s1 , ...,. sm as functions of ! such that
si (0)=0, i=1, ..., m, and, for any ! # (&=, =), the hypersurface T!Fs� con-
tains 7.

Homogeneous polynomials in n+1 variables of degree d, close to F0 ,
can be parametrized by the collection of their coefficients

A=[Ai0, ..., in , i0+ } } } +in=d, i0<d],
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assuming Ad, 0, ..., 0=const.{0. By construction, the coefficients A of the
polynomials T! Fs� are smooth functions of !, s� in a neighborhood of zero.
On the other hand, since any straight line (qzi) meets F0 transversally at
distinct points (by choice of q in a generic position), this straight line meets
transversaly each hypersurface T!Fs� at d distinct points. Therefore, the
coordinate Si of the intersection point of the line (qzi) and T!Fs� , which
is close to zi , is a smooth function of A. Thereby, our problem can be
reformulated as to find a solution s1(!), ..., sm(!) of the system

Si (A(!, s1 , ..., sm))=0, i=1, ..., m,

in a neighborhood of zero. Note that

Si (A(0, s1 , ..., sm))=si , i=1, ..., m,

for all s1 , ..., sm close to zero. Hence

det \�Si

�sj+1�i, j�m }!=0, s� =0

=1,

therefore by the implicit function theorem there exists a solution
s1(!), ..., sm(!), defined on some interval ! # (&$, $) and satisfying

si (0)=0, |si (!)|<=, ! # (&$, $), i=1, ..., m.

That completes the construction of a convex interpolatory hypersurface.

3.2. Construction of a Bounded Convex Interpolatory Hypersurface

If the hyperplanes H1 , ..., Hd , introduced above, bound a compact
polyhedron which contains 7, then the previous procedure gives a bounded
inner component of the hyperbolic hypersurface constructed.

Assume that the component of the complement to H1 _ } } } _ Hd in Rn,
containing q, is unbounded. Since the points of 7 lying in H1 are vertices
of a simplex, there exists an (n&2)-sphere Sn&1 in H1 going through these
points. Obviously, there exists an (n&1)-sphere Sn&1 in Rn going through
Sn&2 and bounding a ball which contains 7. Thus, substituting H1 for
Sn&1 and performing the procedure from Section 3.1, we get a bounded
convex interpolatory hypersurface of degree d(7)+1.

4. PROOF OF THEOREMS 2 AND 3

We will perform, actually, the above procedure. Let H� 1 , ..., H� m/RPn be
the projective closures of the affine hyperplanes L1 , ..., Lm . Define the
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normal vector of a hyperplane a0x0+a1x1+ } } } +anxn=0 in RPn with
a0{0 as

v=\a1

a0

, ...,
an

a0+ # �Rn.

Denote by v� 1 , ..., v� m the normal vectors of H� 1 , ..., H� m , and introduce
families

H� 1(s1 , w� 1), ..., H� m(sm , w� m)

of hyperplanes depending on parameters s1 , ..., sm # R close to zero, and
vectors

w� i=(wi1 , ..., win) # Rn, i=1, ..., m,

close to v� 1 , ..., v� m , respectively, such that the hyperplane H� i (si , w� i) meets
the line (qzi) at the point with coordinate si and has the normal vector w� i ,
i=1, ..., m.

As in Section 3.1, we look for the required convex interpolatory hyper-
suface F in the family T!F(s� , w� 1 , ..., w� m), where

F(s� , w� 1 , ..., w� m)= `
m

i=1

H� i (si , w� i), s� =(s1 , ..., sm).

Clearly, the coefficients of F

A=[Ai0, ..., in , i0+ } } } +in=m, i0{m]

are smooth functions of s� , w� 1 , ..., w� m , if Am, 0, ..., 0=const{0. On the other
hand, the coordinates S1 , ..., Sm of the intersection points of F with the
lines (qz1) , ..., (qzm) in neighborhoods of points z1 , ..., zm , respectively,
and the normal vectors V1 , ..., Vm of the tangent hyperplanes to F at these
intersection points depend smoothly on A. Thus, our problem is reduced
to solution of the system

Si (A(!, s� , w� 1 , ..., w� m))=0, Vi (A(!, s� 1 , w� 1 , ..., w� m))=v� i , i=1, ..., m,

(5)

with respect to s� , w� 1 , ..., w� m as functions of !. Since

Si (A(0, s� , w� 1 , ..., w� m))=si ,

Vi (A(0, s� , w� 1 , ..., w� m))=w� i , i=1, ..., m,
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the Jacobian of the left-hand sides of (5) with respect to s1 , ..., sm ,
w11 , ..., wmn is non-degenerate which, by the implicit function theorem,
provides the existence of the required solution to (5) which completes the
construction of F.

If the hyperplanes L1 , ..., Lm bound a compact polyhedron in Rn con-
taining 7, then we put G=F. Otherwise, we substitute the hyperplanek L1

for a (n&1)-sphere, tangent to L1 at z1 and embracing 7, in the construc-
tion described above, and get a bounded convex interpolatory hypersurface
G of degree m+1, which completes the proof of Theorem 2.

The proof of Theorem 3 is a simple combination of the proofs of
Theorems 1 and 2.

5. PROOF OF THEOREM 4

5.1. Existence of a Bounded Convex Interpolatory Curve

In [8] a convex interpolatory curve of degree [(m+1)�2] was con-
structed. We will show that this algorithm gives also a bounded convex
interpolatory curve. Assume that m=2k (k�2). Let us number succes-
sively the edges of the m-gon C(7) and put

F*=* `
k

i=1

H2i+(1&*) `
k

i=1

H2i&1 , *=const # (0, 1),

where Hi is the straight line through the i th edge, i=1, ..., m. The fact that
all the curves F* , * # (0, 1), are convex interpolatory for 7 is proved in [8,
Theorem 1]. It was shown in the proof of Theorem 1 in [8] that the con-
vex component of F* lies in the closure of the set (61 _ 62)"(61 & 62),
where

61= ,
k

i=1

?2i&1, 62= ,
k

i=1

?2i ,

and ?i/R2, 1�i�m, denotes the closed half plane, bounded by Hi and
containing C(7). It is not difficult to see that there exists a straight line
H/R2, which bounds a half plane ? such that ?#C(7), and
? & (61 _ 62) is bounded. Now we shift H in a parallel way, keeping the
above property, until H & C(7)=[zi], zi # 7. Note that the tangent to F*

at zi=Hi & Hi+1 runs over that interval (Hi , Hi+1) of the line pencil
through zi , which contains H, as * varies in the interval (0, 1). Choosing
* # (0, 1) so that F* is tangent to H at zi , we get a convex curve through
7 lying in the bounded set (61 _ 62) & ?.

The case of odd m can be considered analogously.
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5.2. Existence of a Convex Interpolatory Curve

We only have to construct a convex interpolatory curve of degree k for
a set 7, consisting of m=2k+1 (k�2) points. We will use a slightly
modified procedure from [8]. Let 7=[z1 , ..., z2k+1]/R2 be the set of suc-
cessively numbered vertices of a convex (2k+1)-gon. Introduce the straight
lines

H1=(z1 , z2) , H2=(z2 , z3), ..., H2k&1=(z2K&1 , z2k) ,

H2k=(z2k , z1).

As in the previous subsection, we define the family F* of curves of degree
k and the sets 61 , 62 , assuming that ?i , i=1, ..., 2k, is the closed half
plane, bounded by Hi and containing the points z1 , ..., z2k . Clearly, the
point z2k+1 belongs to (61 _ 62)"(61 & 62). Since the curves F* cover the
interior of the latter set as * runs through the interval (0, 1), there exists
+ # (0, 1) such that the curve F+ (convex by [8, Theorem 1]) does through
z2k+1 , which completes the construction.

6. PROOF OF THEOREM 5

(1) Let us consider a convexly located set 7m/R2, consisting of
m&1 points on a convex conic curve C and of one more point outside the
disk bounded by C. Then any curve F of degree

d�_m
2 &&1=_m&2

2 & ,

going through 7m , meets C at least at

m&1>2 }
m&2

2
�2d

points, hence, by Bezout's theorem [12], F must contain C as component
and cannot be interpolatory for 7.

(2) Let m=3s0&1&r�10, where r=3, 4, or 5, and s0 is an integer.
Clearly, there exists a convex polyhedron 2 in R3 with s0 vertices zi ,
i=1, ..., s0 , such that one of its facets (faces of codimension 1) is an r-angle
and the other are triangles. Denote by s1 , s2 the numbers of edges and
facets of 2, respectively. From

3s2+r&3=2s1 , s0&s1+s2=2,
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one derives s2=2s0&r&1. Denote by wi , i=1, ..., s2 , the baricenters of
the facets of 2, and by v� i , i=1, ..., s2 , the normal vectors of the corre-
sponding facets, oriented in the exterior of 2. For a given =>0 denote by
wi (=) the point wi+=v� i , 1, ..., s2 . For a sufficiently small =1<0 the sets

7m(=)=[z1 , ..., zs0
, w1(=), ..., ws2

(=)], 0<=<=0 ,

of m points are convexly located in R2. Put d(=) to be the minimal degree
a convex interpolary surface through 7m(=). This integral-valued function
defines a semi-algebraic subdivision of the interval (0, =0). Hence there is
=1 # (0, =0) such that

d(=)=d*=const, = # (0, =1).

Since the (projective) space of real surfaces of degree d is compact, there
exists a sequence H1 , H2 , H3 , ... of convex interpolatory surfaces of degree
d* for the sets 7m(=1), 7m(=2), 7m(=3), .., respectively, such that lim =k=0
and there exists lim Hk=H{0. Since wi (=k) � wi as k � �, the convexity
condition implies that the limit shape of the convex component Hk must
be 2, hence H contains the planes through all the s2 facets of 2 as com-
ponents. Thereby,

d*�s2=2s0&r&1=_2m&4
3 & ,

which completes the proof of the second part.

(3) Let us fix n�4. The convex hull 2(s) of s>n generic points
z1 , ..., zs on the curve

[(t, t2, ..., tn) # Rn | t # R]

is a so-called cyclic polyhedron with q vertices and

+(s, n)=\s&[(n+1)�2]
s&n ++\s&[n�2]&1

s&n +
facets [7]. For a given m�n+1, let

s0=min[s�n | s++(s, n)�m].

Clearly, m�s0�n+1, since +(n, n)=2. Put r=m&s0 . As above, we
introduce the normal vectors v� i , i=1, ..., r, of r distinct facets _1 , ..., _r of
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2(s0), oriented in the exterior of 2(s0). Also, we fix one point wi inside each
facet _i , i=1, ..., r. For a sufficiently small =>0 the set 7m(=) of m points

zi , i=1, ..., s0 , wi (=)=wi+=v� i , i=1, ..., r,

is convexly located in Rn. As above one shows that the minimal degree of
a convex interpolatory hypersurface for 7m(=) is a constant d* as = # (0, =1),
and d*�r, which implies the required statement.
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