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Abstract

The paper consists of two sections. Satti is the introduction which, in addition to the
auxiliary information, contains some interesting results on Baire-like properties. Section 2 deals
with the bitopological essence of the notions of relative compactness and cotopology in general
topology, C-relation, subordination ofopologies and closed neighlbhmods coniion in analysis.

A generalization of Choquet’'s theorem on Raispaces is given and the sufficient conditions

for families of (i, j)-nowhere dense sets to coincide with families (afj)-first category sets

are established using a finite measure. A bitopological solution of one of Ulam’s problems is

obtained. The corresponding relations are almost always studied using essentially the bitopological
modifications of regularity, which, as seen in various problems of general topology, analysis and
potential theory, are the most natural forms of relations of two topologies defined on the same set.
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1. Introduction

In different areas of mathematics there are situations of both symmetric and nonsym-
metric occurrence of two topologies on the same set. For example, concrete problems
connected with nonsymmetric distance functions, quasi-uniformity, quasi-proximity, or-
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dered topological spaces, partially ordered setsl@nce directed graphs, as well as semi-
Boolean algebras angtrelated topologies belong to the first situation, while the second
situation underlies the notions of relative compactness, cotopology aethtion in gen-
eral topology, subordinatiorf topologies and closed neighborhoods condition in analysis,
initial and fine topologies in potential thggcohomologies of spaces with two topologies
in algebraic topology, etc.

By considering all the above cases we obtain a bitopology, i.e., an ordered pair of
topologies(z1, t2) on a setX and a bitopological space (briefly, BS) is a &eequipped
with two arbitrary topologies1 and t2. In the sequel, if(X, 71, 72) is a BS andP is
some topological property, the, j)-P denotes an analog of this property fgorwith
respect tor;, and p-P denotes the conjunctiofl, 2)-P A (2, 1)-P, i.e., p-P denotes
an “absolute” bitopological analog dP, where p is the abbreviation for “pairwise”.
Sometimeg1, 2)-P < (2, 1)-P (and thus<= p-P), so that it suffices to consider one
of these three bitopological analogs. Furthermore, there are certain cases for which it is
not natural to considep-P since(1, 2)-P and(2, 1)-P cannot represent all analogs®f
for a simple reason that equivalent topological formulations in these cases do not remain
equivalent when passing to their bitopological counterparts; in particular, this is observed
in the case of Baire spaces [15,16]. Also note {atr;) has a propertfp < (X, 11, 12)
has a property-P, andd-P < 1-P A 2-P, whered is the abbreviation for “double”, and
alwaysi, j € {1,2}, i # j. Further, let(X, 71, 2) be any BS,A = {A;}ses C 2X be any
family and A C X be any subset; then the conjugate family iskce {X\A;: A, € A},

7; ¢l A andz; int A denote respectively the closure and the interioA af the topologyr;.

The reasons connected in an obvious or veiled manner, on the one hand, with studying
(X, 11, 72), wherer; andtp are either independent of eacthnet or interconnected by the
inclusion, -, C- and N-relations [39,42,15,16] or by their various combinations or by
other relations, and, on the other hand, with applications of the theory of BS’s, lead us to
the following basic objectives as regards two general cases:

(1) to establish pairwise properties using the propertieg @ndz, (or the properties of
one of them) or other pairwise properties (or their combinations);

(2) to establish properties af using the properties af; or pairwise properties (or their
combinations).

As the study of various questions of the theory of BS’s shows, (1) suggests a further
development of the theory of BS's, while (2) is natural and typical of applications,
especially wheni = 2, j =1, 11 C 12. Incidentally, note that byX, 71 < 1) will always
be meant a B$X, 11, 12) with 1 C 0.

This paper deals with bitopological characterizations of some principal notions of
analysis and general topology, including a new characterization of althgstBaire
spaces obtained by generalizing the notf a sifter introduced by Choquet [7]. We
obtain a solution of one of Ulam’s problems [17,40,43] which concerns the coincidence
of the classesi(X, r) and H(X, y) of all homeomorphism of the topological spaces
(X, t) and(X, y) onto themselves. Using a finite meas which is in agreement with the
(1, 2)-category for a special class of Baire BS’s, we establish sufficient conditions for the
four families of nowhere dense sets to coincide with the four families of first category sets
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for a BS (X, t1 < 12). Thus in some cases the investigation of a set with two topologies
interconnected by relations of “bitopological character” makes it possible to obtain the
combinative effect, i.e., to get more information than in the case of considering the same
set with each topology separately. We emphasize this fact since the formation and progress
of the theory of BS’s (as well as of other mathematical theories) are not isolated phenomena
and acquire special importance in the light of applications of the obtained results. A broad
range of bitopological applications is given in [13,15,16].

Since the study of applications of the theory of BS’s demands special knowledge of
bitopologies, we would like recall some nattis from this theory needed for our purposes.

Many kinds of bitopological compactness imply even a greater variety of notions of
bitopological local compactness. Their relations are indicated in [28].

Definition 1.1. Let (X, 71, 72) be a BS. Then:

(1) (X, 11, 12) is (i, j)-locally quasicompact (brieflyj, j)-lqc) if each pointc € X has an
i-neighborhoodJ (x) such thatr; clU (x) is quasicompact [28].

(2) (X, 11, 12) Is (i, j)-locally compact in Stoltenberg’s sense (briefly,;)-Slc) if each
pointx € X has an-neighborhood/ (x) such thatr; clU (x) is j-compact [37].

(3) (X, 11, 12) is (i, j)-locally compact in Reilly’s sense (briefl, j)-RlIc) if each point
x € X has ani-neighborhood/ (x) such thatr; clU (x) is FHP-compact, i.e., every
family U = {Us}ses such thattd C 11 U 1o, X = |J,cgUs andU N t; contains a
nonempty set, has a finite subfamily [34].

(4) (X, 11, 12) is (i, j)-locally compact in Raghavan’s and Reilly’s sense (brigfly;)-
RRIc) if each pointx € X has aj-neighborhood/ (x) which isi-compact [33].

(5) (X, 11, 12) IS (i, j)-locally compact in Birsan’s sense (briefly, j)-Blc) if each point
x € X has an-neighborhood which ig-compact [6].

Following [29],
(i, ))-Rlc < (i, j)-lgc= (i, j)-Slc= (i, j)-Blc <= (j, i)-RRlc.

The notion of a zero-dimensional BS was introduced by Reilly [35] on the basis of
the idea of bitopological disconnectedness studied by Swart [38]. A systematic study of
bitopological dimension functions was undertaken byéJHlZ,23],Ciri(': [8] and us [10,
11,15]. As distinct from [22,23,8], the ideas set forth in [10,11,15] are essentially based on
the notions of bitopological boundaries.

Definition 1.2. For any subsefl of a BS(X, 1, 72) the (i, j)-boundaries ofA are the sets
@, j)-FrA=rclANt;cl(X\A) [10].

The notions ofi, j)-boundaries are highly important not only for defining and studying
bitopological dimensions, but also for establishing the minimum principle for finely
superharmonic functions [26].

Definition 1.3. Let (X, 11, 72) be a BS and denote a honnegative integer. We say that:
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Q) G H-indX=-1< X=40.

(2) (i, j)-indX < n if for every pointx € X and any neighborhodd (x) € 7; there exists
a neighborhood (x) € t; such thatr; clV(x) C U(x) and(i, j)-ind(j, i)-FrV(x) <
n—1.

) @, j)-indX =n if (i, j)-indX < n and the inequalityi, j)-indX <»n — 1 does not
hold.

(4) (i, j)-indX = oo if the inequality(i, j)-ind X < n does not hold for any.

Thereforep-ind X <n <= (1,2)-indX <n A (2, 1)-indX <n.

In particular, forn = 0 we obtain the notion of Reilly [35], i.ep-indX =0 <= 11-
open sets have a base consistingzetlosed sets aneb-open sets have a base consisting
of r1-closed sets.

The A-insertion property of a topology on a setX was defined in [26] to establish
the criterion of nonnormality of fine topologies@to characterize Baire one functions.
Below we define bitopological modifications of this notion with an aim to apply them in
characterizing the relations between topologies.

Definition 1.4. We say that a bitopologyr1, t2) on a setX has the(i, j)-A-insertion
property, whered c 2X is any family if either of the following two equivalent conditions
is satisfied:

(1) Forevery subset C X there exists a s&F € .4 such thatr; intA C G C t; cl A.
(2) For every pair of setgU, F), whereU e t;, F € cor; andU C F, there exists a set
G e Asuchthaty Cc G C F [14].

It is obvious that if(z1, 72) on X (r on X) has the(i, j)-A-insertion properties4-in-
sertion property), thefl, X € A. Itis likewise obvious that the antidiscrete topologyXn
possesses thé-insertion property for any familyl c 2%.

Remark 1.1. The following implications hold in a B8X, 1 < o) for any family A c 2X:

(11, 72) has the 24-insertion property— (t1, t2) has the(1, 2)-4-insertion property

U U
(t1, T2) has the(2, 1)-A-insertion property=> (1, 72) has the 1A-insertion property

By reducing the emphasis on points and focusing attention on the families of sets,
namely, on the topologies, it is possible to consider the relations on a set. The coupling of
topologies, i.e., th€ -relation was defined by Weston [42] to generalize some well-known
theorems on topological groups and linear spaceksto connect the same properties of the
coupled topologies.

Definition 1.5. A topology 11 is coupled to a topology2 on a setX (briefly, T1Ct?) if
t1¢clU C 1ol U for every setlU € t1.

From this definition we immediately find that#f = coz, thent; is coupled to every
topology onX, so that the antidiscrete topology &has well as the discrete topology on
X is coupled to every topology oK.
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Remark 1.2. By [42], if T1 is coupled torz on X, thenty is coupled to every topology on

X smaller tharro. A topology can be coupled to a strictly larger topology and in that case
the coupling is mutual. For example, the antidiscrete topology is mutually coupled to every
topology on the same set.

In [42], more interest is shown in the coupling of topologies than in the situation
11¢lU C ol U forevery selU € 1o (the N-relation in our terms). This preference is based
on the reasoning as follows: tiderelation defines a partial order(in our notation<¢) on
the set of all topologies oK by virtue of the equivalenca <¢ 12 <= 11C12 andr1 C 12,
and in his subsequent investigations J.D. Weston considered the caseswhere, and
(X, 12) satisfies the conditions for which it is regular. If instead of the partial otrgewe
consider the relatior: y (which is also a partial order) by analogy witty-, then by virtue
of Theorem 1 in [42] the conditiong <y 12 and (X, 12) is regular (where the regularity
of (X, t2) is not superfluous) imply that; = 72. As distinct from the above situation, we
have the following simple

Example 1.1. Let X = {a, b, ¢}, 11 = {0, {a}, {b, ¢}, X} and t2 be the discrete topology
on X. Thenty <¢ 12 and(X, t2) is regular. Howevet; # 15.

The coincidence of the topologies <¢ 72 demands a stronger requirement on
(X, 11, 72), namely, if (X, 11 <¢ 12) is (2, 1)-regular (i.e., for each point € X and each
2-openselU C X, x € U, there exists a 2-open sBétC X suchthatt € V C r1¢lV C U),
thenty = 12 [15].

Taking this fact into account, we have studied the so-called nearness of topologies, i.e.,
the N-relation in detail in [15].

Let us consider the real lirié with the lower topologyv; = {#, R} U {(a, +00): a € R}
and the upper topology, = {#J, R} U {(—o0, a): a € R}. Thenw; is not coupled tav;,
butw; is near taw;. A nontrivial example of near topologies is given in [16].

It is well known (see, for example, [20]) that a subdetf a topological space (briefly,
TS) (X, t) can be of one category ifX, ) and of another category in itself as a subspace
of (X, t), while for open subsets @fX, t) these categories coincide. This is the principal
factor in defining Baire spaces in various equivalent ways [20].

However, as illustrated by Example 1.5.1 in [15], unlike the topological case, a non-
emptyi-open subset of a B8X, 71, 12) can be of ondi, j)-category in(X, 11, 72) and
of another category in itself as a bitopological subspaceXofr, 72). These arguments
are closely connected with the definitions(af;)-Baire spaces [12] and serve as a good
introduction to the discussion in [15] and [16].

Definition 1.6. A subsetA of a BS (X, 11, t2) is of (i, j)-first category inX if A =
Un1 As, wherer;intz; clA, =0, i.e., A, is (i, j)-nowhere denseA(, € (i, j)-N"D(X))
for everyn = 1,00, and A is of (i, j)-second category itX if A is not of (i, j)-first
category inX [12].

A subsetA of X is of (i, j)-first ((i, j)-second) category i\ is of (i, j)-first ((i, j)-
second) category in itself.
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The families of sets of(i, j)-first ((i, j)-second) categories iX are denoted by
(i, j)-Catg (X) ((i, j)-Catg, (X)), while the statementX € (i, j)-Catg (X) (X € (@i, j)-
Catg, (X)) are abbreviated t& are of(i, j)-Catgl (X are of(i, j)-Catgll).

The theory of bitopological Baire spacdstoughly developed in1b5,16] is closely
associated with the Baire-like properties from [26] and therefore can be essentially used
for future studies in analysis and general topology.

Definition 1.7. An (i, j)-Baire space (briefly(i, j)-BrS) is a BS(X, 11, t2) such that
U et \{0} = U is of (i, j)-Catgll.

This definition immediately implies that ifX, t1, t2) is an (i, j)-BrS, thenX is of
@@, jH)-Catgll.

Example 1.2. A natural BS(R, w1, wp) is an(i, j)-BrS since for every sdf € 7;\ {0} the
bitopological subspaceU, /], w,) contains no nonempty, j)-nowhere dense sets. By
(i) of Theorem 1.1.3 in [20] it is also clear th@R, w1, wp) is ani-BrS.

Definition 1.8. An almost(i, j)-Baire space (brieflyd-(i, j)-BrS) is a BS(X, 11, 12) such
thatU e ;\{#} = U € (i, j)-Catg, (X).

In [16], in particular, it is proved that for a B8X, 1 < t2) the following equiv-
alence and implications are corregiX, r1, t2) is a (1, 2)-BrS «<— (X, r1,12) is an
A-(1,2)-BrS = (X, 11, 0) is a 1-BrS, (X, 11, 2) is a 2-BrS= (X, 71, 72) iS an
A-(2,1)-BrS.

Definition 1.9. A BS (X, 11, t2) is an(i, j)-BrS in a strong sense (briefl§; (i, j)-BrS) if
F e cot\{0} = F is of (i, j)-Catgll.

If the C-relation is hereditary under 1-closed subsets, then for &BS1 <¢ 12) we
have(X, 71, t2) isaS-(1, 2)-BrS— (X, 11, 12) is a(1, 2)-BrS [16].

Definition 1.10. A BS (X, 11 < 12) is a (1, 2)-strict Baire space, @2, 1)-weak Baire
space, a 2-weak Baire space and a 1-strict Baire space, respectively (btigflySBrS,
(2, 1)-WBTrS, 2-WBrS and 1-SBrS, respectively)if € o\{} = U € (1, 2)-Catg, (X),

U e n\{¥} = U € (2,)-Catg,(X), U € n\{¥} — U € 2-Catg;(X) and U €

\{#} = U € 1-Catg, (X), respectively [15].

The interrelations of the above-stated notions are collected in Theorem 1.1, where for
the purpose of abbreviating the conditions (1)—(3), instead of writing spaces, we will
indicate only the corresponding Baire and Baire-like properties.

Theorem 1.1. The following implications hold for 8S (X, t1 < 12):
Q) 22WBrS <<= 2-BrS <+—=(1,2)-SBrS— (1,2)-BrS— 2-WBrS

| 4 4 4 4
(2,1)-WBIS <= A-(2,1)-BrS<= 1-SBrS — 1-BrS <« (2, 1)-WBIS.
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We have for 8S (X, 11 <¢ 12):

(2) 2WBrIS <= 2BrS <= (1,2)-SBrS=> (1,2)-BrS => 2-WBIS

U U U U U
(2,1)-WBIS <= A-(2,1)-BrS<= 1-SBrS = 1-BrS <= (2, 1)-WBrS.

We have for 8S (X, 11 <N 12):

(3) 2WBIS <= 2BrS <« (1,2)-SBrS= (1,2)-BrS = 2-WBrS

| 4 4 [ 4
(2,1)-WBIS <= A-(2,1)-BrS<= 1-SBrS = 1-BrS <= (2, 1)-WBrS.

Remark 1.3. Being an equivalence relation, tiserelation introduced in [39] expresses

a close relationship between two topologies on a set, which implies that if one of the
members of ar§-equivalence class is a Baire space, then all members of this class are also
Baire spaces. For the relations<g 172 <= 11572 andr; C 12, all the above-mentioned
Baire-like properties coincide [16].

Example 1.3. Let (R, s, T) be a BS, wherg is the half-open interval topology, i.e., the
Sorgenfrey topology oR having basic open sets of the fofm »), while t is the topology
with basic open sets of the for, b]. Itis clear that neither topology is finer than the other,
inf(s, ) =s N7 = w is the natural topology oR, sufs, t) is the discrete topology oR.
MoreoversSt, sSinf(s, ) andt Sinf(s, t). Hence, by Remark 1.3, the BSR, w <y )
and (R, w <gs 1) are 2-BrS’s since the natural topologyis Baire [39], and by(1) of
Theorem 2.1.2 in [15], they are also 2-WBrS’s; neverthelegss andw # .

Since an abstract fine topology on a TS(X, t1) is any topology orX, finer thanty,
the Baire-like properties formulated in [26] become as follows:

Theorem 1.2. Let 2 be a fine topology on &S (X, t1). Then

(1) (X, 12) is a weak Baire space with respecttp<— (X, 11, 12) iS anA-(2, 1)-BrS.
(2) 2 0naTS (X, r1) has the Slobodnik property—> (X, 71, 72) is a (1, 2)-BrS.
(3) 2onaTS (X, r1) hasthe property! < (X, 11, t2) is a inebreak1, 2)-SBrS [16]

2. Thenaturality of relations between some principal concepts of general topology,
analysis, and bitopology. Applications

As said in [4], to extend some results obtained for compact and metric spaces, various
authors, in particular, Arhangel$k8], Filippov [18], Hodel [21], Juhasz [24], Nagata [30],
Ponomarev [32], used the idea of relating compact subsets to the topology of a space by
means of a special cover or a family of covers. The notion of relative compactness based on
the relation of two topologies on the same set and used by Z. Balogh instead of the above-
mentioned idea clearly reveals, even at first glance, the bitopological essence of this notion.
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Hence we are able to choose different kinds of bitopological local compactness leading to
relative compactness. Further, using the method of application in the opposite direction,
we come to interesting and important results related to the varieties of bitopological local
compactness. Moreover, the strengthening of relative compactness makes it possible to
connect the resulting strong relative compactness with a special-type local compactness
through an equivalence relation.

Definition 2.1. In a BS(X, 11, t2) the topologyr; is compact with respect to the topology
7; if for everyi-open covet/ of X and for each point € X there is aj-neighborhood of
x covered by a finite subfamily @f [5].

Now Definition 1.1 readily implies

Theorem 2.1. The following implications hold for 8S (X, 11, 12):

(X, 11, 12) IS (j, )-lgc = (X, 11, 12) IS (J, i)-Slc= (X, 11, 12) IS (J, i)-BlC
< (X, 11, 12) I8 (i, j)-RRIc= 1; is compact with respect to;.

Proof. By the implications given after Definition 1.1 it suffices to prove only the last
implication of the theorem. LelY = {U;};cs be anyi-open cover ofX and letx € X

be an arbitrary point. Then by (4) of Definition 1.1 there exists@eighborhoodJ (x)
which isi-compact. Clearlyi/ = {U,};cs is also an-open cover o/ (x) and thug/ has

a finite subfamilyl/’ = {U, };_; such thatU (x) C | J;_, Uy, . Hencer; is compact with
respecttar;. O

Clearly, using the relative compactness argument and the well-known notions from
general topology, the bitopological assertion of Theorem 2.1 gives many interesting results
from [4] and [5]. Let us now establish the conditions under which the inverse implication
to the last implication in Theorem 2.1 is true.

Definition 2.2. A subsetA of a BS(X, 11, 12) is said to be-extendable if for every-open
coverld’ of A there is an-open covel/ of X such that/’ c &/ andU N A = @ for each
U eU\U'. In that casé/ is said to be-extended fromA.

It is obvious that every-closed setF, ¥ £ F # X, is i-extendable, while there are no
i-dense-extendable subsets af.

Ifina BS (X, 11, 72) the topologyr; is compact with respect to the topology, then for
an arbitrary poink € X and every -open covet{ of X the j-neighborhood of mentioned
in Definition 2.1 will be denoted by, (x).

Definition 2.3. In a BS (X, 11, 72) the topologyr; is strongly compact with respect to the
topologyz; if 7; is compact with respect tg; and for every poink € X there is aj-open
i-extendable neighborhodd(x) such that/ (x) c Uy, (x) for everyi-open covet/ of X,
i-extended fronU (x).
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Theorem 2.2. If in a BS (X, 71, t2) the topology; is strongly compact with respect to the
topologyz;, then(X, t1, t2) is (i, j)-RRIc (< (j, i)-Blc).

Proof. Let x € X be any point and/(x) ani-extendablej-neighborhood ofc, whose
existence follows from the conditions of the theorem. We are to provellia} is the
requiredi-compact;-neighborhood ofc. If &/’ is anyi-open cover ofU (x), then there
exists ani-open covel/ of X, i-extended fronl/ (x) and containind{’ as a subfamily.
Sincer; is strongly compact with respect tg, there is aj-neighborhood/;; (x) such that
U (x) C Uy(x) andUy(x) is covered by a finite subfamily” c U/. Itis obvious that/ (x)
is also covered by andi/” c U’ sinceU € U\U' impliesthatU NU(x) =¥. O

Corollary 1. Let for any pointx of a BS (X, 11, t2) there exists am-extendablej-neigh-
borhoodU (x) such thatU (x) c Uy (x) for everyi-open coveid of X, i-extended from
U(x). Then(X, 71, 2) is an(i, j)-RRlc (<= (j, i)-Blc) if and only if z; is compact with
respect tor;.

Proof. Follows directly from Theorems 2.1 and 2.20

Corollary 2. If for a p-T», i.e., p-HausdorffBS (X, t1, 12) the topologyz; is strongly
compact with respect to the topology, thent; C t;, where (X, 11, 12) is p-Ty if for
each pair of distinct pointg, y € X there exist disjoint neighborhood$(x) € 71 and
V(y) € 2.

Proof. It suffices to use Proposition 10 from [6].0

Furthermore, as we will see below, there are aspects of bitopological insertions closely
connected with characterizations of t@erelation and, as a result, with different notions
from analysis.

Theorem 2.3. The following conditions are equivalent irgs (X, t1, t2):

(1) 1 is coupled tors.
(2) (71, 72) has the(2, 1)-t1-insertion property.
(3) For every seU € 17 there exists a séf € 71 such thaty ¢ V andri1clU =t1¢lV.

Proof. (1) & (2). Let A € X be any set. Then by (3) of Theorem 2.2.1 in [15],
intA C rrintticlA and if V = rpinttycl A, (1) of Definition 1.4 implies thatry, 12)
has the(2, 1)-t1-insertion property. Conversely, & C X is any subset, then by (1) of
Definition 1.4 there exists a sét € t1 such thatrzintA ¢ V C t1¢cl A and therefore
72intA C trintticl A. To complete the proof, it remains to use (3) of Theorem 2.2.1
in [15].

(2) & (3). If U € 12 is any set, then by (2) of Definition 1.4 there exists a8et t1
such thaty ¢ V c r1¢clU and henceclU = t1cl V. Conversely, leU € 12, F € coTy
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andU cC F. Thenthere exists a s€te t1 suchthat/ C V andriclU = 11¢cl V. Therefore
UcVcnclV=rnclUCF,sothaUt CVCF. O

Corollary 1. The following conditions are equivalent folBS (X, 11, 12):

1) 71 <c 12.
(2) 71 andtp are weakly connected in the sensg27].

Proof. Follows directly from Definition 1 in [27] and (3) of Theorem 2.3

Corollary 2. A locally convex linealf'S (X, t1) is barrelled if and only if the bitopology
(11, 72) has the(2, 1)-t1-insertion property for any locally convex topology admitted
by X.

Proof. It suffices to use Theorem 2.3 and the arguments from [42].
Corollary 3. Every locally convex lineaf S of the second category is barrelled.

Proof. Let (X, r1) be any locally convex linear TS and, 71) be ofCatgll. If 72 is any
locally convex topology orX, then the conditions of Theorem 3 from [42] are satisfied
and hence, by virtue of the same theorem and Theorem 2.3, the bitopelogy) on X
has the(2, 1)-1-insertion property. Thus it remains to use Corollary 21

Corollary 4. A barrelled linearTS (X, 1) is of Catgll (or metrizablg if there is a locally
convex topology; on X, larger thanty, such that X, t2) is of Catgll (or metrizablg.

Proof. Let(X, 1) be abarrelled linear TS and be a locally convex topology oK, larger
thanti. Then by Corollary 2, the bitopologgt1, t2) has the(2, 1)-t1-insertion property
and it remains to use Theorem 6 (or Theorem 7) from [42].

It should however be noted that by an example from [4X],71) can be a barrelled
linear TS of the first category althoudly, 72) is a linear TS of the second category with
71 C 12.

Definition 2.4. Let t1 andt> be two locally convex topologies on a linear spaceThen
the topologyrs is subordinate to the topology if 2 is finer thanry and there exists a base
of 2-neighborhoods of 0 (zero element) consisting of 1-closed convex circled sets [19].

The significance of the notion of subordination is confirmed by the results from [19].

Theorem 2.4. Let 71 and 2 be two locally convex topologies on a linear spaceThen
72 is subordinate tar; if and only if theBS (X, 71, 12) is p-regular and(zy, 72) has the
(1, 2)-12-insertion property.
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Proof. First we assume thap is subordinate ta;. Thenti C 2 and thereforexclU C
tr1¢clU for eachU € 12, so thatt, is coupled tor;. Hence, by Corollary 2 of Theo-
rem 2.3,(t1, 2) has the(l, 2)- rp-insertion property. MoreoverX, o) has a local base
consisting of 1-closed sets. Therefatk, 1, t2) is (2, 1)-regular. On the other hand,
(X, 1) is also a locally convex linear TS having a local base consisting of 1-closed sets
[25, 6.5], i.e.,(X, 11) is regular. It is clear thatX, 71, t2) is (1, 2)-regular (i.e., for each
pointx € X and each 1-open sétC X, x € U, there exists a 1-open s&tC X such that
x eV CrtclV CU)sincer; C 12 and hencéX, 1, t2) is p-regular.

Conversely, assume that a BX, 11, t2), wheret; and 2 are two locally convex
topologies on a linear spacg is p-regular andri, t2) has thg1, 2)-2-insertion property.
Hence, by (2) of Theorem 2.3 is coupled tor; and by Corollary 3 of Theorem 2.2.1
in [15] we haver; C 12. For every neighborhood (0) € 7> choose a neighborhood
U (0) € t2 such thatr; clU(0) C V(0). Since(X, 2) is locally convex, by [25, 6.5] there
exists a seff' € corp with the property &= F C U(0). Thereforericl F C t1¢clU(0) C
V(0), where the set; cl F is convex circled becausg is convex circled [36, Propositi-
on 4]. Thus for every neighborhodd(0) € t2 there exists a convex circled set=t1cl F
such that G @ C V(0) and therefore is subordinate ta;. O

Note that [19] contains many interesting examples from analysis illustrating the
situation describd by Theorem 2.4.

Further, we will consider the bitopological essence of the notion of cotopology. To this
end, it is appropriate to give a quotation from [1]: “Cotopology may be roughly defined as
the part of topology in which cospaces of a spacare used to study the properties)sf.

In the context of this statement and our arguments (see page 2 of this paper) we can state
that bitopology may be roughly defined as the part of topology in which BS’s can also be
used to study the properties of the corresponding TS'’s.

Definition 2.5. Let (X, t2) be a TS. A topologyr; on X is called a cotopology of the
topologyte and(X, 1) is a cospace ofX, 1) if the following conditions are satisfied:

(1) 71 is weaker thany.
(2) For each pointc € X and any 2-closed neighborhodd (x) there is a 1-closed
neighborhoodV (x) such thatV (x) ¢ M (x) [1].

It is not difficult to verify that if a BS(X, 11, 72) is 2-regular, then the above condition
(2) can be replaced by the following equivalent condition:

(2') Each pointx € X has a 2-neighborhood base whose elements are 1-closed.

We have thus obtained the following simple, but important result.

Theorem 2.5. In aBS (X, 11 < 12) the topologyr; is a cotopology of the regular topology
1o if and only if (X, 11, 12) is (2, 1)-regular.

Corollary 1. If fora BS (X, 11 < 12) the dimensiori2, 1)-ind X is finite, then the topology
71 is a cotopology of the regular topology.
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Proof. Follows directly from (1) of Proposition 3.1.1 in [15].0

Corollary 2. If (X, 11, 12) is a p-regular BS and (t1, t2) has the (1, 2)- rz-insertion
property, then the topologs is a cotopology of the regular topology.

Proof. Indeed, if(t1, t2) has the(1, 2)-12-insertion property, then by Theorem 213,is
coupled tor;. Hence, following Corollary 3 of Theorem 2.2.1 in [15} C 2 since
(X, 11, 12) is (1, 2)-regular. Thus it remains to use Theorem 2.5

Corollary 3. Lett; andtz be two locally convex topologies on a linear spacerhenrs is
subordinate tars if and only if the topology; is the cotopology of the regular topology.

Proof. Let the locally convex topology. be subordinate to the locally convex topology
71 On the linear spac. Clearly,r1 andz, are both regular. By Theorem 2.4Y, 11, 12)

is p-regular and(z1, 72) has the(1, 2)-to-insertion property. Hence, by Corollary 2, the
topologyzs is the cotopology of the regular topology.

On the other hand, le; and> be two locally convex topologies on the linear space
andr; be the cotopology of the (always regular) topolagy Since(X, 71, t2) is always
1l-regular and C 12, (X, 11, 72) is also(1, 2)-regular. Since X, t1, t2) is 2-regular, it is
also (2, 1)-regular by Theorem 2.5. By Definition 1.5, C 12 =— 12Ct1 and, following
Theorem 2.3(t1, t2) has the(1, 2)-t2-insertion property. Thus it remains to apply Theo-
rem2.4. O

Corollary 4. Lett1 and > be two locally convex topologies on a linear spateThen the
following conditions are equivalent

(1) 2 is subordinate tas.
(2) (71, 12) satisfies the closed neighborhoods condition in the senf# of
(3) 1 is a cotopology ofo.

Proof. It suffices to recall thatzy, 7o) satisfies the closed neighborhoods condition if
11 C 172 andt, has a base of zero element, consisting of 1-closed convex sets, and to use
condition 6.5 from [25]. O

Corollary 5. Let (X, 11 < t2) be a(2, 1)-regularBS. Then the following statements hold

(1) If (X, 11, 12) IS 2-T2 and 2-locally compact, theX, 71, t2) is 1-compact.
(2) If (X, 11, 12) is 1-compact, then X, t1, t2) is a 2-BrS and thus anA- (2, 1)-BrS, a
2-WBrSand a(2, 1)-WBrS.

Proof. Following Theorem 2.57; is a cotopology of the regular topology. Hence (1)
follows from [2] and, by (1) of Theorem 1.1, (2) follows from Theorem 2.9 in [20] since
(X, 11 < 12) Is 2-quasi regular (i.e., for every sBte 12\ {0} there is a seV € 12\ {4} such
thatroclV CU). O
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Corollary 6. A metrizableT S (X, 12) is topologically complete if and only if there exists a
topologyr; on X, weaker tharrp, for which (X, t1, 12) is (2, 1)-regular and1l-compact.

Proof. It suffices to use Theorem 2.5 together with Theorem 1 from [1].

A characterization of almogti, j)-Baire spaces, different from that given in Theo-
rem 4.1.2 [15], is based on

Definition 2.6. A [);-sifter on a BS(X, 11, 72) is a binary relation—; on the family
Ao X)={A=UNV #P: U ey, V e 12}, satisfying the following conditions:

(1) A1C;j Ap= A1 C Ao.

(2) Foreach e Ap(X) there isU e t;\{#} such thaty C; A.

(3) AjCA1Cj A2 C A, = A} Cj A

(4) IfasequenceA, ) ;C Ao(X) andA,+1C; A, foreveryn =1, oo, then,21 A, #.

It is obvious that everﬂj—sifter onAp(X) is a j-sifter on the family of all nonempty
j-open sets [7] and the result of Choquet [7] together with (5) of Theorem 4.1.3 [15] leads
to the following implications:

there is a), -sifter on(X, r1 < 2) = there is a 2-sifter 00X, 71 < 12)
= (X, 11 < 1) isa2-Br'S (X, 11 < 1) isanA-(2,1)-BrS.

In the general case we have

Theorem 2.6. If there exists aﬂj-sifter on aBS (X, 11, 1), then (X, t1, t2) is an
A-(j,i)-BrS.

Proof. By (2) of Theorem 4.1.2 in [15] it is sufficient to prove that, € 7; N j-D(X)

for eachn = 1, oo, wherej-D(X) = {A € 2%: 7;clA = X} = (21 An € j-D(X). Let

U € 7j\{#} be any set and let us prove thatN (-, A,) # 8. Clearly, forUs = U we

havef # Uy N A1 € Ag(X). By (2) of Definition 2.6 there is a séf € r;\{#} such that
U, Cj Uy N Az. Therefore, by the same condition and the fact that j-D(X) for each
n =1, oo, one can define a sequencejebpen nonempty setd/,) such that/; = U and
Upt1 Cj Uy N A, for eachn = 1, 00, ThusUp41 C Uny1 C; U, N A, C U, and, by (3)
of Definition 2.6,U,+1 C; U,. Therefore (4) of Definition 2.6 give§) 2, U, # @. On

the other hand, we havé,.1 C; U, N A, and, by (1) of Definition 2.60/> C A1, Us C

Ao, .... Hence

o0 o0 o0 o0 o0
(U.c()A: and ﬂUn:Uﬁ(ﬂUn)cUﬁ(ﬂAn>. 0
n=1 n=2

n=2 n=1 n=1

Theorem 2.6 together with (4) of Theorem 4.1.3 in [15] implies a more general result
than that of G. Choquet.
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Corollary. For aBS (X, 1 < 12) the following implications hold

there exists g, -sifter on(X, r1 < 12) = (X, 11 < 12) is anA-(1, 2)-BrS
¢
ﬂ (X, 71 < 12) is a(l, 2)-BrS
i}

there exists d-sifteron(X, 11 < 2) =— (X, 11 < 12) isal-BrS.

Hence it follows that for BS’s of the typ€X, r1 < 12), having a(");-sifter and a),-
sifter, the results obtained respectively tar 2)-BrS andA-(2, 1)-BrS in [12,15,16], are
valid.

In 4.A.6 of [26] the sufficient conditions are found for whietS 12 ina BS(X, 11 < 12).
Below we prove the same result under weaker conditions.

Theorem 2.7. If (X, 11 < 12) IS a 2-quasiregular and(1, 2)-SBrS then we have1St»
and thereford X, 11 < 12) is al-Blumberg space= (X, 11 < 12) is a2-Blumberg space,
where by[20], (X, 11 < 12) is ani-Blumberg space if for anitreal functionf on X there
is ani-dense subsdbd ¢ X such that the restrictiorf|p is continuous.

Proof. By (3) of Theorem 1.2(X, 11 < 12) is a (1,2)-SBrS<—= 12 on (X, 1) has

the propertyM. Thus, by (3) of 4.A.6 in [26] we have,\{#} C (1,2)-SD(X) = 2% \
(1,2)-ND(X). Now let U € 12\{#} be any set. Then there is a déte 72\ {#} such that
oclV C U and thereforé) = r1intzoclV C U. Thus, by (2) of Corollary 2 of Theo-
rem 2.1.1in [15] we have; St2. The rest is an immediate consequence of 4.B.4 of [26] as
well as of (2) Theorem 2.1.1 in [15] sinagSto — 1-D(X) =2-D(X). O

Assume thatd is a convex cone of nonnegative lower semicontinuous functions on a
TS (X, 1) andzs is a fine topology orX defined by the coné. Then the obtained BS in
potential theory is denoted X, t1 <¢ 12) [15].

Corollary. If a 1-TychonoffBS (X, 11 < 12) is a (2,1)-SBrS then(X, 11 <¢ 12) is @
1-Blumberg space= (X, 11 <¢ 12) IS @a2-Blumberg space.

Proof. By Corollary 1 of Theorem 7.2.1 in [15], a B&, 11 <¢ 12) iS (2, 1)-completely
regular and hence 2-quasiregulan

Now, to establish the conditions of coincidence of the families)-ND(X) and
(i, j)-Catg,(X), let us consider finite measures on BS’s. As we will see below, these finite
measures are closely related to the topologieendzy, too, and therefore to the operators
ni, Nz and n, wherety C 72 and n1(A) = t1clA\12ClA, N2(A) = r2int A\r1int A,
n(A) =n1(A) Uny(A) for every setA C X.

Definition 2.7. A subsetA of a BS (X, 11, 72) has the(i, j)-Baire property if it can be
represented ad = UAC, whereU e t; andC € (i, j)-Catg (X).
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The families of all subsets @fX, t1, 72), having the(i, j)-Baire properties, are denoted
by (i, j)-B(X), i.e.,(i, j))-B(X)={A €2X: A=UAC, Uer;, Ce(i,j)-Catg (X))}

It is obvious that, for a BS(X, 11 < 12) and a setU € 12 the setriclU\U €
(1,2)-ND(X) C (1, 2)-Catg (X) and therefore; clU = U U (z1clU\U) = U A(z1.clU\
U) € (1, 2)- B(X).

Itis clear that for a B X, 11 < 12) the following inclusions hold:

2,1)-B(X) ¢ 2-B(X)
n n
1-B(X) c (1,2-BX).

Theorem 2.8. For a BS (X, 11 < 12) the conditions below are satisfied

(1) Ae(1,2)-B(X) < A= FAD, whereF € cotp, D € (1,2)-Catg (X)) — X\A €
(1,2)-B(X).

(2) (1,2)-B(X) is ac-algebra generated by the uniaa U (1, 2)-Catg (X).

(3) Ae(1,2)-B(X) <= A=GUE,whereG € 2-Gs(X) = {A € 2X: A is a2-Gs-set,
Ee(1,2)-Catg(X) andGNE =0 <= A= F\E, whereF € 2-F,(X) ={A €
2% Alisa2-F,-set andE e (1, 2)-Catg (X).

(4) A e (1,2)-B(X) < A=VAM, whereV € (2, 1)-OD(X), i.e.,V = npintrycl V,
M e (1, 2)-Catg,(X) and for a(1, 2)-SBrSthis representation is unique.

Proof. (1) First let us prove the equivalence. K = UAC, where U € 1, C €
(1,2)-Catg (X), then N = w2clU\U € 2-N'D(X) C (1, 2)-Catg (X) and, by (1) Theo-
rem 1.1.3 in [15],D = NAC € (1, 2)-Catg(X). Let F = toclU. ThenA = UAC =
(r2clUAN)AC = 12clUA(NAC) = FAD. Conversely, leA = FAD, whereF € cotp,
D € (1,2)-Catg (X), and letU = rzint F. ThenN = F\U € 2-N'D(X) C (1, 2)-ND(X),
C=DA e (1,2)-Catg (X) andA = FAD =(UAN)AD =UAC.

The implication directly follows from the fact thaf\(UAC) = (X\U)AC and the
above equivalence.

(2) To prove that(1, 2)- B(X) is ac-algebra, by the implication in (1) it suffices to
prove that(1, 2)-B(X) is closed under countable unions. l4gt = U, AC,, whereU,, € 12
and C, € (1,2)-Catg (X) for eachn = 1,00, and letA = |72, Ay, U = U321 Un,
C =21 Cn. ThenU € 13, C € (1, 2)-Catg (X) by (1) of Theorem 1.1.3 in [15], and
U\CCACUUC.ThereforatU AA = (U\A)U(A\U) C C,i.e.,UAA € (1, 2)-Catg (X)
sothatd = UA(UAA) € (1, 2)-B(X).

Clearly, 2 U (1, 2)-Catg (X) C (1,2)-B(X) and if A is any o-algebra containing
72U (1, 2)-Catg (X), then it is not difficult to see thatl, 2)-B(X) C A.

(3) LetA=UAC, whereU € 12, C € (1, 2)-Catg (X). Then by (3) of Theorem 1.1.3
in [15] there exists a seD € 2-F,(X) N (1, 2)-Catg (X) such thatC c Q. Clearly,
0 =Jo2 1 An, WhereA, € cor2N (1, 2)-N'D(X) andG = U\ Q € 2-G5(X). Now we have
A=UAC=UACNQ)=(U\QUUNQHACNQ)=((U\QAUNQ)HACN
0)=GA(UN QACN Q) =GA(UAC)N Q) =GAE, whereG € 2-Gs(X), E €
(1,2)-Catg(X) andGNE =¢¥sothatA=GUE.

(4) Let A=UAC, U € 2 and C € (1, 2)-Catg (X). Then, by (3) of Propositi-
on1.3.1in[15]U = V\12cl B, whereV = rzintt1clU € (2,1)-OD(X) andB = V\U €
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(1,2)-N"D(X). ThereforeA = UAC = (VA(V\U))AC = VA(BAC) = VAM, where
M € (1, 2)-Catg (X).

Thus it remains only to prove that foi(&, 2)-SBrS this representation is unique. Indeed,
let A=VAM = WAN, whereV € (2,1)-OD(X), W € 12, M, N € (1, 2)-Catg (X).
Then W\r2clV € W\V € WAV = MAN € (1, 2)-Catg (X). Since W\r2clV € 2N
(1,2)-Catg (X) and (X, 1 < 12) is a (1, 2)-SBrS, we haveW\wclV =, i.e., W C
2¢lV so thatW C rpintriclV = V. Therefore in the representation= VAM, the
2-open setV € (2, 1)-OD(X) is maximal and if andW are both(2, 1)-open domains,
thenVc WandW c V,ie,V=WandM=N. 0O

Definition 2.8. Let (X, 11 < t2) be a BS andu be a finite measure on a-algebra
(1,2)-B(X). Thenu is said to be in agreement with tlig, 2)-category ifu(A) = 0 <=
A € (1,2)-Catg (X).

Theorem 2.9. Let (X, 11 < 12) be a(2, 1)-regular (1, 2)-SBrSand u be a finite measure
on (1, 2)-B(X) which is in agreement with th@, 2)-category. Then for eackopen setG
and eache > 0 there exists d-closed set’ such thatF c G, u(F) > u(G) — ¢ and for
each2-closed seftr’ there exists d-open setG such thatF c G, u(G) < u(F) +«.

Proof. Let &/ = {U} be a maximal family of nonempty disjoint 2-open sets such that
r1clU C G for eachU € U. Since (X, 11 < 12) iIs a(1,2)-SBrS,U e — U ¢
(1, 2)-Catg, (X) = u(U) > 0 and therefore the family/ is countable at most, i.e.,
U={Uy)52,. ThenV = 21U, C G. Let us prove thatG C z2clV. Indeed, if
G N (X\12¢l V) # @, then by the(2, 1)-regularity of (X, 11 < t2) there is a seH € 12\ {0}
suchthat;clH c GN(X\12¢lV),i.e.,V eld andV # U, foreachn = 1, oo, which con-
tradicts the maximality of/. HenceG\V C ¢l V\V € 2-.N"D(X) C (1,2-ND(X) C
(1, 2)-Catg (X) and thereforg.(G\V) =0, i.e., u(G) = u(U,=4 Un). For eachU € 1,
11clU\U € (1,2)-N'D(X) C (1, 2)-Catg (X). Sinceu(G) = u(Js21 Uy), for eache > 0
there existsn € N such that)";_, u(Ux) > u(G) — e. But if F = Ji_jt1clUx =
1 clUj—y U, then u(F) = p((raclUjy U\ Uiy Un) U Uiz Un) = n(Uj—, Un) =
Yo (Ur) > u(G) —&.

The rest of the proof can be obtained by passing to complements.

Corollary. Under the hypotheses of Theor@ we have

1) X,1 <1)isa(l,2)-SBrS<= (X, 11 < 12) iIs a2-Br'S<= (X, 11 < 12) iS an
A-(2,1)-BrS< (X, 11 < 1) isa (1,2)-BrS< (X, 11 < 12) is a 22-WBIS <
X,m<misalBrS« (X,1<m)isa(2,1)-WBrS« (X, 11 < ) is a
1-SBrS

(2) 2,)-ND(X) = 22ND(X) = I-ND(X) = (1,2)-ND(X) = (2, D)-Catg (X) = 2-
Catg (X) = 1-Catg (X) = (1, 2)-Catg (X).

(3) Ae(,2)-B(X) = u(A) = u(r1clA) = u(rzint A) = u(r2cl A) = u(r1int A) and
n(n(A)) =0.

(4) 2,)-B(X)=2-B(X)=1-B(X)=(1,2)-B(X).
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Proof. (1) Following Theorem 2.7, we have <gs t2 and therefore, by (4) of Theo-
rem 4.4.13 in [15](X, 11 < 12) satisfies all the equivalent Baire-like properties.

(2) Sincer1 <gs 12, by (1) of Theorem 2.1.2 in [15])2, 1)-ND(X) = 2-ND(X) =
1-ND(X) = (1, 2-N'D(X) so that(2, 1)-Catg (X) = 2-Catg (X) = 1-Catg (X) = (1, 2)-
Catg (X) and hencgl, 2)-B(X) = 2-B(X). Moreover, the conditions of Theorem 22.1
in [1] are fulfilled for the topologytz since(X, 11 < 12) is (2, 1)-regular— (X, 11 < 12)
is 2-regular and thus Theorem 22.2 in [31] gives that' 2 X) = 2-Catg (X). The rest of
the proof is obvious.

(3) The conditions of Theorem 22.3 in [31] for the topologyare satisfied and hence
w(A) = u(r2¢cl A) = u(r2int A). On the other hand, sinca <gs 12, by (b) of 4.A.2
in [26] and (2) above we obtaini(A), n2(A) € 1-ND(X) N 2-ND(X) = I-ND(X) =
2-ND(X) = (1,2)-Catg (X) and therefore Definition 2.8 gives that(ni(A)) =
n(n2(A)) = 0. Thus u(r2clA) = u(r2clA U n1(A)) = u(riclAd), p(rintAd) =
u(rrintAUnNnz(A)) = u(r1int A). The equalityu(n(A)) = 0 is obvious.

(4) From (2) above wenmmediately obtain(2,1)-B(X) = 1-B(X) C 2-B(X) =
(1, 2)-B(X). Thus it remains only to prove that 2¢X) c 1-B(X). Let A € 2-B(X),
i.e., A= UAC, whereU € 1, C € 2<Catg(X) = 1-Catg (X). But U € \{¢} and
171 <5 T2 = 11iNtU # @. ThereforeA = UAC = (1intU U (U\n1intU))AC =
(M INtUAWU\TINtU))AC = 1intUA((U\T1IntU)AC) = VAD, (U\11intU)AC €
1-Catg (X) sinceU\m1intU =n2(U) € (1, 2)-Catg (X) = 1-Catg (X). O

Remark 2.1. Theorem 2.9 and its Corollary hold for a 1-Tychonoff, 2)-SBrS (X,
11 <¢ T2) Since, by Corollary 1 of Theorem 7.2.1 in [18K, 11 <¢ 12) iS (2, 1)-comp-
letely regular and therefor@, 1)-regular.

Finally, given a topological spacgX, 7), let H(X, t) be the class of all homeomor-
phisms of(X, t) onto itself. In 1948 Everett and Ulam [17] (see also [40]) posed the fol-
lowing problem: when and how can a new topolggye constructed oqX, 7) such that
H(X, 1) =H(X, y)? Among the (partial or complete) answers to Ulam’s problem we use
the result of Lee [43], according twhich on a locally compact spac#, ) there exists
a coarse topology such thatH(X, t) = H(X, y). This result is based on the following
simple but nevertheless important

Lemma 2.1. Let (X, 7) be a topological space, and |ét(V) be a topological property
possessed by certain subsétsof X. If y = {V: P(V)} is a topology onX, then
H(X,t) CH(X,y)[43, Lemmal].

Lemma 2.2. Lett andy be two topologies foX such thaty e 1 <= U UV ¢y for all
nonemptyV in y. ThenH (X, y) C H(X, t) [43,Lemma2].

As we will see below, certain bitopologicebnditions are imposed on the considered
BS, which ensure a satisfactory solution of the problem.

It is worth noting here that the requirement{#} = 2\{0#} N 2-Catg, (X), in general,
is stronger than the one thaX, r; < t2) be a 2-WBrS. Indeeds1\{#} = 2\{9} N
2-Catg; (X) = (X, 11 < 12) is a 2-WBrS, but by Example 1.4, the BSR, w <gs s)
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and (R, w <s t) are 2-WBrS’s for whichw\{#} C s\{0} = (s\{¥}) N 2-Catg, (R) and
o\{#} C T\{/} = (r\{/}) N 2-Catg, (R).

Theorem 2.10. If (X, 71 < t2) is aBS such thatr1\{#} = (v2\{0}) N 2-Catg, (X) and for
each pointx € X there is a neighborhood (x) € 12\1-D(X), thenH(X, 11) = H(X, 12)
and (X, 11 < 12) is a2-WBrS.

Proof. Let P(V) mean thatV € t2 andV € 2-Catg, (X) (<= V is of 2Catgll). Then
the family {V: V =@ or P(V)} is exactly the topologyr;. Hence, by Lemma 2.1,
H(X, 12) C H(X, 11). If (X, 11 <12) IS a2-BrS, therr; = 1. Therefore we may assume
that(X, 71 < 12) is not a 2-BrS.

Now letU € p andV € 71\{#}}. ThenU UV € 12 and, by (4) of Theorem 1.1.3in [15],
UUYV e2<Caty,(X) < U UV is of 2Catgll. ThereforeU UV € 1.

Furthermore, leU € 72 andx € U\rzintU. By condition, there is a 2-open neighbor-
hoodV (x) such thatr;cl V (x) # X. It is obvious thatr € t2cl(z1¢cl V (x)\U) since the
contrary means that there is a neighborhd®¢k) € 7> such thatW(x) N (z1¢clV (x)\
U)=0¢, ie,Wkx)NVx) CU so thatx € pintU. Let E = X\(r1¢clV(x)\U) =
(X\t1¢lV(x)) UU. Thenx € E but E € 72 sincex € t2cl(r1 ¢l V(x)\U). Therefore for
U €1z there isV = X\t1¢lV(x) € 71 such thatyU U V € 1 and hencdJ U V € 71 since
71 C 12.

Thus by Lemma 2.2 we obtaift{(X, 1) C H(X, t2) and thereforeH (X, 11) =
H(X, 12).

The rest follows from Definition 1.10 becausg {¢} C 2-Catg, (X). O

Corallary. If (X, 11 < 12) is a 2-WBTrS such that((r2\t1) U {X}) N 2-Catg, (X) = {X}
and for each pointkt € X there is a neighborhood (x) € 12\1-D(X), thenH (X, 71) =
H(X, 12).

Proof. Follows directly from Definition 1.10. O
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