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Abstract

The paper consists of two sections. Section 1 is the introduction which, in addition to th
auxiliary information, contains some interesting results on Baire-like properties. Section 2
with the bitopological essence of the notions of relative compactness and cotopology in g
topology,C-relation, subordination of topologies and closed neighborhoods condition in analysis.
A generalization of Choquet’s theorem on Baire spaces is given and the sufficient conditio
for families of (i, j)-nowhere dense sets to coincide with families of(i, j)-first category sets
are established using a finite measure. A bitopological solution of one of Ulam’s proble
obtained. The corresponding relations are almost always studied using essentially the bitop
modifications of regularity, which, as seen in various problems of general topology, analys
potential theory, are the most natural forms of relations of two topologies defined on the same
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1. Introduction

In different areas of mathematics there are situations of both symmetric and no
metric occurrence of two topologies on the same set. For example, concrete pro
connected with nonsymmetric distance functions, quasi-uniformity, quasi-proximit
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Boolean algebras andS-related topologies belong to the first situation, while the sec
situation underlies the notions of relative compactness, cotopology andC-relation in gen-
eral topology, subordination of topologies and closed neighborhoods condition in analy
initial and fine topologies in potential theory, cohomologies of spaces with two topolog
in algebraic topology, etc.

By considering all the above cases we obtain a bitopology, i.e., an ordered p
topologies(τ1, τ2) on a setX and a bitopological space (briefly, BS) is a setX equipped
with two arbitrary topologiesτ1 and τ2. In the sequel, if(X, τ1, τ2) is a BS andP is
some topological property, then(i, j)-P denotes an analog of this property forτi with
respect toτj , and p-P denotes the conjunction(1,2)-P ∧ (2,1)-P , i.e., p-P denotes
an “absolute” bitopological analog ofP , wherep is the abbreviation for “pairwise”
Sometimes(1,2)-P ⇐⇒ (2,1)-P (and thus⇐⇒ p-P), so that it suffices to consider on
of these three bitopological analogs. Furthermore, there are certain cases for whi
not natural to considerp-P since(1,2)-P and(2,1)-P cannot represent all analogs ofP
for a simple reason that equivalent topological formulations in these cases do not r
equivalent when passing to their bitopological counterparts; in particular, this is obs
in the case of Baire spaces [15,16]. Also note that(X, τi) has a propertyP ⇐⇒ (X, τ1, τ2)

has a propertyi-P , andd-P ⇐⇒ 1-P∧2-P , whered is the abbreviation for “double”, an
alwaysi, j ∈ {1,2}, i �= j . Further, let(X, τ1, τ2) be any BS,A = {As}s∈S ⊂ 2X be any
family andA ⊂ X be any subset; then the conjugate family is coA = {X\As : As ∈ A},
τi clA andτi intA denote respectively the closure and the interior ofA in the topologyτi .

The reasons connected in an obvious or veiled manner, on the one hand, with st
(X, τ1, τ2), whereτ1 andτ2 are either independent of each other or interconnected by th
inclusion,S-, C- and N -relations [39,42,15,16] or by their various combinations or
other relations, and, on the other hand, with applications of the theory of BS’s, lead
the following basic objectives as regards two general cases:

(1) to establish pairwise properties using the properties ofτ1 andτ2 (or the properties o
one of them) or other pairwise properties (or their combinations);

(2) to establish properties ofτi using the properties ofτj or pairwise properties (or the
combinations).

As the study of various questions of the theory of BS’s shows, (1) suggests a f
development of the theory of BS’s, while (2) is natural and typical of applicati
especially wheni = 2, j = 1, τ1 ⊂ τ2. Incidentally, note that by(X, τ1 < τ2) will always
be meant a BS(X, τ1, τ2) with τ1 ⊂ τ2.

This paper deals with bitopological characterizations of some principal notio
analysis and general topology, including a new characterization of almost(i, j)-Baire
spaces obtained by generalizing the notion of a sifter introduced by Choquet [7]. W
obtain a solution of one of Ulam’s problems [17,40,43] which concerns the coincid
of the classesH(X, τ) andH(X,γ ) of all homeomorphisms of the topological space
(X, τ) and(X,γ ) onto themselves. Using a finite measure which is in agreement with th
(1,2)-category for a special class of Baire BS’s, we establish sufficient conditions fo
four families of nowhere dense sets to coincide with the four families of first categor
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interconnected by relations of “bitopological character” makes it possible to obtai
combinative effect, i.e., to get more information than in the case of considering the
set with each topology separately. We emphasize this fact since the formation and p
of the theory of BS’s (as well as of other mathematical theories) are not isolated phen
and acquire special importance in the light of applications of the obtained results. A
range of bitopological applications is given in [13,15,16].

Since the study of applications of the theory of BS’s demands special knowled
bitopologies, we would like recall some notions from this theory needed for our purpos

Many kinds of bitopological compactness imply even a greater variety of notio
bitopological local compactness. Their relations are indicated in [28].

Definition 1.1. Let (X, τ1, τ2) be a BS. Then:

(1) (X, τ1, τ2) is (i, j)-locally quasicompact (briefly,(i, j)-lqc) if each pointx ∈ X has an
i-neighborhoodU(x) such thatτj clU(x) is quasicompact [28].

(2) (X, τ1, τ2) is (i, j)-locally compact in Stoltenberg’s sense (briefly,(i, j)-Slc) if each
pointx ∈ X has ani-neighborhoodU(x) such thatτj clU(x) is j -compact [37].

(3) (X, τ1, τ2) is (i, j)-locally compact in Reilly’s sense (briefly,(i, j)-Rlc) if each point
x ∈ X has ani-neighborhoodU(x) such thatτj clU(x) is FHP-compact, i.e., ever
family U = {Us}s∈S such thatU ⊂ τ1 ∪ τ2, X = ⋃

s∈S Us and U ∩ τi contains a
nonempty set, has a finite subfamily [34].

(4) (X, τ1, τ2) is (i, j)-locally compact in Raghavan’s and Reilly’s sense (briefly,(i, j)-
RRlc) if each pointx ∈ X has aj -neighborhoodU(x) which is i-compact [33].

(5) (X, τ1, τ2) is (i, j)-locally compact in Birsan’s sense (briefly,(i, j)-Blc) if each point
x ∈ X has ani-neighborhood which isj -compact [6].

Following [29],

(i, j)-Rlc⇐	 (i, j)-lqc	⇒ (i, j)-Slc	⇒ (i, j)-Blc ⇐⇒ (j, i)-RRlc.

The notion of a zero-dimensional BS was introduced by Reilly [35] on the bas
the idea of bitopological disconnectedness studied by Swart [38]. A systematic stu
bitopological dimension functions was undertaken by Jelić [22,23],Ćirić [8] and us [10,
11,15]. As distinct from [22,23,8], the ideas set forth in [10,11,15] are essentially bas
the notions of bitopological boundaries.

Definition 1.2. For any subsetA of a BS(X, τ1, τ2) the(i, j)-boundaries ofA are the sets
(i, j)-FrA = τi clA ∩ τj cl(X\A) [10].

The notions of(i, j)-boundaries are highly important not only for defining and study
bitopological dimensions, but also for establishing the minimum principle for fi
superharmonic functions [26].

Definition 1.3. Let (X, τ1, τ2) be a BS andn denote a nonnegative integer. We say that
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(1) (i, j)- indX = −1 ⇐⇒ X = ∅.
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(2) (i, j)- indX � n if for every pointx ∈ X and any neighborhoodU(x) ∈ τi there exists
a neighborhoodV (x) ∈ τi such thatτj clV (x) ⊂ U(x) and(i, j)- ind(j, i)-FrV (x) �
n − 1.

(3) (i, j)- indX = n if (i, j)- indX � n and the inequality(i, j)- indX � n − 1 does not
hold.

(4) (i, j)- indX = ∞ if the inequality(i, j)- indX � n does not hold for anyn.

Thereforep- indX � n ⇐⇒ (1,2)- indX � n ∧ (2,1)- indX � n.
In particular, forn = 0 we obtain the notion of Reilly [35], i.e.,p- indX = 0 ⇐⇒ τ1-

open sets have a base consisting ofτ2-closed sets andτ2-open sets have a base consist
of τ1-closed sets.

TheA-insertion property of a topologyτ on a setX was defined in [26] to establis
the criterion of nonnormality of fine topologies and to characterize Baire one function
Below we define bitopological modifications of this notion with an aim to apply them
characterizing the relations between topologies.

Definition 1.4. We say that a bitopology(τ1, τ2) on a setX has the(i, j)-A-insertion
property, whereA ⊂ 2X is any family if either of the following two equivalent condition
is satisfied:

(1) For every subsetA ⊂ X there exists a setG ∈A such thatτi intA ⊂ G ⊂ τj clA.
(2) For every pair of sets(U,F ), whereU ∈ τi , F ∈ coτj andU ⊂ F , there exists a se

G ∈ A such thatU ⊂ G ⊂ F [14].

It is obvious that if(τ1, τ2) on X (τ on X) has the(i, j)-A-insertion properties (A-in-
sertion property), then∅, X ∈ A. It is likewise obvious that the antidiscrete topology onX

possesses theA-insertion property for any familyA⊂ 2X .

Remark 1.1. The following implications hold in a BS(X, τ1 < τ2) for any familyA⊂ 2X :

(τ1, τ2) has the 2-A-insertion property	⇒ (τ1, τ2) has the(1,2)-A-insertion property
⇓ ⇓

(τ1, τ2) has the(2,1)-A-insertion property	⇒ (τ1, τ2) has the 1-A-insertion property.

By reducing the emphasis on points and focusing attention on the families of
namely, on the topologies, it is possible to consider the relations on a set. The coup
topologies, i.e., theC-relation was defined by Weston [42] to generalize some well-kn
theorems on topological groups and linear spacesand to connect the same properties of
coupled topologies.

Definition 1.5. A topology τ1 is coupled to a topologyτ2 on a setX (briefly, τ1Cτ2) if
τ1 clU ⊂ τ2 clU for every setU ∈ τ1.

From this definition we immediately find that ifτ1 = coτ1, thenτ1 is coupled to every
topology onX, so that the antidiscrete topology onX as well as the discrete topology o
X is coupled to every topology onX.
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X smaller thanτ2. A topology can be coupled to a strictly larger topology and in that c
the coupling is mutual. For example, the antidiscrete topology is mutually coupled to
topology on the same set.

In [42], more interest is shown in the coupling of topologies than in the situa
τ1 clU ⊂ τ2 clU for every setU ∈ τ2 (theN -relation in our terms). This preference is bas
on the reasoning as follows: theC-relation defines a partial order� (in our notation<C ) on
the set of all topologies onX by virtue of the equivalenceτ1 <C τ2 ⇐⇒ τ1Cτ2 andτ1 ⊂ τ2,
and in his subsequent investigations J.D. Weston considered the cases whereτ1 <C τ2 and
(X, τ2) satisfies the conditions for which it is regular. If instead of the partial order<C we
consider the relation<N (which is also a partial order) by analogy with<C , then by virtue
of Theorem 1 in [42] the conditionsτ1 <N τ2 and(X, τ2) is regular (where the regularit
of (X, τ2) is not superfluous) imply thatτ1 = τ2. As distinct from the above situation, w
have the following simple

Example 1.1. Let X = {a, b, c}, τ1 = {∅, {a}, {b, c},X} and τ2 be the discrete topolog
onX. Thenτ1 <C τ2 and(X, τ2) is regular. Howeverτ1 �= τ2.

The coincidence of the topologiesτ1 <C τ2 demands a stronger requirement
(X, τ1, τ2), namely, if(X, τ1 <C τ2) is (2,1)-regular (i.e., for each pointx ∈ X and each
2-open setU ⊂ X, x ∈ U , there exists a 2-open setV ⊂ X such thatx ∈ V ⊂ τ1 clV ⊂ U ),
thenτ1 = τ2 [15].

Taking this fact into account, we have studied the so-called nearness of topologie
theN -relation in detail in [15].

Let us consider the real lineR with the lower topologyω1 = {∅,R}∪ {(a,+∞): a ∈ R}
and the upper topologyω2 = {∅,R} ∪ {(−∞, a): a ∈ R}. Thenωi is not coupled toωj ,
butωi is near toωj . A nontrivial example of near topologies is given in [16].

It is well known (see, for example, [20]) that a subsetA of a topological space (briefly
TS) (X, τ) can be of one category in(X, τ) and of another category in itself as a subsp
of (X, τ), while for open subsets of(X, τ) these categories coincide. This is the princi
factor in defining Baire spaces in various equivalent ways [20].

However, as illustrated by Example 1.5.1 in [15], unlike the topological case, a
empty i-open subset of a BS(X, τ1, τ2) can be of one(i, j)-category in(X, τ1, τ2) and
of another category in itself as a bitopological subspace of(X, τ1, τ2). These argument
are closely connected with the definitions of(i, j)-Baire spaces [12] and serve as a go
introduction to the discussion in [15] and [16].

Definition 1.6. A subsetA of a BS (X, τ1, τ2) is of (i, j)-first category inX if A =⋃∞
n=1 An, whereτi int τj clAn = ∅, i.e.,An is (i, j)-nowhere dense (An ∈ (i, j)-ND(X))

for every n = 1,∞, andA is of (i, j)-second category inX if A is not of (i, j)-first
category inX [12].

A subsetA of X is of (i, j)-first ((i, j)-second) category ifA is of (i, j)-first ((i, j)-
second) category in itself.
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The families of sets of(i, j)-first ((i, j)-second) categories inX are denoted by
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(i, j)-CatgI(X) ((i, j)-CatgII (X)), while the statementsX ∈ (i, j)-CatgI(X) (X ∈ (i, j)-
CatgII (X)) are abbreviated toX are of(i, j)-CatgI (X are of(i, j)-CatgII).

The theory of bitopological Baire spaces thoroughly developed in [15,16] is closely
associated with the Baire-like properties from [26] and therefore can be essentiall
for future studies in analysis and general topology.

Definition 1.7. An (i, j)-Baire space (briefly,(i, j)-BrS) is a BS(X, τ1, τ2) such that
U ∈ τi\{∅} 	⇒ U is of (i, j)-CatgII.

This definition immediately implies that if(X, τ1, τ2) is an (i, j)-BrS, thenX is of
(i, j)-CatgII.

Example 1.2. A natural BS(R,ω1,ω2) is an(i, j)-BrS since for every setU ∈ τi\{∅} the
bitopological subspace(U,ω′

1,ω
′
2) contains no nonempty(i, j)-nowhere dense sets. B

(ii) of Theorem 1.1.3 in [20] it is also clear that(R,ω1,ω2) is ani-BrS.

Definition 1.8. An almost(i, j)-Baire space (briefly,A-(i, j)-BrS) is a BS(X, τ1, τ2) such
thatU ∈ τi\{∅} 	⇒ U ∈ (i, j)-CatgII (X).

In [16], in particular, it is proved that for a BS(X, τ1 < τ2) the following equiv-
alence and implications are correct:(X, τ1, τ2) is a (1,2)-BrS ⇐⇒ (X, τ1, τ2) is an
A-(1,2)-BrS 	⇒ (X, τ1, τ2) is a 1-BrS, (X, τ1, τ2) is a 2-BrS	⇒ (X, τ1, τ2) is an
A-(2,1)-BrS.

Definition 1.9. A BS (X, τ1, τ2) is an(i, j)-BrS in a strong sense (briefly,S-(i, j)-BrS) if
F ∈ coτi\{∅} 	⇒ F is of (i, j)-CatgII.

If the C-relation is hereditary under 1-closed subsets, then for a BS(X, τ1 <C τ2) we
have(X, τ1, τ2) is aS-(1,2)-BrS	⇒ (X, τ1, τ2) is a(1,2)-BrS [16].

Definition 1.10. A BS (X, τ1 < τ2) is a (1,2)-strict Baire space, a(2,1)-weak Baire
space, a 2-weak Baire space and a 1-strict Baire space, respectively (briefly,(1,2)-SBrS,
(2,1)-WBrS, 2-WBrS and 1-SBrS, respectively) ifU ∈ τ2\{∅} 	⇒ U ∈ (1,2)-CatgII (X),
U ∈ τ1\{∅} 	⇒ U ∈ (2,1)-CatgII (X), U ∈ τ1\{∅} 	⇒ U ∈ 2-CatgII (X) and U ∈
τ2\{∅} 	⇒ U ∈ 1-CatgII (X), respectively [15].

The interrelations of the above-stated notions are collected in Theorem 1.1, whe
the purpose of abbreviating the conditions (1)–(3), instead of writing spaces, w
indicate only the corresponding Baire and Baire-like properties.

Theorem 1.1. The following implications hold for aBS (X, τ1 < τ2):

(1) 2-WBrS ⇐	 2-BrS ⇐	 (1,2)-SBrS	⇒ (1,2)-BrS 	⇒ 2-WBrS
⇓ ⇓ ⇓ ⇓ ⇓

(2,1)-WBrS⇐	 A- (2,1)-BrS⇐	 1-SBrS 	⇒ 1-BrS ⇐⇒ (2,1)-WBrS.
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(2) 2-WBrS ⇐	 2-BrS ⇐	 (1,2)-SBrS	⇒ (1,2)-BrS 	⇒ 2-WBrS
⇓ ⇓ ⇓ ⇓ ⇓

(2,1)-WBrS⇐	 A- (2,1)-BrS⇐⇒ 1-SBrS 	⇒ 1-BrS ⇐⇒ (2,1)-WBrS.

We have for aBS (X, τ1 <N τ2):

(3) 2-WBrS ⇐	 2-BrS ⇐⇒ (1,2)-SBrS	⇒ (1,2)-BrS 	⇒ 2-WBrS
⇓ ⇓ ⇓ ⇓ ⇓

(2,1)-WBrS⇐	 A- (2,1)-BrS⇐⇒ 1-SBrS 	⇒ 1-BrS ⇐⇒ (2,1)-WBrS.

Remark 1.3. Being an equivalence relation, theS-relation introduced in [39] express
a close relationship between two topologies on a set, which implies that if one o
members of anS-equivalence class is a Baire space, then all members of this class a
Baire spaces. For the relationsτ1 <S τ2 ⇐⇒ τ1Sτ2 andτ1 ⊂ τ2, all the above-mentione
Baire-like properties coincide [16].

Example 1.3. Let (R, s, τ ) be a BS, wheres is the half-open interval topology, i.e., th
Sorgenfrey topology onR having basic open sets of the form[a, b), while τ is the topology
with basic open sets of the form(a, b]. It is clear that neither topology is finer than the oth
inf(s, τ ) = s ∩ τ = ω is the natural topology onR, sup(s, τ ) is the discrete topology onR.
Moreover,sSτ , sS inf(s, τ ) andτS inf(s, τ ). Hence, by Remark 1.3, the BS’s(R,ω <S s)

and (R,ω <S τ) are 2-BrS’s since the natural topologyω is Baire [39], and by(1) of
Theorem 2.1.2 in [15], they are also 2-WBrS’s; neverthelessω �= s andω �= τ .

Since an abstract fine topologyτ2 on a TS(X, τ1) is any topology onX, finer thanτ1,
the Baire-like properties formulated in [26] become as follows:

Theorem 1.2. Let τ2 be a fine topology on aTS (X, τ1). Then:

(1) (X, τ2) is a weak Baire space with respect toτ1 ⇐⇒ (X, τ1, τ2) is anA-(2,1)-BrS.
(2) τ2 on aTS (X, τ1) has the Slobodnik property⇐⇒ (X, τ1, τ2) is a (1,2)-BrS.
(3) τ2 on aTS (X, τ1) has the propertyM ⇐⇒ (X, τ1, τ2) is a inebreak(1,2)-SBrS [16].

2. The naturality of relations between some principal concepts of general topology,
analysis, and bitopology. Applications

As said in [4], to extend some results obtained for compact and metric spaces, v
authors, in particular, Arhangelskiı̌ [3], Filippov [18], Hodel [21], Juhász [24], Nagata [30
Ponomarev [32], used the idea of relating compact subsets to the topology of a sp
means of a special cover or a family of covers. The notion of relative compactness ba
the relation of two topologies on the same set and used by Z. Balogh instead of the
mentioned idea clearly reveals, even at first glance, the bitopological essence of this
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relative compactness. Further, using the method of application in the opposite dire
we come to interesting and important results related to the varieties of bitopologica
compactness. Moreover, the strengthening of relative compactness makes it pos
connect the resulting strong relative compactness with a special-type local compa
through an equivalence relation.

Definition 2.1. In a BS(X, τ1, τ2) the topologyτi is compact with respect to the topolog
τj if for every i-open coverU of X and for each pointx ∈ X there is aj -neighborhood of
x covered by a finite subfamily ofU [5].

Now Definition 1.1 readily implies

Theorem 2.1. The following implications hold for aBS (X, τ1, τ2):

(X, τ1, τ2) is (j, i)-lqc	⇒ (X, τ1, τ2) is (j, i)-Slc	⇒ (X, τ1, τ2) is (j, i)-Blc

⇐⇒ (X, τ1, τ2) is (i, j)-RRlc	⇒ τi is compact with respect toτj .

Proof. By the implications given after Definition 1.1 it suffices to prove only the
implication of the theorem. LetU = {Us}s∈S be anyi-open cover ofX and letx ∈ X

be an arbitrary point. Then by (4) of Definition 1.1 there exists aj -neighborhoodU(x)

which is i-compact. Clearly,U = {Us}s∈S is also ani-open cover ofU(x) and thusU has
a finite subfamilyU ′ = {Usk }nk=1 such thatU(x) ⊂ ⋃n

k=1 Usk . Henceτi is compact with
respect toτj . �

Clearly, using the relative compactness argument and the well-known notions
general topology, the bitopological assertion of Theorem 2.1 gives many interesting
from [4] and [5]. Let us now establish the conditions under which the inverse implic
to the last implication in Theorem 2.1 is true.

Definition 2.2. A subsetA of a BS(X, τ1, τ2) is said to bei-extendable if for everyi-open
coverU ′ of A there is ani-open coverU of X such thatU ′ ⊂ U andU ∩ A = ∅ for each
U ∈ U \U ′. In that caseU is said to bei-extended fromA.

It is obvious that everyi-closed setF , ∅ �= F �= X, is i-extendable, while there are n
i-densei-extendable subsets ofX.

If in a BS (X, τ1, τ2) the topologyτi is compact with respect to the topologyτj , then for
an arbitrary pointx ∈ X and everyi-open coverU of X thej -neighborhoodofx mentioned
in Definition 2.1 will be denoted byUU (x).

Definition 2.3. In a BS(X, τ1, τ2) the topologyτi is strongly compact with respect to th
topologyτj if τi is compact with respect toτj and for every pointx ∈ X there is aj -open
i-extendable neighborhoodU(x) such thatU(x) ⊂ UU (x) for everyi-open coverU of X,
i-extended fromU(x).
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Theorem 2.2. If in a BS (X, τ1, τ2) the topologyτi is strongly compact with respect to the
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topologyτj , then(X, τ1, τ2) is (i, j)-RRlc (⇐⇒ (j, i)-Blc).

Proof. Let x ∈ X be any point andU(x) an i-extendablej -neighborhood ofx, whose
existence follows from the conditions of the theorem. We are to prove thatU(x) is the
requiredi-compactj -neighborhood ofx. If U ′ is any i-open cover ofU(x), then there
exists ani-open coverU of X, i-extended fromU(x) and containingU ′ as a subfamily
Sinceτi is strongly compact with respect toτj , there is aj -neighborhoodUU (x) such that
U(x) ⊂ UU (x) andUU (x) is covered by a finite subfamilyU ′′ ⊂ U . It is obvious thatU(x)

is also covered byU ′′ andU ′′ ⊂ U ′ sinceU ∈ U\U ′ implies thatU ∩ U(x) = ∅. �
Corollary 1. Let for any pointx of a BS (X, τ1, τ2) there exists ani-extendablej -neigh-
borhoodU(x) such thatU(x) ⊂ UU (x) for everyi-open coverU of X, i-extended from
U(x). Then(X, τ1, τ2) is an(i, j)-RRlc (⇐⇒ (j, i)-Blc) if and only ifτi is compact with
respect toτj .

Proof. Follows directly from Theorems 2.1 and 2.2.�

Corollary 2. If for a p-T2, i.e., p-HausdorffBS (X, τ1, τ2) the topologyτi is strongly
compact with respect to the topologyτj , then τi ⊂ τj , where(X, τ1, τ2) is p-T2 if for
each pair of distinct pointsx, y ∈ X there exist disjoint neighborhoodsU(x) ∈ τ1 and
V (y) ∈ τ2.

Proof. It suffices to use Proposition 10 from [6].�
Furthermore, as we will see below, there are aspects of bitopological insertions c

connected with characterizations of theC-relation and, as a result, with different notio
from analysis.

Theorem 2.3. The following conditions are equivalent in aBS (X, τ1, τ2):

(1) τ1 is coupled toτ2.
(2) (τ1, τ2) has the(2,1)-τ1-insertion property.
(3) For every setU ∈ τ2 there exists a setV ∈ τ1 such thatU ⊂ V andτ1 clU = τ1 clV .

Proof. (1) ⇔ (2). Let A ⊂ X be any set. Then by (3) of Theorem 2.2.1 in [1
τ2 intA ⊂ τ1 int τ1 clA and if V = τ1 int τ1 clA, (1) of Definition 1.4 implies that(τ1, τ2)

has the(2,1)-τ1-insertion property. Conversely, ifA ⊂ X is any subset, then by (1) o
Definition 1.4 there exists a setV ∈ τ1 such thatτ2 intA ⊂ V ⊂ τ1 clA and therefore
τ2 intA ⊂ τ1 int τ1 clA. To complete the proof, it remains to use (3) of Theorem 2
in [15].

(2) ⇔ (3). If U ∈ τ2 is any set, then by (2) of Definition 1.4 there exists a setV ∈ τ1
such thatU ⊂ V ⊂ τ1 clU and henceτ1 clU = τ1 clV . Conversely, letU ∈ τ2, F ∈ coτ1
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andU ⊂ F . Then there exists a setV ∈ τ1 such thatU ⊂ V andτ1 clU = τ1 clV . Therefore
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U ⊂ V ⊂ τ1 clV = τ1 clU ⊆ F , so thatU ⊂ V ⊂ F . �
Corollary 1. The following conditions are equivalent for aBS (X, τ1, τ2):

(1) τ1 <C τ2.
(2) τ1 andτ2 are weakly connected in the sense of[27].

Proof. Follows directly from Definition 1 in [27] and (3) of Theorem 2.3.�
Corollary 2. A locally convex linearTS (X, τ1) is barrelled if and only if the bitopolog
(τ1, τ2) has the(2,1)-τ1-insertion property for any locally convex topologyτ2 admitted
byX.

Proof. It suffices to use Theorem 2.3 and the arguments from [42].�
Corollary 3. Every locally convex linearTS of the second category is barrelled.

Proof. Let (X, τ1) be any locally convex linear TS and(X, τ1) be ofCatgII. If τ2 is any
locally convex topology onX, then the conditions of Theorem 3 from [42] are satisfi
and hence, by virtue of the same theorem and Theorem 2.3, the bitopology(τ1, τ2) on X

has the(2,1)-τ1-insertion property. Thus it remains to use Corollary 2.�
Corollary 4. A barrelled linearTS (X, τ1) is ofCatgII (or metrizable) if there is a locally
convex topologyτ2 onX, larger thanτ1, such that(X, τ2) is ofCatgII (or metrizable).

Proof. Let (X, τ1) be a barrelled linear TS andτ2 be a locally convex topology onX, larger
thanτ1. Then by Corollary 2, the bitopology(τ1, τ2) has the(2,1)-τ1-insertion property
and it remains to use Theorem 6 (or Theorem 7) from [42].�

It should however be noted that by an example from [41],(X, τ1) can be a barrelle
linear TS of the first category although(X, τ2) is a linear TS of the second category w
τ1 ⊂ τ2.

Definition 2.4. Let τ1 andτ2 be two locally convex topologies on a linear spaceX. Then
the topologyτ2 is subordinate to the topologyτ1 if τ2 is finer thanτ1 and there exists a bas
of 2-neighborhoods of 0 (zero element) consisting of 1-closed convex circled sets [1

The significance of the notion of subordination is confirmed by the results from [1

Theorem 2.4. Let τ1 and τ2 be two locally convex topologies on a linear spaceX. Then
τ2 is subordinate toτ1 if and only if theBS (X, τ1, τ2) is p-regular and(τ1, τ2) has the
(1,2)-τ2-insertion property.
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Proof. First we assume thatτ2 is subordinate toτ1. Thenτ1 ⊂ τ2 and thereforeτ2 clU ⊂
-
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τ1 clU for eachU ∈ τ2, so thatτ2 is coupled toτ1. Hence, by Corollary 2 of Theo
rem 2.3,(τ1, τ2) has the(1,2)-τ2-insertion property. Moreover,(X, τ2) has a local bas
consisting of 1-closed sets. Therefore(X, τ1, τ2) is (2,1)-regular. On the other han
(X, τ1) is also a locally convex linear TS having a local base consisting of 1-closed
[25, 6.5], i.e.,(X, τ1) is regular. It is clear that(X, τ1, τ2) is (1,2)-regular (i.e., for each
pointx ∈ X and each 1-open setU ⊂ X, x ∈ U , there exists a 1-open setV ⊂ X such that
x ∈ V ⊂ τ2 clV ⊂ U ) sinceτ1 ⊂ τ2 and hence(X, τ1, τ2) is p-regular.

Conversely, assume that a BS(X, τ1, τ2), whereτ1 and τ2 are two locally convex
topologies on a linear spaceX, isp-regular and(τ1, τ2) has the(1,2)-τ2-insertion property
Hence, by (2) of Theorem 2.3,τ2 is coupled toτ1 and by Corollary 3 of Theorem 2.2.
in [15] we haveτ1 ⊂ τ2. For every neighborhoodV (0) ∈ τ2 choose a neighborhoo
U(0) ∈ τ2 such thatτ1 clU(0) ⊂ V (0). Since(X, τ2) is locally convex, by [25, 6.5] ther
exists a setF ∈ coτ2 with the property 0∈ F ⊂ U(0). Thereforeτ1 clF ⊂ τ1 clU(0) ⊂
V (0), where the setτ1 clF is convex circled becauseF is convex circled [36, Proposit
on 4]. Thus for every neighborhoodV (0) ∈ τ2 there exists a convex circled setΦ = τ1 clF
such that 0∈ Φ ⊂ V (0) and thereforeτ2 is subordinate toτ1. �

Note that [19] contains many interesting examples from analysis illustrating
situation described by Theorem 2.4.

Further, we will consider the bitopological essence of the notion of cotopology. To
end, it is appropriate to give a quotation from [1]: “Cotopology may be roughly define
the part of topology in which cospaces of a spaceX are used to study the properties ofX”.
In the context of this statement and our arguments (see page 2 of this paper) we ca
that bitopology may be roughly defined as the part of topology in which BS’s can al
used to study the properties of the corresponding TS’s.

Definition 2.5. Let (X, τ2) be a TS. A topologyτ1 on X is called a cotopology of th
topologyτ2 and(X, τ1) is a cospace of(X, τ2) if the following conditions are satisfied:

(1) τ1 is weaker thanτ2.
(2) For each pointx ∈ X and any 2-closed neighborhoodM(x) there is a 1-close

neighborhoodN(x) such thatN(x) ⊂ M(x) [1].

It is not difficult to verify that if a BS(X, τ1, τ2) is 2-regular, then the above conditio
(2) can be replaced by the following equivalent condition:

(2′) Each pointx ∈ X has a 2-neighborhood base whose elements are 1-closed.
We have thus obtained the following simple, but important result.

Theorem 2.5. In a BS (X, τ1 < τ2) the topologyτ1 is a cotopology of the regular topolog
τ2 if and only if(X, τ1, τ2) is (2,1)-regular.

Corollary 1. If for a BS (X, τ1 < τ2) the dimension(2,1)- indX is finite, then the topolog
τ1 is a cotopology of the regular topologyτ2.
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Proof. Follows directly from (1) of Proposition 3.1.1 in [15].�
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Corollary 2. If (X, τ1, τ2) is a p-regular BS and (τ1, τ2) has the(1,2)-τ2-insertion
property, then the topologyτ1 is a cotopology of the regular topologyτ2.

Proof. Indeed, if(τ1, τ2) has the(1,2)-τ2-insertion property, then by Theorem 2.3,τ2 is
coupled toτ1. Hence, following Corollary 3 of Theorem 2.2.1 in [15],τ1 ⊂ τ2 since
(X, τ1, τ2) is (1,2)-regular. Thus it remains to use Theorem 2.5.�
Corollary 3. Letτ1 andτ2 be two locally convex topologies on a linear spaceX. Thenτ2 is
subordinate toτ1 if and only if the topologyτ1 is the cotopology of the regular topologyτ2.

Proof. Let the locally convex topologyτ2 be subordinate to the locally convex topolo
τ1 on the linear spaceX. Clearly,τ1 andτ2 are both regular. By Theorem 2.4,(X, τ1, τ2)

is p-regular and(τ1, τ2) has the(1,2)-τ2-insertion property. Hence, by Corollary 2, t
topologyτ1 is the cotopology of the regular topologyτ2.

On the other hand, letτ1 andτ2 be two locally convex topologies on the linear spaceX

andτ1 be the cotopology of the (always regular) topologyτ2. Since(X, τ1, τ2) is always
1-regular andτ1 ⊂ τ2, (X, τ1, τ2) is also(1,2)-regular. Since(X, τ1, τ2) is 2-regular, it is
also(2,1)-regular by Theorem 2.5. By Definition 1.5,τ1 ⊂ τ2 	⇒ τ2Cτ1 and, following
Theorem 2.3,(τ1, τ2) has the(1,2)-τ2-insertion property. Thus it remains to apply The
rem 2.4. �
Corollary 4. Let τ1 andτ2 be two locally convex topologies on a linear spaceX. Then the
following conditions are equivalent:

(1) τ2 is subordinate toτ1.
(2) (τ1, τ2) satisfies the closed neighborhoods condition in the sense of[9].
(3) τ1 is a cotopology ofτ2.

Proof. It suffices to recall that(τ1, τ2) satisfies the closed neighborhoods condition
τ1 ⊂ τ2 andτ2 has a base of zero element, consisting of 1-closed convex sets, and
condition 6.5 from [25]. �
Corollary 5. Let (X, τ1 < τ2) be a(2,1)-regularBS. Then the following statements hol:

(1) If (X, τ1, τ2) is 2-T2 and2-locally compact, then(X, τ1, τ2) is 1-compact.
(2) If (X, τ1, τ2) is 1-compact, then(X, τ1, τ2) is a 2-BrS and thus anA- (2,1)-BrS, a

2-WBrS and a(2,1)-WBrS.

Proof. Following Theorem 2.5,τ1 is a cotopology of the regular topologyτ2. Hence (1)
follows from [2] and, by (1) of Theorem 1.1, (2) follows from Theorem 2.9 in [20] si
(X, τ1 < τ2) is 2-quasi regular (i.e., for every setU ∈ τ2\{∅} there is a setV ∈ τ2\{∅} such
thatτ2 clV ⊂ U ). �
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Corollary 6. A metrizableTS (X, τ2) is topologically complete if and only if there exists a
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topologyτ1 onX, weaker thanτ2, for which(X, τ1, τ2) is (2,1)-regular and1-compact.

Proof. It suffices to use Theorem 2.5 together with Theorem 1 from [1].�
A characterization of almost(i, j)-Baire spaces, different from that given in The

rem 4.1.2 [15], is based on

Definition 2.6. A
⋂

j -sifter on a BS(X, τ1, τ2) is a binary relation�j on the family
A0(X) = {A = U ∩ V �= ∅: U ∈ τ1, V ∈ τ2}, satisfying the following conditions:

(1) A1 �j A2 	⇒ A1 ⊂ A2.
(2) For eachA ∈ A0(X) there isU ∈ τj\{∅} such thatU �j A.
(3) A′

1 ⊂ A1 �j A2 ⊂ A′
2 	⇒ A′

1 �j A′
2.

(4) If a sequence(An)
∞
n=1⊂A0(X) andAn+1 �jAn for everyn=1,∞, then

⋂∞
n=1An �= ∅.

It is obvious that every
⋂

j -sifter onA0(X) is aj -sifter on the family of all nonempt
j -open sets [7] and the result of Choquet [7] together with (5) of Theorem 4.1.3 [15]
to the following implications:

there is a
⋂

2 -sifter on(X, τ1 < τ2) 	⇒ there is a 2-sifter on(X, τ1 < τ2)

	⇒ (X, τ1 < τ2) is a 2-BrS	⇒ (X, τ1 < τ2) is anA-(2,1)-BrS.

In the general case we have

Theorem 2.6. If there exists a
⋂

j -sifter on a BS (X, τ1, τ2), then (X, τ1, τ2) is an
A- (j, i)-BrS.

Proof. By (2) of Theorem 4.1.2 in [15] it is sufficient to prove thatAn ∈ τi ∩ j -D(X)

for eachn = 1,∞, wherej -D(X) = {A ∈ 2X: τj clA = X} 	⇒ ⋂∞
n=1 An ∈ j -D(X). Let

U ∈ τj\{∅} be any set and let us prove thatU ∩ (
⋂∞

n=1 An) �= ∅. Clearly, forU1 = U we
have∅ �= U1 ∩ A1 ∈ A0(X). By (2) of Definition 2.6 there is a setU2 ∈ τj\{∅} such that
U2 �j U1 ∩ A1. Therefore, by the same condition and the fact thatAn ∈ j -D(X) for each
n = 1,∞, one can define a sequence ofj -open nonempty sets(Un) such thatU1 = U and
Un+1 �j Un ∩ An for eachn = 1,∞. ThusUn+1 ⊂ Un+1 �j Un ∩ An ⊂ Un and, by (3)
of Definition 2.6,Un+1 �j Un. Therefore (4) of Definition 2.6 gives

⋂∞
n=1 Un �= ∅. On

the other hand, we haveUn+1 �j Un ∩ An and, by (1) of Definition 2.6,U2 ⊂ A1, U3 ⊂
A2, . . . . Hence

∞⋂
n=2

Un ⊂
∞⋂

n=1

An and
∞⋂

n=1

Un = U ∩
( ∞⋂

n=2

Un

)
⊂ U ∩

( ∞⋂
n=1

An

)
. �

Theorem 2.6 together with (4) of Theorem 4.1.3 in [15] implies a more general r
than that of G. Choquet.
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Corollary. For a BS (X, τ1 < τ2) the following implications hold:

,

-
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there exists a
⋂

1 -sifter on(X, τ1 < τ2) 	⇒ (X, τ1 < τ2) is anA-(1,2)-BrS��� �
(X, τ1 < τ2) is a (1,2)-BrS

⇓
there exists a1-sifter on(X, τ1 < τ2) 	⇒ (X, τ1 < τ2) is a1-BrS.

Hence it follows that for BS’s of the type(X, τ1 < τ2), having a
⋂

1-sifter and a
⋂

2-
sifter, the results obtained respectively for(1,2)-BrS andA-(2,1)-BrS in [12,15,16], are
valid.

In 4.A.6 of [26] the sufficient conditions are found for whichτ1Sτ2 in a BS(X, τ1 < τ2).
Below we prove the same result under weaker conditions.

Theorem 2.7. If (X, τ1 < τ2) is a 2-quasiregular and(1,2)-SBrS, then we haveτ1Sτ2

and therefore(X, τ1 < τ2) is a1-Blumberg space	⇒ (X, τ1 < τ2) is a2-Blumberg space
where by[20], (X, τ1 < τ2) is ani-Blumberg space if for anyi-real functionf onX there
is ani-dense subsetD ⊂ X such that the restrictionf |D is continuous.

Proof. By (3) of Theorem 1.2,(X, τ1 < τ2) is a (1,2)-SBrS⇐⇒ τ2 on (X, τ1) has
the propertyM. Thus, by (3) of 4.A.6 in [26] we haveτ2\{∅} ⊂ (1,2)-SD(X) = 2X \
(1,2)-ND(X). Now let U ∈ τ2\{∅} be any set. Then there is a setV ∈ τ2\{∅} such that
τ2 clV ⊂ U and therefore∅ �= τ1 int τ2 clV ⊂ U . Thus, by (2) of Corollary 2 of Theo
rem 2.1.1 in [15] we haveτ1Sτ2. The rest is an immediate consequence of 4.B.4 of [26
well as of (2) Theorem 2.1.1 in [15] sinceτ1Sτ2 	⇒ 1-D(X) = 2-D(X). �

Assume thatΦ is a convex cone of nonnegative lower semicontinuous functions
TS (X, τ1) andτ2 is a fine topology onX defined by the coneΦ. Then the obtained BS i
potential theory is denoted by(X, τ1 <Φ τ2) [15].

Corollary. If a 1-TychonoffBS (X, τ1 <Φ τ2) is a (2,1)-SBrS, then(X, τ1 <Φ τ2) is a
1-Blumberg space	⇒ (X, τ1 <Φ τ2) is a 2-Blumberg space.

Proof. By Corollary 1 of Theorem 7.2.1 in [15], a BS(X, τ1 <Φ τ2) is (2,1)-completely
regular and hence 2-quasiregular.�

Now, to establish the conditions of coincidence of the families(i, j)-ND(X) and
(i, j)-CatgI(X), let us consider finite measures on BS’s. As we will see below, these
measures are closely related to the topologiesτ1 andτ2, too, and therefore to the operato
n1, n2 and n, where τ1 ⊂ τ2 and n1(A) = τ1 clA\τ2 clA, n2(A) = τ2 intA\τ1 intA,
n(A) = n1(A) ∪ n2(A) for every setA ⊂ X.

Definition 2.7. A subsetA of a BS (X, τ1, τ2) has the(i, j)-Baire property if it can be
represented asA = U�C, whereU ∈ τj andC ∈ (i, j)-CatgI(X).
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The families of all subsets of(X, τ1, τ2), having the(i, j)-Baire properties, are denoted

to

d
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by (i, j)-B(X), i.e.,(i, j)-B(X) = {A ∈ 2X: A = U�C, U ∈ τj , C ∈ (i, j)-CatgI(X)}.
It is obvious that, for a BS(X, τ1 < τ2) and a setU ∈ τ2 the setτ1 clU\U ∈

(1,2)-ND(X) ⊂ (1,2)-CatgI(X) and thereforeτ1 clU = U ∪ (τ1 clU\U) = U�(τ1 clU\
U) ∈ (1,2)-B(X).

It is clear that for a BS(X, τ1 < τ2) the following inclusions hold:

(2,1)-B(X) ⊂ 2-B(X)

∩ ∩
1-B(X) ⊂ (1,2)-B(X).

Theorem 2.8. For a BS (X, τ1 < τ2) the conditions below are satisfied:

(1) A ∈ (1,2)-B(X) ⇐⇒ A = F�D, whereF ∈ coτ2, D ∈ (1,2)-CatgI(X) 	⇒ X\A ∈
(1,2)-B(X).

(2) (1,2)-B(X) is aσ -algebra generated by the unionτ2 ∪ (1,2)-CatgI(X).
(3) A ∈ (1,2)-B(X) ⇐⇒ A = G ∪ E, whereG ∈ 2-Gδ(X) = {A ∈ 2X: A is a 2-Gδ-set},

E ∈ (1,2)-CatgI(X) and G ∩ E = ∅ ⇐⇒ A = F\E, whereF ∈ 2-Fσ (X) = {A ∈
2X: A is a 2-Fσ -set} andE ∈ (1,2)-CatgI(X).

(4) A ∈ (1,2)-B(X) ⇐⇒ A = V �M, whereV ∈ (2,1)-OD(X), i.e., V = τ2 int τ1 clV ,
M ∈ (1,2)-CatgI(X) and for a(1,2)-SBrSthis representation is unique.

Proof. (1) First let us prove the equivalence. IfA = U�C, where U ∈ τ2, C ∈
(1,2)-CatgI(X), thenN = τ2 clU\U ∈ 2-ND(X) ⊂ (1,2)-CatgI(X) and, by (1) Theo-
rem 1.1.3 in [15],D = N�C ∈ (1,2)-CatgI(X). Let F = τ2 clU . Then A = U�C =
(τ2 clU�N)�C = τ2 clU�(N�C) = F�D. Conversely, letA = F�D, whereF ∈ coτ2,
D ∈ (1,2)-CatgI(X), and letU = τ2 intF . ThenN = F\U ∈ 2-ND(X) ⊂ (1,2)-ND(X),
C = D� ∈ (1,2)-CatgI(X) andA = F�D = (U�N)�D = U�C.

The implication directly follows from the fact thatX\(U�C) = (X\U)�C and the
above equivalence.

(2) To prove that(1,2)-B(X) is a σ -algebra, by the implication in (1) it suffices
prove that(1,2)-B(X) is closed under countable unions. LetAn = Un�Cn, whereUn ∈ τ2
and Cn ∈ (1,2)-CatgI(X) for eachn = 1,∞, and let A = ⋃∞

n=1 An, U = ⋃∞
n=1 Un,

C = ⋃∞
n=1 Cn. ThenU ∈ τ2, C ∈ (1,2)-CatgI(X) by (1) of Theorem 1.1.3 in [15], an

U\C ⊂ A ⊂ U ∪C. ThereforeU�A = (U\A)∪ (A\U) ⊂ C, i.e.,U�A ∈ (1,2)-CatgI(X)

so thatA = U�(U�A) ∈ (1,2)-B(X).
Clearly, τ2 ∪ (1,2)-CatgI(X) ⊂ (1,2)-B(X) and if A is any σ -algebra containing

τ2 ∪ (1,2)-CatgI(X), then it is not difficult to see that(1,2)-B(X) ⊂A.
(3) Let A = U�C, whereU ∈ τ2, C ∈ (1,2)-CatgI(X). Then by (3) of Theorem 1.1.

in [15] there exists a setQ ∈ 2-Fσ (X) ∩ (1,2)-CatgI(X) such thatC ⊂ Q. Clearly,
Q = ⋃∞

n=1 An, whereAn ∈ coτ2∩(1,2)-ND(X) andG = U\Q ∈ 2-Gδ(X). Now we have
A = U�C = U�(C ∩ Q) = ((U\Q) ∪ (U ∩ Q))�(C ∩ Q) = ((U\Q)�(U ∩ Q))�(C ∩
Q) = G�((U ∩ Q)�(C ∩ Q)) = G�((U�C) ∩ Q) = G�E, whereG ∈ 2-Gδ(X), E ∈
(1,2)-CatgI(X) andG ∩ E = ∅ so thatA = G ∪ E.

(4) Let A = U�C, U ∈ τ2 and C ∈ (1,2)-CatgI(X). Then, by (3) of Propositi
on 1.3.1 in [15],U = V \τ2 clB, whereV = τ2 int τ1 clU ∈ (2,1)-OD(X) andB = V \U ∈
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(1,2)-ND(X). ThereforeA = U�C = (V �(V \U))�C = V �(B�C) = V �M, where

ed,

,

that

.,
M ∈ (1,2)-CatgI(X).
Thus it remains only to prove that for a(1,2)-SBrS this representation is unique. Inde

let A = V �M = W�N , whereV ∈ (2,1)-OD(X), W ∈ τ2, M, N ∈ (1,2)-CatgI(X).
Then W\τ2 clV ⊂ W\V ⊂ W�V = M�N ∈ (1,2)-CatgI(X). SinceW\τ2 clV ∈ τ2 ∩
(1,2)-CatgI(X) and (X, τ1 < τ2) is a (1,2)-SBrS, we haveW\τ2 clV = ∅, i.e., W ⊂
τ2 clV so thatW ⊂ τ2 int τ1 clV = V . Therefore in the representationA = V �M, the
2-open setV ∈ (2,1)-OD(X) is maximal and ifV andW are both(2,1)-open domains
thenV ⊂ W andW ⊂ V , i.e.,V = W andM = N . �
Definition 2.8. Let (X, τ1 < τ2) be a BS andµ be a finite measure on aσ -algebra
(1,2)-B(X). Thenµ is said to be in agreement with the(1,2)-category ifµ(A) = 0 ⇐⇒
A ∈ (1,2)-CatgI(X).

Theorem 2.9. Let (X, τ1 < τ2) be a(2,1)-regular (1,2)-SBrSandµ be a finite measure
on (1,2)-B(X) which is in agreement with the(1,2)-category. Then for each2-open setG
and eachε > 0 there exists a1-closed setF such thatF ⊂ G, µ(F) > µ(G) − ε and for
each2-closed setF there exists a1-open setG such thatF ⊂ G, µ(G) < µ(F) + ε.

Proof. Let U = {U} be a maximal family of nonempty disjoint 2-open sets such
τ1 clU ⊂ G for each U ∈ U . Since (X, τ1 < τ2) is a (1,2)-SBrS, U ∈ U 	⇒ U ∈
(1,2)-CatgII (X) 	⇒ µ(U) > 0 and therefore the familyU is countable at most, i.e
U = {Un}∞n=1. Then V = ⋃∞

n=1 Un ⊂ G. Let us prove thatG ⊂ τ2 clV . Indeed, if
G∩ (X\τ2 clV ) �= ∅, then by the(2,1)-regularity of(X, τ1 < τ2) there is a setH ∈ τ2\{∅}
such thatτ1 clH ⊂ G∩(X\τ2 clV ), i.e.,V ∈ U andV �= Un for eachn = 1,∞, which con-
tradicts the maximality ofU . HenceG\V ⊂ τ2 clV \V ∈ 2-ND(X) ⊂ (1,2)-ND(X) ⊂
(1,2)-CatgI(X) and thereforeµ(G\V ) = 0, i.e.,µ(G) = µ(

⋃∞
n=1 Un). For eachU ∈ τ2,

τ1 clU\U ∈ (1,2)-ND(X) ⊂ (1,2)-CatgI(X). Sinceµ(G) = µ(
⋃∞

n=1 Un), for eachε > 0
there existsn ∈ N such that

∑n
k=1 µ(Uk) > µ(G) − ε. But if F = ⋃n

k=1 τ1 clUk =
τ1 cl

⋃n
k=1 Uk , thenµ(F) = µ((τ1 cl

⋃n
k=1 Uk\⋃n

k=1 Uk) ∪ ⋃n
k=1 Uk) = µ(

⋃n
k=1 Uk) =∑n

k=1 µ(Uk) > µ(G) − ε.
The rest of the proof can be obtained by passing to complements.�

Corollary. Under the hypotheses of Theorem2.9 we have:

(1) (X, τ1 < τ2) is a (1,2)-SBrS⇐⇒ (X, τ1 < τ2) is a 2-BrS ⇐⇒ (X, τ1 < τ2) is an
A-(2,1)-BrS ⇐⇒ (X, τ1 < τ2) is a (1,2)-BrS ⇐⇒ (X, τ1 < τ2) is a 2-WBrS ⇐⇒
(X, τ1 < τ2) is a 1-BrS ⇐⇒ (X, τ1 < τ2) is a (2,1)-WBrS ⇐⇒ (X, τ1 < τ2) is a
1-SBrS.

(2) (2,1)-ND(X) = 2-ND(X) = 1-ND(X) = (1,2)-ND(X) = (2,1)-CatgI(X) = 2-
CatgI(X) = 1-CatgI(X) = (1,2)-CatgI(X).

(3) A ∈ (1,2)-B(X) 	⇒ µ(A) = µ(τ1 clA) = µ(τ2 intA) = µ(τ2 clA) = µ(τ1 intA) and
µ(n(A)) = 0.

(4) (2,1)-B(X) = 2-B(X) = 1-B(X) = (1,2)-B(X).
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Proof. (1) Following Theorem 2.7, we haveτ1 <S τ2 and therefore, by (4) of Theo-

.1

e

r-
fol-

use

g

red
rem 4.4.13 in [15],(X, τ1 < τ2) satisfies all the equivalent Baire-like properties.
(2) Sinceτ1 <S τ2, by (1) of Theorem 2.1.2 in [15],(2,1)-ND(X) = 2-ND(X) =

1-ND(X) = (1,2)-ND(X) so that(2,1)-CatgI(X) = 2-CatgI(X) = 1-CatgI(X) = (1,2)-
CatgI(X) and hence(1,2)-B(X) = 2-B(X). Moreover, the conditions of Theorem 22
in [1] are fulfilled for the topologyτ2 since(X, τ1 < τ2) is (2,1)-regular	⇒ (X, τ1 < τ2)

is 2-regular and thus Theorem 22.2 in [31] gives that 2-ND(X) = 2-CatgI(X). The rest of
the proof is obvious.

(3) The conditions of Theorem 22.3 in [31] for the topologyτ2 are satisfied and henc
µ(A) = µ(τ2 clA) = µ(τ2 intA). On the other hand, sinceτ1 <S τ2, by (b) of 4.A.2
in [26] and (2) above we obtainn1(A), n2(A) ∈ 1-ND(X) ∩ 2-ND(X) = 1-ND(X) =
2-ND(X) = (1,2)-CatgI(X) and therefore Definition 2.8 gives thatµ(n1(A)) =
µ(n2(A)) = 0. Thus µ(τ2 clA) = µ(τ2 clA ∪ n1(A)) = µ(τ1 clA), µ(τ2 intA) =
µ(τ1 intA ∪ n2(A)) = µ(τ1 intA). The equalityµ(n(A)) = 0 is obvious.

(4) From (2) above we immediately obtain(2,1)-B(X) = 1-B(X) ⊂ 2-B(X) =
(1,2)-B(X). Thus it remains only to prove that 2-B(X) ⊂ 1-B(X). Let A ∈ 2-B(X),
i.e., A = U�C, where U ∈ τ2, C ∈ 2-CatgI(X) = 1-CatgI(X). But U ∈ τ2\{∅} and
τ1 <S τ2 	⇒ τ1 intU �= ∅. ThereforeA = U�C = (τ1 intU ∪ (U\τ1 intU))�C =
(τ1 intU�(U\τ1 intU))�C = τ1 intU�((U\τ1 intU)�C) = V �D, (U\τ1 intU)�C ∈
1-CatgI(X) sinceU\τ1 intU = n2(U) ∈ (1,2)-CatgI(X) = 1-CatgI(X). �
Remark 2.1. Theorem 2.9 and its Corollary hold for a 1-Tychonoff(1,2)-SBrS (X,

τ1 <Φ τ2) since, by Corollary 1 of Theorem 7.2.1 in [15],(X, τ1 <Φ τ2) is (2,1)-comp-
letely regular and therefore(2,1)-regular.

Finally, given a topological space(X, τ), let H(X, τ) be the class of all homeomo
phisms of(X, τ) onto itself. In 1948 Everett and Ulam [17] (see also [40]) posed the
lowing problem: when and how can a new topologyγ be constructed on(X, τ) such that
H(X, τ) =H(X,γ )? Among the (partial or complete) answers to Ulam’s problem we
the result of Lee [43], according to which on a locally compact space(X, τ) there exists
a coarse topologyγ such thatH(X, τ) = H(X,γ ). This result is based on the followin
simple but nevertheless important

Lemma 2.1. Let (X, τ) be a topological space, and letP(V ) be a topological property
possessed by certain subsetsV of X. If γ = {V : P(V )} is a topology onX, then
H(X, τ) ⊂H(X,γ ) [43, Lemma1].

Lemma 2.2. Let τ andγ be two topologies forX such thatU ∈ τ ⇐⇒ U ∪ V ∈ γ for all
nonemptyV in γ . ThenH(X,γ ) ⊂ H(X, τ) [43, Lemma2].

As we will see below, certain bitopologicalconditions are imposed on the conside
BS, which ensure a satisfactory solution of the problem.

It is worth noting here that the requirementτ1\{∅} = τ2\{∅} ∩ 2-CatgII (X), in general,
is stronger than the one that(X, τ1 < τ2) be a 2-WBrS. Indeed,τ1\{∅} = τ2\{∅} ∩
2-CatgII (X) 	⇒ (X, τ1 < τ2) is a 2-WBrS, but by Example 1.4, the BS’s(R,ω <S s)
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and (R,ω <S τ) are 2-WBrS’s for whichω\{∅} ⊂ s\{∅} = (s\{∅}) ∩ 2-CatgII (R) and

,
e

],

r-

–293.
.

es,

19.

ris, Sér.

(1974)
ω\{∅} ⊂ τ\{∅} = (τ\{∅}) ∩ 2-CatgII (R).

Theorem 2.10. If (X, τ1 < τ2) is a BS such thatτ1\{∅} = (τ2\{∅}) ∩ 2-CatgII (X) and for
each pointx ∈ X there is a neighborhoodU(x) ∈ τ2\1-D(X), thenH(X, τ1) = H(X, τ2)

and(X, τ1 < τ2) is a 2-WBrS.

Proof. Let P(V ) mean thatV ∈ τ2 andV ∈ 2-CatgII (X) (⇐⇒ V is of 2-CatgII). Then
the family {V : V = ∅ or P(V )} is exactly the topologyτ1. Hence, by Lemma 2.1
H(X, τ2) ⊂ H(X, τ1). If (X, τ1 < τ2) is a 2-BrS, thenτ1 = τ2. Therefore we may assum
that(X, τ1 < τ2) is not a 2-BrS.

Now letU ∈ τ2 andV ∈ τ1\{∅}. ThenU ∪ V ∈ τ2 and, by (4) of Theorem 1.1.3 in [15
U ∪ V ∈ 2-CatgII (X) ⇐⇒ U ∪ V is of 2-CatgII. ThereforeU ∪ V ∈ τ1.

Furthermore, letU ∈ τ2 andx ∈ U\τ2 intU . By condition, there is a 2-open neighbo
hoodV (x) such thatτ1 clV (x) �= X. It is obvious thatx ∈ τ2 cl(τ1 clV (x)\U) since the
contrary means that there is a neighborhoodW(x) ∈ τ2 such thatW(x) ∩ (τ1 clV (x)\
U) = ∅, i.e., W(x) ∩ V (x) ⊂ U so that x ∈ τ2 intU . Let E = X\(τ1 clV (x)\U) =
(X\τ1 clV (x)) ∪ U . Thenx ∈ E but E ∈τ2 sincex ∈ τ2 cl(τ1 clV (x)\U). Therefore for
U ∈τ2 there isV = X\τ1 clV (x) ∈ τ1 such thatU ∪ V ∈ τ2 and henceU ∪ V ∈τ1 since
τ1 ⊂ τ2.

Thus by Lemma 2.2 we obtainH(X, τ1) ⊂ H(X, τ2) and thereforeH(X, τ1) =
H(X, τ2).

The rest follows from Definition 1.10 becauseτ1\{∅} ⊂ 2-CatgII (X). �
Corollary. If (X, τ1 < τ2) is a 2-WBrS such that((τ2\τ1) ∪ {X}) ∩ 2-CatgII (X) = {X}
and for each pointx ∈ X there is a neighborhoodU(x) ∈ τ2\1-D(X), thenH(X, τ1) =
H(X, τ2).

Proof. Follows directly from Definition 1.10. �
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