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Abstract The control of glucagon secretion by pancreatic a-
cells is poorly understood, largely because of the difficulty to rec-
ognize living a-cells. We describe a new mouse model, referred to
as GluCre-ROSA26EYFP (or GYY), allowing easy a-cell iden-
tification because of specific expression of EYFP. GYY mice dis-
played normal glycemic control during a fasting/refeeding test or
intraperitoneal insulin injection. Glucagon secretion by isolated
islets was normally inhibited by glucose and stimulated by adren-
aline. [Ca2+]c responses to arginine, adrenaline, diazoxide and
tolbutamide, were similar in GYY and control mice. Hence, this
new mouse model is a reliable and powerful tool to specifically
study a-cells.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Insulin and glucagon, secreted by pancreatic islet b- and a-

cells, respectively, play a major but opposite role in glucose

homeostasis: insulin decreases blood glucose whereas glucagon

increases it. Alterations in b- and a-cell functions are impli-

cated in the pathogenesis of the chronic hyperglycemia of dia-

betes and in certain forms of hypoglycemia [1–4].

Whereas the mechanisms regulating insulin secretion are rel-

atively well established, those controlling glucagon secretion

are still very controversial [5]. Elucidating a-cell pathophysiol-

ogy requires measurements of various parameters at the cellu-

lar level, such as the free cytosolic Ca2+ concentration ([Ca2+]c)

which has been shown to serve as a triggering signal for exo-

cytosis of glucagon-containing granules [6,7]. However, these

experiments are difficult to perform because a-cells represent

only �20% of islet cells and, in situ, are almost indistinguish-

able from the most abundant b-cells.

Several methods have been developed to purify or identify a-

cells [8–15], but none of them allows easy, reliable, and direct
Abbreviations: [Ca2+]c, free cytosolic calcium concentration; EYFP,
enhanced yellow fluorescent protein; FACS, fluorescence activated cell
sorting; KATP channel, ATP-sensitive K+ channel
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identification of living a-cells. To overcome this limitation,

we have developed a new transgenic mouse model, referred to

as GluCre-ROSA26EYFP or GYY mice, expressing the

enhanced yellow fluorescent protein (EYFP) specifically in a-

cells. These mice were obtained by crossing two strains:

ROSA26-EYFP [16] and glucagon-Cre mice [17]. ROSA26-

EYFP mice are reporter mice that have a sequence loxP-

STOP-loxP-EYFP in the locus ROSA26 of their genome.

EYFP is not expressed unless the STOP sequence is excised

by a Cre recombinase, which recognizes loxP sites on both sides

of the STOP sequence. Glucagon-Cre mice express Cre recom-

binase specifically in a-cells because expression of the enzyme is

under control of the glucagon promoter. Hence, crossing

ROSA26-EYFP mice with glucagon-Cre mice yielded a new

strain of mice with EYFP expression restricted to a-cells. Com-

parison with two strains of control mice showed that the fluo-

rescent a-cells of the GYY mouse model displayed normal

characteristics and can thus reliably be used to study a-cell

physiology.
2. Materials and methods

2.1. Generation and detection of hybrid transgenic mice
Glu-Cre and RIP-Cre mice were generated as previously described

[17]. Homozygous ROSA26-EYFP (R26YY) mice were kindly given
by Dr. S. Srinivas (London, UK) [16]. Hybrid heterozygous Glu-
CreR26Y+ (GY+) mice were generated by crossing R26YY with
Glu-Cre mice. GluCreR26YY (GYY) mice were generated by crossing
GY+ mice together. The presence of Cre and ROSA26-EYFP trans-
genes was assessed by PCR genotyping as previously described
[17,18]. The same strategy was followed to obtain RIPCreR26YY (RI-
PYY) mice. NMRI and C57BL/6J mice were used as controls as indi-
cated. All experiments were performed with 4–8-month-old mice of
both genders. The study was approved by and conducted following
the guidelines of the Commission d’Ethique d’Experimentation Ani-
male of the University of Louvain School of Medicine.

2.2. In vivo analyses
Blood samples were collected from the tail vein. Blood glucose was

measured with a portable glucometer (Bayer, New York, NY). Plasma
glucagon was determined using the glucagon radioimmunoassay kit
from Linco (St. Charles, MO). For the insulin tolerance test, mice were
injected intraperitoneally with insulin (0.75 IU/kg, Actrapid�, Novo-
Nordisk, Bagsvaerd, Denmark) after 6 h of fast.

2.3. Preparations, solutions and drugs
Islets were obtained by collagenase digestion of the pancreas, and

when necessary, dispersed into single cells [19]. Intact islets were cul-
tured overnight and islet cells were cultured for 1–4 days in RPMI
blished by Elsevier B.V. All rights reserved.



Fig. 1. EYFP is specifically expressed in a- and b-cells from GYY and
RIPYY mice, respectively. (A–L): After immunodetection of glucagon
(C), insulin (F, L), and somatostatin (I), islet cells were visualized in
bright field (A, D, G, J), or in fluorescence with the EYFP filter set (B,
E, H, K) or with the Alexa Red 594 filter set (C, F, I, L). A–C: Two out
of three glucagon-labelled a-cells from GYY mice (C) are tagged with
EYFP (B). D–F: The EYFP-tagged cell (E) from GYY mice is not
labelled for insulin (F). G–I: The EYFP-tagged cells (H) from GYY
mice are not labelled for somatostatin (I). J–L: Both EYFP-tagged
cells (K) from RIPYY mice are labelled for insulin (L). M: Confocal
section of a GYY islet revealing distinct distribution of EYFP (green
cells) and insulin expressing cells (red cells). N: Anti-glucagon
immunohistochemistry using DAB on a pancreatic section of GYY
mice. Scale bars: A–M: 10 lm; N: 20 lm.
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1640 medium containing 7 mM glucose and 10% heat-inactivated fetal
calf serum. No deterioration of the viability of EYFP-expressing cells
was observed during cell culture since the cells were similarly respon-
sive to all tested agents after 1 or 4 days of culture.

The medium used for all experiments contained (in mM): 120 NaCl,
4.8 KCl, 1.5 CaCl2, 1.2 MgCl2, 24 NaHCO3, 1 mg/ml BSA and various
agents as indicated. It was gassed with O2:CO2 (94:6%) to maintain a
pH of 7.4. The 2.5 mM amino acid mixture used in some experiments
contained (in mM): 0.5 alanine, 0.5 leucine, 0.75 glutamine and 0.75
lysine.

Diazoxide was a gift from Schering-Plough (Brussels, Belgium).
Adrenaline was obtained from Denolin (Brussels, Belgium) and amino
acids from Merck (Darmstadt, Germany). All other chemicals were
from Sigma (St. Louis, MO).

2.4. Insulin and glucagon secretion experiments
For static determination of insulin and glucagon secretion, overnight

cultured islets were preincubated for 60 min in the presence of 0.5 mM
glucose. Batches of 7 islets were then incubated at 37 �C for 60 min in
the presence of the indicated compounds. For perifusion experiments,
batches of 200 overnight cultured islets were transferred into perifusion
chambers [20]. Islets were then perifused at 37 �C, at a flow rate of
0.5 ml/min, with test solutions as described in the legends. Insulin
[20] and glucagon (Linco) were measured by radioimmunoassay.

2.5. [Ca2+]c measurements
Cells were loaded at 37 �C for 2 h with 2 lM fura PE3-AM (MoBi-

Tec, Göttingen, Germany) in RPMI culture medium. [Ca2+]c was mea-
sured at 37 �C by dual wavelength (340 and 380 nm) excitation
microspectrofluorimetry as previously described [21]. EYFP expression
did not interfere with fura PE3 fluorescence. a-Cells from control
NMRI mice were identified by their typical [Ca2+]c response to adren-
aline at the end of the experiments [22,23].

2.6. Immunostaining
To assess the distribution of a-cells in islets from GYY mice, the

whole pancreas was fixed in Bouin Allen’s fluid for 24 h, embedded
in paraffin, and processed for immunohistochemistry with a rabbit
polyclonal anti-porcine glucagon antibody (NovoCastra, Newcastle,
UK) as previously described (peroxidase-diaminobenzidine technique)
[24].

To verify the cell specificity of EYFP expression in RIPYY and
GYY islet cells, cultured cells were fixed for 3 h with 4% paraformal-
dehyde, which preserves endogenous EYFP fluorescence (excitation:
490 nm, emission: 535 nm). The cells were then immunostained for
insulin, glucagon or somatostatin with a mouse monoclonal anti-por-
cine insulin antibody (Chemicon, Temecula, CA), a rabbit polyclonal
anti-porcine glucagon antibody (NovoCastra) or a rabbit polyclonal
anti-porcine somatostatin antibody (gift from W. Gepts, Free Univer-
sity of Brussels, Belgium), respectively. To permit simultaneous obser-
vation of EYFP, insulin, glucagon or somatostatin was detected by the
red fluorescence of Alexa Red 594-conjugated goat anti-mouse IgG
(Molecular Probes, Eugene, OR) and Alexa Red 594-conjugated goat
anti-rabbit IgG (Molecular Probes), respectively.

Detection of EYFP and Alexa Red 594-labelled insulin in GYY
islets was performed with a Nikon microscope equipped with a confo-
cal QLC100 spinning disk (Visitech International, Sunderland, UK).

2.7. Statistical analysis
Results are shown as representative traces or means ± S.E. for the

indicated number of cells or batches of islets from at least three differ-
ent cultures. The statistical significance of differences between means
was assessed by unpaired Student’s t-test, or analysis of variance fol-
lowed by a Newman–Keuls test for multiple comparisons.
3. Results

3.1. Cell-specific expression of EYFP

To assess the cell specificity of EYFP expression, dispersed

islet cells from GYY mice were processed for glucagon, insulin

or somatostatin immunodetection. As illustrated in Fig. 1A–C,
all EYFP-tagged cells were immunoreactive for glucagon.

Counting EYFP-tagged and glucagon positive cells revealed

that �76% a-cells were fluorescent for EYFP (133/176 cells).

Importantly, none of the fluorescent cells was immunostained

for insulin (Fig. 1D–F, M) or somatostatin (Fig. 1G–I), con-

firming the specific expression of EYFP in a-cells from GYY

mice. The cell specificity of EYFP expression was also verified

in b-cells from RIPYY mice. EYFP fluorescence was observed

only in b-cells (Fig. 1J–L), and �80% b-cells were fluorescent
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for EYFP (69/86 cells). The differential EYFP fluorescence

intensity between isolated cells does not result from cell dam-

age but rather reflects a true differential expression of EYFP

because a similar heterogeneous fluorescence intensity between

EYFP-expressing cells within intact islets was observed in con-

focal microscopy (not shown).

3.2. Characteristics of GYY mice and islets

Immunodetection of glucagon on pancreatic sections from

GYY mice showed typical distribution of a-cells at the peri-

phery of the islets (Fig. 1N). Physiological parameters of

GYY mice were normal compared to C57BL/6J control mice.

There were no differences in body weight and plasma glucagon

levels between both strains of mice (Fig. 2A and B). Blood glu-

cose concentrations were similar in fed GYY and C57BL/6J

mice, and the responses to fasting and refeeding were also

comparable (Fig. 2C). Thus, blood glucose decreased by

�25% after a 24 h fast and increased similarly after refeeding

in both groups. GYY and C57BL/6J mice also displayed sim-

ilar responses to intraperitoneal insulin administration. The

blood glucose concentration dropped by �40% 60 min after

insulin injection, and the rate of recovery was similar in both

types of mice (Fig. 2D).

We then verified that expression of Cre recombinase and

EYFP did not impair a- and b-cell function. In the presence

of 20 mM arginine, insulin and glucagon secretion were similar

in islets from GYY and C57BL/6J control mice (Fig. 2E and

F). Increasing the glucose concentration from 0.5 to 15 mM
Fig. 2. Similarity of in vivo (A–D) and in vitro (E–F) biological parameters b
(filled columns/filled circles). A–B: Body-weight (n = 14) and plasma gluca
means ± S.E. C: Fasting-refeeding test: blood glucose in the fed state, afte
means ± S.E. for 7 mice. D: Insulin tolerance test: 0.75 IU/kg insulin was inje
indicated times. Values are means ± S.E. for 8 mice. E–F: Effect of 15 mM gl
the presence of 20 mM arginine. Values are means ± S.E. for 12 batches of is
of mice.
stimulated insulin secretion and inhibited glucagon secretion

to a similar extent in both types of islets.

We also compared the insulin and glucagon responses of

islets from GYY mice to those of islets from NMRI mice, an

outbred strain unrelated to C57BL/6J mice. Isolated islets were

perifused in the presence of a 2.5 mM mixture of amino acid to

promote glucagon secretion. In the presence of low glucose

(0.5 mM), the rate of insulin secretion by islets from GYY

and control NMRI mice was low and stable. Increasing the

glucose concentration to 15 mM elicited a similar biphasic

insulin secretion in both types of islets, which was reversed

upon lowering the glucose concentration back to 0.5 mM

(Fig. 3A). Subsequent addition of 10 lM adrenaline had no

effect on basal insulin secretion. Glucagon secretion was stea-

dily elevated in the presence of 0.5 mM glucose. It displayed

similar biphasic changes in islets from GYY and NMRI mice

challenged by 15 mM glucose: an initial short-lived increase

followed by a strong, sustained and reversible inhibition

(Fig. 3B). Adrenaline markedly stimulated glucagon secretion.

The glucagon content of both types of islets was similar

(577 ± 18 and 588 ± 47 pg/islet in NMRI and GYY mice,

respectively).

3.3. [Ca2+]c in cells expressing Cre recombinase and EYFP

To verify that expression of Cre recombinase and EYFP

does not affect [Ca2+]c changes, we first tested whether glucose

and drugs acting on ATP-sensitive K+ (KATP) channels induce

normal [Ca2+]c responses in EYFP-expressing b-cells. [Ca2+]c
etween GYY (open columns/open circles) and C57BL/6J control mice
gon levels in the fed state (GYY n = 9; C57BL/6J n = 8). Values are
r a 24 h-fast, and 1 h and 4 h after ad libitum refeeding. Values are
cted intra-peritoneally at t = 0 and blood glucose was measured at the
ucose (G15) on insulin and glucagon secretion from islets incubated in
lets. *P < 0.05 and **P < 0.01 versus 0.5 mM glucose in the same strain



Fig. 3. Similarity of insulin (A) and glucagon (B) secretion between
perifused islets from GYY and NMRI mice. Islets were first perifused
in the presence of a 2.5 mM amino acid mixture (mix AA) and 0.5 mM
glucose (G). The glucose concentration was then changed between 0.5
and 15 mM, and 10 lM adrenaline (Adre) was added when indicated.
In B, the scale on the left applies to glucagon secretion between 30 and
90 min, whereas the scale on the right applies to secretion between 85
and 110 min. Traces are means ± S.E. for four experiments with islets
from different preparations.

Fig. 4. EYFP and Cre expression do not alter a- or b-cell [Ca2+]c
responses. [Ca2+]c was measured in single EYFP-tagged b-cells from
RIPYY mice (A), single EYFP-tagged a-cells from GYY mice (B, D),
and adrenaline-responsive cells (a-cells) from NMRI mice (C, E). A:
The glucose (G) concentration was increased from 3 to 15 mM, and
50 lM diazoxide (Dz) and 500 lM tolbutamide (Tolb) were added to
the perifusion medium as indicated. The trace is representative of
results obtained in 5 b-cells. B–C: Experiments were performed in the
presence of 0.5 mM glucose (G) throughout, and 10 mM arginine
(Arg) was added as indicated. Traces are means ± S.E. of results
obtained in 6 a-cells from GYY mice (B) and 11 adrenaline-
responsive cells from NMRI mice (C). D–E: Experiments were
performed in the presence of 0.5 mM glucose (G) and a 2.5 mM
amino acid mixture (mix AA) throughout. 100 lM diazoxide (Dz),
100 lM tolbutamide (Tolb) and 10 lM adrenaline (Adr) were added
as indicated. Traces are means ± S.E. of results obtained in 8 a-cells
from GYY mice (D), and 9 adrenaline-responsive cells from NMRI
mice (E).
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was low and stable in the presence of 3 mM glucose, and stim-

ulation with 15 mM glucose elicited a transient drop in [Ca2+]c
followed by an increase with large oscillations. These oscilla-

tions were abolished by 50 lM diazoxide, an opener of KATP

channels, and restored by addition of 500 lM tolbutamide,

that closes the channels (Fig. 4A). These responses are thus

similar to those previously reported for normal b-cells [25,26].

We then compared [Ca2+]c responses in GYY a-cells and

NMRI a-cells identified by their response to adrenaline

[22,23]. In the presence of 0.5 mM glucose, [Ca2+]c oscillated

in �30% GYY a-cells and in �20% NMRI a-cells, and was

low and stable in the others. This relatively low percentage

of oscillating a-cells under low glucose conditions has been

reported by others [23,27]. Arginine (10 mM), a well-established

glucagon secretagogue, similarly increased [Ca2+]c in both

oscillating (not shown) and non-oscillating a-cells from GYY

(Fig. 4B) and NMRI mice (Fig. 4C) [6]. Over 90% a-cells re-

sponded to arginine in GYY (94%) and NMRI (93%) mice

(Fig. 4B and C). In the presence of a 2.5 mM mixture of amino

acids and 0.5 mM glucose, a-cells from GYY mice displayed

high and oscillating [Ca2+]c (Fig. 4D; note that the oscillations
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are largely masked by the averaging). Diazoxide decreased

[Ca2+]c to basal levels. Subsequent addition of 100 lM tolbuta-

mide reversed this effect triggering a reversible and rapid

increase in [Ca2+]c with oscillations or a stable elevation.

Although diazoxide abolished [Ca2+]c oscillations induced by

the mixture of amino acids, it did not prevent the peak of

[Ca2+]c triggered by 10 lM adrenaline, supporting previous

observations that adrenaline mobilizes Ca2+ from intracellular

stores [12]. Similar results were obtained in a-cells from NMRI

mice (Fig. 4E).

These results clearly show that neither Cre recombinase nor

EYFP alters a- and b-cell function, and that GYY mice can

reliably be used to identify and study living a-cells.
4. Discussion

This study describes the development of two new transgenic

mouse models, referred to as GYY and RIPYY mice, specifi-

cally expressing the fluorescent EYFP protein in a- or b-cells,

respectively. These mice were obtained by crossing the

ROSA26-EYFP reporter mouse, that has in the locus ROSA26

of its genome a sequence loxP-STOP-loxP-EYFP [16] with

either the Glu-Cre or the RIP-Cre mouse [17]. Other transgenic

mouse models expressing a fluorescent protein in their b-cells

have previously been reported [28,29] and are thus comparable

to the presently described RIPYY mice. In contrast, the GYY

mice are the first model with easily recognizable a-cells.

Two strategies are possible to generate transgenic mice

expressing a fluorescent protein in a-cells specifically. The

expression of a reporter protein could be directly controlled

by the glucagon promoter, but this promoter has been

reported to be weak, compared to, e.g. the insulin promoter

[14,30]. The Cre/loxP strategy circumvents this difficulty and

permits stronger expression of the reporter. Indeed, even if

expression of the Cre recombinase driven by the glucagon pro-

moter is weak, it is sufficient to allow excision of the loxP-

flanked transcriptional STOP sequence and drive the expres-

sion of EYFP placed under control of the strong promoter

present in the ROSA26 locus. Amplification of gene expression

by the Cre/loxP strategy has previously been reported not to

compromise the cellular specificity of expression [14,30]. How-

ever, EYFP expression was heterogeneous among a-cells,

namely the fluorescence was weaker in some cells than others,

and it was sometimes undetectable. We do not know whether

the lack of detection reflects a limitation of our fluorescence

system or corresponds to a true lack of EYFP expression. Sim-

ilar observations have sometimes been reported in studies

using the Cre/loxP strategy [31,32]. It is however not a major

drawback since most (�80%) a-cells were labelled by EYFP.

One advantage of our mouse models over other EGFP-

expressing models is that EYFP fluorescence does not interfere

with the widely used fluorescent Ca2+ probes, fura-2 or fura-

PE3. Models expressing EGFP impose the use of the less

bright and less convenient fura-red [28].

To ascertain that GYY mice permit reliable investigation of

a-cell physiology, we assessed whether their a-cells behaved

normally, similarly to those of two mouse strains used as con-

trols, i.e. C57BL/6J and NMRI mice. The GYY mice were

phenotypically normal, the architecture of their islets was unal-

tered, and the insulin and glucagon secretory responses to argi-
nine, glucose and adrenaline were normal. Interestingly,

15 mM glucose elicited a biphasic change in glucagon secre-

tion, characterized by an initial, short lived stimulation occur-

ring before insulin secretion increased and a subsequent robust

and sustained inhibition. These observations are compatible

with the hypothesis that glucose exerts both stimulatory and

inhibitory effects on glucagon secretion, but whether these

effects are direct or indirect, involving paracrine factors, is con-

troversial (for review, see [5]), and beyond the scope of this

study. The presence of this biphasic glucagon response in both

NMRI and GYY islets further strengthens the validity of the

GYY mouse model.

Since some cells did not express detectable EYFP levels, it

could be argued that the normal glucagon secretion reflects

the response of these cells rather than of EYFP-tagged cells.

This is not the case for several reasons. First, glucose strongly

(�90%) inhibited glucagon secretion in perifused islets from

GYY mice. It is unlikely that this robust inhibition reflects

the response of the �20% non-EYFP tagged a-cells only. Sec-

ond, the [Ca2+]c responses of EYFP-tagged a-cells to adrena-

line, arginine and KATP channel modulators were similar to

those of NMRI a-cells and those reported by others

[6,22,23]. Moreover, glucose and KATP channel modulators

induced the expected [Ca2+]c responses [25,26] in EYFP-tagged

b-cells from RIPYY mice. All these results indicate that GYY

mice can reliably be used to study a-cell physiology.

Specific expression of EYFP in a-cells should be useful for a

wide variety of applications including islet cell sorting by fluo-

rescence activated cell sorting (FACS). Thus, sorting a- from

b-cells from non-transgenic animals by FACS usually relies

on differences in autofluorescence and size between both cell

types [8,33]. This method provides an enriched but not pure

preparation of cells. The a-cell fraction is often contaminated

by PP- and d-cells also present in islets. EYFP-expressing a-

cells from GYY mice should be sorted at almost 100% of pur-

ity. This will help to study the physiology and gene expression

of pure a-cell populations. Developmental biology could also

take advantage of the GYY mouse model. Pancreatic islet cell

lineage and islet differentiation become increasingly well

understood [34,35]. However, mobility of cells during develop-

ment hampered the study of cell lineages and there is a strong

necessity to develop in vivo labelling techniques to fully under-

stand this process. Therefore, the new GYY mouse model

could provide an interesting tool to spatially track the fate of

a-cell progenitors. Another advantage of these transgenic mice

is the rapid identification of a-cells before performing electro-

physiological or imaging experiments. Indeed, progress in our

understanding of the cellular mechanisms controlling glucagon

secretion has been slowed down by the difficulty to recognize

living a-cells. GYY mice should help to evaluate [Ca2+]c, met-

abolic and other changes in a-cells in situ and to address major

controversial issues such as the mechanisms by which glucose

and amino acids interact to control glucagon secretion.
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