LETTER TO THE EDITOR

Interpolatory Wavelet Packets

Sherman D. Riemenschneider and Zuowei Shen

Communicated by Charles K. Chui
Received July 29, 1999; revised September 10, 1999

Abstract—In this note, we present a construction of interpolatory wavelet packets. Interpolatory wavelet packets provide a finer decomposition of the 2^j-th dilate cardinal interpolation space and hence give a better localization for an adaptive interpolation. This can lead to a more efficient compression scheme which, in turn, provides an interpolation algorithm with a smaller set of data for use in applications.

Key Words: interpolation; splines; wavelets.

1. INTRODUCTION

We begin with a refinable continuous compactly supported or exponentially decaying function \(\varphi \) that satisfies

\[
\varphi(\alpha) = \delta(\alpha), \quad \alpha \in \mathbb{Z},
\]

(1.1)

The function \(\varphi \) satisfying (1.1) is called the fundamental function.

Since \(\varphi \) is fundamental, the values of the refinement mask \(m \) of \(\varphi \) are determined on the even integers:

\[
m(2\beta) = \varphi(\beta) = \delta(\beta), \quad \beta \in \mathbb{Z}.
\]

Compactly supported refinable fundamental functions with high order of smoothness were given in [3]. Exponentially decaying spline fundamental functions can be obtained from B-splines as follows: Let \(B_{2n} \) be the univariate B-spline of order \(2n \) with integer knots. The function \(\varphi \) defined via its Fourier transform by

\[
\hat{\varphi} := \hat{B}_{2n} / \sum_{\beta} \hat{B}_{2n}(\cdot + 2\pi\beta)
\]

is a refinable continuous fundamental function with exponential decay.

\[1\] Research supported in part by NSERC Canada under Grant A7687 and by the National University of Singapore under Grant RP3981647.

\[2\] Department of Mathematics, West Virginia University, Morgantown, WV 26506. E-mail: sherm@math.wvu.edu.

\[3\] Department of Mathematics, National University of Singapore, Singapore 119260. E-mail: matzuows@leonis.nus.edu.sg.
Define a function $p_0 = \varphi$ and functions p_n inductively as follows:

\[
p_{2n} := \sum_{\alpha \in \mathbb{Z}} m(\alpha) p_n(2 \cdot -\alpha) \\
p_{2n+1} := p_n(2 \cdot -1).
\]

(1.2)

We denote \mathcal{P}_n to be the closed shift invariant subspace in $C(\mathbb{R})$ generated by p_n; that is,

\[
\mathcal{P}_n := \left\{ f : f = \sum_{\alpha \in \mathbb{Z}} a(\alpha) p_n \cdot -\alpha, \ a \in \ell_0(\mathbb{Z}) \right\},
\]

where $\ell_0(\mathbb{Z})$ is the space of finitely supported sequences. The space \mathcal{P}_0 is a cardinal interpolation space, that is, the space spanned by translates of a fundamental solution for cardinal interpolation. The collection

\[
\{ p_n(2^k \cdot -\alpha) : n \in \mathbb{Z}_+, \ k \in \mathbb{Z}, \ \alpha \in \mathbb{Z} \}
\]

is the wavelet packets from which we will draw bases for our interpolation spaces.

The dilation operator $\sigma : \mathcal{P}_n \mapsto \sigma \mathcal{P}_n$ is defined by $\sigma f := \sqrt{2} f(2 \cdot)$. The space $\sigma^j \mathcal{P}_0$ is the 2^j dilate of the cardinal interpolation space. It is generated by $\varphi(2^j \cdot -\alpha), \ \alpha \in \mathbb{Z}$, which are the dyadic shifts of a fundamental solution for interpolation on the lattice $\mathbb{Z}/2^j$. Our goal is to decompose the spaces $\sigma \mathcal{P}_n$ and to find ℓ_{∞}-stable bases for the decomposition. For a given space \mathcal{P}_n, it is easy to show that (see [6, 7]) $\sigma \mathcal{P}_n = \mathcal{P}_{2n} \oplus \mathcal{P}_{2n+1}$, and $\{ p_{2n} \cdot -\alpha, \ p_{2n+1} \cdot -\alpha : \alpha \in \mathbb{Z} \}$ forms an ℓ_{∞}-stable basis for $\sigma \mathcal{P}_n$. Further, for each $j \in \mathbb{Z}$, the functions $\{ p_n(2^j \cdot -\alpha) : \alpha \in \mathbb{Z}, \ 2^{k-1} \leq n \leq 2^k - 1 \}$ form an ℓ_{∞}-stable basis for the space $\sigma^{k-1+j} \mathcal{P}_j$.

A collection \mathcal{J} of pairs $(\ell, k), \ \ell \in \mathbb{Z}$ and $0 < k \in \mathbb{Z}$, disjointly covers the integer interval $[j_1..j_2]$ if $\bigcup \{ k + \ell : (\ell, k) \in \mathcal{J} \} = [j_1..j_2] \cap \mathbb{Z}$ and the representation $j = k + \ell$ is unique from \mathcal{J}. We have the following proposition:

PROPOSITION 1.3. For given $j_1 < j_2$ and any disjoint cover \mathcal{J} of $[j_1..j_2] \cap \mathbb{Z}$, the functions

\[
\{ p_0(2^{j_1-1} \cdot -\alpha), \ p_n(2^k \cdot -\alpha) : 2^{k-1} \leq n \leq 2^k - 1, \ (\ell, k) \in \mathcal{J}, \ \alpha \in \mathbb{Z} \}
\]

form an ℓ_{∞}-basis for the space $\sigma^{k-1} \mathcal{P}_0$.

Univariate orthogonal wavelet packets were introduced in [2] and their multivariate counterpart can be found in [6]. Recently, interpolatory wavelets, wavelet packets, and their applications were discussed in [1, 5, 7]. The interpolatory wavelet packets provided here, together with their decomposition and reconstruction algorithm, give wide choices of the decomposition of the lattice which, in turn, provides a possible way to interpolate scattered data. Applications are discussed in [4, 5].
2. DECOMPOSITION OF INTERPOLATION OPERATORS

The cardinal interpolation operator at the 2^jth dyadic level can be written as

$$L_{2^j} f := \sum_{\alpha \in \mathbb{Z}} f(\alpha/2^j)\varphi(2^j : -\alpha).$$

This provides an approximation for the function f which interpolates f at $\mathbb{Z}/2^j$. Further, $\lim_j L_j f = f$ for any compactly supported continuous function f. To obtain higher accuracy, more interpolation points are needed. The interpolation operator L_{2^j} gives each point the same priority regardless of the shape of the function. It is numerically more desirable to interpolate the function in a coarser grid where the function f is flat and in a finer grid where it has large variation. However, to do this we need to know the shape of the function from a given set of data, because in most of the applications the function f itself is not available. Decomposing the interpolation operator at the 2^j dyadic level into lower dyadic levels is one way to analyze the data structure and hence the shape of the function from the given set of data. Then, a quantization scheme designed according to the given practical problem is applied and finally the reconstruction algorithm leads to an interpolation of f which approximates f with the same order of the accuracy but using a smaller set of data. Similarly, this process also can be applied to decompose, compress, and reconstruct the sampled data at 2^jth dyadic levels. Further, for the interpolatory wavelet packets, a standard subdivision scheme can provide a predication of 2^{j+1}th dyadic level sample data from the sampled data at the 2^jth dyadic level.

The cardinal interpolation operator at the 2^jth dyadic level can be decomposed as a sum of elements from $\sigma^{j-1}P_0$ and $\sigma^{j-1}P_1$ as was given by Donoho [5]. Clearly, this decomposition can be iterated down to the j_{st} level.

The wavelet packets given in this section provide a finer decomposition of $\sigma^j P_0$. These bases have descriptions as interpolation operators. This gives a finer decomposition of the interpolation operator and a more detailed analysis of the structure of the given set of data. This leads to a more effective compression and hence a better adapted interpolation.

The crucial proposition that follows uses a correspondence

$$r := \sum_{\ell=0}^{k-1} \eta_\ell 2^\ell \leftrightarrow r^* := \frac{1}{2^{k+1}} + \frac{1}{2} \sum_{\ell=0}^{k-1} \eta_\ell 2^{-\ell}, \quad \forall \eta_\ell \in \{0, 1\}$$

(2.1)

between the integers r in $[0..2^k - 1]$ and points r^* in the lattice $(2^{-k-1}\mathbb{Z} \setminus 2^{-k}\mathbb{Z})$ in $[0..1]$:

Proposition 2.2. For any $k \geq 0$, $\beta \in \mathbb{Z}$, $0 \leq s \leq 2^k - 1$, and s and s^* related by (2.1), we have

$$p_{2^k r}(\beta/2^k) = 0,$$

$$p_{2^k r}(\beta + \frac{1}{2^{k+1}} + \frac{1}{2}s^*) = \begin{cases} 0, & \text{if } s < r \text{ and } \beta \text{ arbitrary;} \\ \delta(\beta), & \text{if } s = r \text{ and } \beta \in \mathbb{Z}. \end{cases}$$
The proof is by induction on k. For $k = 0$, the only r is $r = 0$. In that case, since $p_0 = \varphi$ is a fundamental function for cardinal interpolation from (1.2), we have

$$p_1(\beta) = p_0(2\beta - 1) = 0, \quad p_1\left(\beta + \frac{1}{2}\right) = p_0(2\beta + 1 - 1) = \delta(2\beta).$$

Now assume that the lemma holds for integers $< k$. Consider $2n = 2^k + 2r$. If $s = \sum_{\ell=0}^{k-1} \eta_\ell 2^\ell \leq 2r$, then for strict inequality we must have $\sum_{\ell=0}^{k-2} \eta_{\ell+1} 2^\ell < r$ while equality implies equality in the last inequality as well since $\eta_0 = 0$ in that case. Hence, by (1.2)

$$p_{2^k + 2r}(\beta/2^k) = \sum_{a \in \mathbb{Z}} m(a) p_{2^k - 1 + r}(\beta/2^{k-1} - a) = 0,$$

$$p_{2^k + 2r}\left(\beta + \frac{1}{2^{k+1}} + \frac{1}{2^{s+1}}\right) = \sum_{a \in \mathbb{Z}} m(a) p_{2^k - 1 + r}\left(2\beta + \frac{1}{2^k} + \eta_0 - \alpha + \frac{1}{2} \sum_{\ell=0}^{k-2} \eta_{\ell+1} 2^{-\ell}\right)$$

$$= \begin{cases} 0, & \text{if } s < 2r \text{ and } \beta \in \mathbb{Z}. \\ m(2\beta) = \delta(\beta), & \text{if } s = 2r. \end{cases}$$

Similarly, for $2n + 1 = 2^k + 2r + 1$, $s = \sum_{\ell=0}^{k-1} \eta_\ell 2^\ell \leq 2r + 1$, then we must have $\sum_{\ell=0}^{k-2} \eta_{\ell+1} 2^\ell < r$ while equality implies equality in the last inequality and $\eta_0 = 1$. Hence,

$$p_{2^k + 2r + 1}\left(\beta + \frac{1}{2^{k+1}} + \frac{1}{2^{s+1}}\right) = p_{2^k - 1 + r}\left(2\beta + \eta_0 - 1 + \frac{1}{2^k} + \frac{1}{2} \sum_{\ell=0}^{k-2} \eta_{\ell+1} 2^{-\ell}\right)$$

$$= \begin{cases} 0, & \text{if } s < 2r + 1 \text{ and } \beta \text{ arbitrary}; \\ \delta(\beta), & \text{if } s = 2r + 1. \end{cases}$$

We define interpolation operator $\mathcal{L}_{(2^k, r)}$ by

$$\mathcal{L}_{(2^k, r)} f := \sum_{\beta \in \mathbb{Z}} f\left(\beta + \frac{1}{2^{k+1}} + \frac{1}{2^{s+1}}\right)p_{2^k + r}(\cdot - \beta).$$

Then for $s, r \in \{0, 1, \ldots, 2^k - 1\}$, $\mathcal{L}_{(2^k, r)} f(\beta/2k) = 0$, $\forall \beta \in \mathbb{Z}$, and

$$\mathcal{L}_{(2^k, r)} f\left(\beta + \frac{1}{2^{k+1}} + \frac{1}{2^{s+1}}\right) = \begin{cases} 0, & \text{if } s < r \text{ and } \beta \in \mathbb{Z}; \\ f(\beta + \frac{1}{2^{s+1}} + \frac{\alpha}{2}), & \text{if } s = r \text{ and } \beta \in \mathbb{Z}. \end{cases}$$

The interpolation operator \mathcal{L}_{2k} at the 2^kth dyadic level can be decomposed between levels k and $k - 1$ using the operators $\mathcal{L}_{(2^k, r)} f$. Here we give such a decomposition by the bases defined in Proposition 1.3 with $j_1 = j_2 = k$. Define

$$g_0 := (f - \mathcal{L}_{2^{k-1}} f) \quad \text{and} \quad g_r := g_{r-1} - \mathcal{L}_{(2^{k-1}, r)} g_{r-1}, \quad r = 1, \ldots, 2^{k-1} - 1.$$

Then from the uniqueness of the interpolation, it follows that

$$\mathcal{L}_{2^k} f = \mathcal{L}_{2^{k-1}} f + \sum_{r=0}^{2^{k-1}-1} \mathcal{L}_{(2^{k-1}, r)} g_r,$$

since both sides are in $\sigma^k P_0$ and interpolate f at the points $\{\beta/2^k\}_{\beta \in \mathbb{Z}}$.
REFERENCES