The pebbling number of squares of even cycles

Yongsheng Ye a,*, Pengfei Zhang b, Yun Zhang a

a School of Mathematical Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
b School of Computer Science and Technology, Huaibei Normal University, Huaibei, Anhui, 235000, PR China

A R T I C L E I N F O

Article history:
Received 26 August 2009
Received in revised form 14 July 2012
Accepted 17 July 2012
Available online 4 August 2012

Keywords:
Pebble
Even cycles
Pebbling number

A B S T R A C T

A pebbling move on a graph \(G \) consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph \(G \), denoted by \(f(G) \), is the least \(n \) such that any distribution of \(n \) pebbles on \(G \) allows one pebble to be moved to any specified vertex by a sequence of pebbling moves. In this paper, we determine the pebbling numbers of squares of even cycles.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pebbling of graphs was first introduced by Chung [1]. Consider a connected graph with a fixed number of pebbles distributed on its vertices. A pebbling move consists of the removal of two pebbles from a vertex and the placement of one of those pebbles on an adjacent vertex. The pebbling number of a vertex \(v \) in a graph \(G \) is the smallest number \(f(G, v) \) with the property that from every placement of \(f(G, v) \) pebbles on \(G \), it is possible to move a pebble to \(v \) by a sequence of pebbling moves. The pebbling number of a graph \(G \), denoted by \(f(G) \), is the maximum of \(f(G, v) \) over all the vertices of \(G \).

There are many known results about pebbling number (see [1,5,4,6,7,2,3]). If each vertex (except \(v \)) has at least one pebble, then no pebble can be moved to \(v \). Also, if \(v \) is of distance \(d \) from \(u \) and at most \(2^d - 1 \) pebbles are placed on \(u \) and none elsewhere, then no pebble can be moved from \(u \) to \(v \). So it is clear that \(f(G) = \max[|V(G)|, 2^d] \), where \(|V(G)|\) is the number of vertices of \(G \), and \(D \) is the diameter of \(G \). Furthermore, \(f(K_n) = n \) and \(f(P_n) = 2^{n-1} \) (see [1]), where \(K_n \) denotes a complete graph with \(n \) vertices and \(P_n \) denotes a path with \(n \) vertices.

Throughout this paper, \(G \) denotes a simple connected graph with vertex set \(V(G) \) and edge set \(E(G) \). Let \(p \) be a distribution of pebbles on \(G \). Define \(p(H) \) to be the number of pebbles on a subgraph \(H \) of \(G \) and \(p(v) \) to be the number of pebbles on a vertex \(v \) of \(G \). Moreover, denote by \(\overrightarrow{p}(H) \) and \(\overrightarrow{p}(v) \) the number of pebbles on \(H \) and the number of pebbles on \(v \) after a specified sequence of pebbling moves, respectively. For \(uv \in E(G) \), \(u \rightarrow v \) refers to taking \(2m \) pebbles off \(u \) and placing \(m \) pebbles on \(v \). Denote by \(\{v_0, v_1, \ldots, v_{n-1}\} \) (respectively, \(\{v_0, v_1, \ldots, v_{n-1}\} \)) the path (respectively, cycle) with vertices \(v_0, v_1, \ldots, v_{n-1} \) in order.

Let \(G \) be a connected graph. For \(u, v \in V(G) \), we denote by \(d_G(u, v) \) the distance between \(u \) and \(v \) in \(G \). The \(k \)-th power of \(G \), denoted by \(G^k \), is the graph obtained from \(G \) by adding the edge \(uv \) to \(G \) whenever \(2 \leq d_G(u, v) \leq k \) in \(G \). That is, \(E(G^k) = \{uv : 1 \leq d_G(u, v) \leq k\} \). Obviously, \(G^k \) is the complete graph whenever \(k \) is at least the diameter of \(G \). We now introduce a lemma which will be used in the subsequent proofs.

* Supported by National Natural Science Foundation of China (No.10971248).
* Corresponding author.
E-mail address: yeysb66@163.com (Y. Ye).

0012-365X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
Lemma 1 ([6]). \(f(p^2_{2k}) = 2^k, f(p^2_{2k+1}) = 2^k + 1. \)

In [6], Pachter et al. gave the pebbling numbers of squares of paths (see Lemma 1). Naturally, we want to know the pebbling number of \(C_n^2 \). In [8], the pebbling numbers of squares of odd cycles were obtained:

(i) for \(2 < n < 6 \), \(f(C_{2n+1}^2) = 2n + 1; \)
(ii) for \(k \geq 3 \), \(f(C_{4k+3}^2) = 2^{k+1} + 1; \)
(iii) for \(k \geq 4 \), \(f(C_{2k+1}^2) = \left\lfloor \frac{2^{k+2}}{3} \right\rfloor + 1. \)

Motivated by this, we obtain the pebbling numbers of squares of even cycles in this paper.

2. Pebbling \(C_{2n}^2 \)

This section studies the pebbling number of \(C_{2n}^2 \). Let \(C_{2n} = \{v, a_1, \ldots, a_{n-1}, y, b_{n-1}, \ldots, b_1\} \). By symmetry, we may assume that \(v \) is the target vertex in \(C_{2n}^2 \) and \(p(v) = 0 \). First, we give the pebbling number of \(C_{2n}^2 \) for \(n \leq 6 \). See Theorems 2 and 3.

Theorem 2. For \(2 \leq n \leq 5 \), \(f(C_{2n}^2) = 2n. \)

Proof. Let \(Q_a = \langle v, a_1, \ldots, a_{n-1} \rangle \) and \(Q_b = \langle v, b_1, \ldots, b_{n-1} \rangle \). For \(2 \leq n \leq 5 \), we have \(f(Q_a^2) = f(Q_b^2) = n \) by Lemma 1. Clearly, \(f(C_{2n}^2) \geq 2n \). Now distribute 2n pebbles on \(C_{2n}^2 \). Without loss of generality, we assume that \(p(Q_a^2) \geq p(Q_b^2) \). Thus \(p(Q_a^2) \geq \left\lceil \frac{2n - p(Q_b^2)}{2} \right\rceil = n - \left\lceil \frac{p(Q_b^2)}{2} \right\rceil \). Since we can move \(\left\lceil \frac{p(Q_b^2)}{2} \right\rceil \) pebbles from \(y \) to \(a_{n-1} \), \(p(Q_a^2) \geq p(Q_b^2) + \left\lceil \frac{p(Q_b^2)}{2} \right\rceil \geq n \). The proof is completed. \(\square \)

Theorem 3. \(f(C_{12}^2) = 12 \).

Proof. Let \(Q_a = \langle v, a_1, a_2, a_3, a_4 \rangle \) and \(Q_b = \langle v, b_1, b_2, b_3, b_4 \rangle \). Moreover, let \(Q_a^+ = \langle v, a_1, a_2, a_3, a_4, a_5 \rangle \) and \(Q_b^+ = \langle v, b_1, b_2, b_3, b_4, b_5 \rangle \). By Lemma 1, we have \(f(Q_a^2) = f(Q_b^2) = 5 \) and \(f((Q_a^+)^2) = f((Q_b^+)^2) = 8 \). Clearly, \(f(C_{12}^2) \geq 12 \). For convenience, \(a_5 \) and \(b_5 \) are denoted by \(x \) and \(z \), respectively. Suppose that there are 12 pebbles distributed on the vertices of \(C_{12}^2 \), i.e.,

\[
p(Q_a^2) + p(Q_b^2) + p(x) + p(y) + p(z) = 12. \tag{1}
\]

We first consider the case \(p(x) + p(z) \geq 10 \). It suffices to show that, after some pebbling moves, \(\tilde{p}((Q_a^+)^2) \geq 8 \) or \(\tilde{p}((Q_b^+)^2) \geq 8 \). Without loss of generality, we may assume that \(p(x) \geq p(z) \). If \(p(x) > \max\{p(x), 5\} \), then \(p(x) + \left\lceil \frac{p(x)}{2} \right\rceil \geq 8 \), and this implies \(\tilde{p}((Q_a^+)^2) \geq 8 \). Now suppose that \(p(x) = p(z) = 5 \). If \(p(Q_a^2) = p(Q_b^2) = 0 \), then \(p(y) = 2 \). Moving one pebble from \(y \) to \(x \), we have \(p(x) > 5 \), and the previous case applies. Otherwise, suppose without loss of generality that \(Q^2_a \) has at least one pebble; now 2 pebbles can be moved from \(z \) to \(x \) to obtain \(\tilde{p}((Q_a^+)^2) \geq 8 \).

Next, we consider the case \(p(x) + p(z) < 10 \). Obviously, if \(\tilde{p}(Q_a^2) \geq 5 \) or \(\tilde{p}(Q_b^2) \geq 5 \), then we are done. If \(\tilde{p}(Q_a^2) < 5 \) and \(\tilde{p}(Q_b^2) < 5 \), then

\[
p(Q_a^2) + \left\lceil \frac{p(y)}{2} \right\rceil + \left\lceil \frac{p(x) + \frac{p(x)}{2}}{2} \right\rceil \leq 4 \tag{2}
\]

and

\[
p(Q_b^2) + \left\lceil \frac{p(y)}{2} \right\rceil + \left\lceil \frac{p(z) + \frac{p(z)}{2}}{2} \right\rceil \leq 4. \tag{3}
\]

(2) and (3) result from moving as many pebbles as possible from \(x, y, z \) to \(a_4 \) and \(b_4 \), respectively. We see that \(z \) can contribute pebbles not only to \(x \), but also to \(y \). If \(p(z) \geq 2 \), then we can move pebbles from \(z \) to \(x \) and \(y \) to make at least one of \(\tilde{p}(x) \) and \(\tilde{p}(y) \) be even. So (2) can be rewritten as \(p(Q_a^2) + \left\lceil \frac{p(x) + p(y) + \frac{p(x)}{2}}{2} \right\rceil \leq 4 \) for \(p(z) \geq 2 \).

For the case \(\min\{p(x), p(z)\} \geq 2 \), we have

\[
p(Q_a^2) + \left\lceil \frac{p(x) + p(y) + \frac{p(x)}{2}}{2} \right\rceil \leq 4 \quad \text{and} \quad p(Q_b^2) + \left\lceil \frac{p(z) + p(y) + \frac{p(z)}{2}}{2} \right\rceil \leq 4. \tag{4}
\]
Hence
\[p(Q_4^2) + p(Q_5^2) + \left\lfloor \frac{p(x) + p(y) + \left\lfloor \frac{p(z)}{2} \right\rfloor}{2} \right\rfloor + \left\lfloor \frac{p(z) + p(y) + \left\lfloor \frac{p(x)}{2} \right\rfloor}{2} \right\rfloor \leq 8. \] (5)

Note that \(\left\lfloor \frac{k}{2} \right\rfloor \geq \frac{k-1}{2} \) for any integer \(k \). Using (5), we have
\[p(Q_4^2) + p(Q_5^2) + p(y) + \frac{3}{4}(p(x) + p(z)) - \frac{3}{2} \leq 8. \] (6)

By (1) and (6), \(p(x) + p(z) \geq 10 \), and this is a contradiction.
For the case \(\max\{p(x), p(z)\} < 2 \), we have \(p(x) + p(z) < 2 \). According to (2) and (3),
\[p(Q_4^2) + \left\lfloor \frac{p(y)}{2} \right\rfloor \leq 4 \quad \text{and} \quad p(Q_5^2) + \left\lfloor \frac{p(y)}{2} \right\rfloor \leq 4. \] (7)

Hence
\[p(Q_4^2) + p(Q_5^2) + \left\lfloor \frac{p(y)}{2} \right\rfloor + \left\lfloor \frac{p(y)}{2} \right\rfloor \leq 8. \] (8)

Thus we have
\[p(Q_4^2) + p(Q_5^2) + p(y) - 1 \leq 8. \] (9)

By (1) and (9), \(p(x) + p(z) \geq 3 \), and this is a contradiction.

The remaining case is \(p(z) < 2 \) and \(p(x) \geq 2 \) (or, similarly, \(p(x) < 2 \) and \(p(z) \geq 2 \)). First suppose that \(p(z) = 0 \). Note that \(p(Q_4^2) \leq 4 \) and \(p(Q_5^2) \leq 4 \). Thus we have \(p(x) + p(y) \geq 4 \), and hence at least one pebble can be moved from \(x \) and \(y \) to \(b_4 \). If \(p(Q_4^2) = 4 \), then \(p(Q_5^2) = 5 \), and we are done. If \(p(Q_4^2) < 3 \), then \(p(Q_5^2) + p(x) + p(y) \geq 9 \), and we are done by Lemma 1.

Now suppose that \(p(z) = 1 \). If \(p(Q_4^2) = 4 \), then \(x \rightarrow z \rightarrow b_4 \) produces \(\tilde{p}(Q_5^2) = 5 \), and we are done. If \(p(Q_4^2) = 3 \), then \(p(Q_5^2) + p(x) + p(y) = 8 \). When \(p(Q_5^2) \geq 3 \), we can move pebbles from \(\{x, y\} \) to \(b_4 \) so that \(\tilde{p}(Q_5^2) \geq 5 \). When \(p(Q_5^2) < 2 \), we can move pebbles from \(\{x, y, z\} \) to \(b_4 \) so that \(\tilde{p}(Q_5^2) \geq 5 \). If \(p(Q_4^2) < 2 \), then \(p(Q_4^2) + p(x) + p(y) \geq 9 \), and we are done. \(\square \)

Next, we determine the pebbling number of \(G_2^2 \) for \(n \geq 7 \). We first prove a lemma about \(G_4^2 \), where \(k \geq 3 \). Let \(Q_k = \langle v, a_1, \ldots, a_{2k} \rangle \) and \(Q_k^\perp = \langle v, b_1, \ldots, b_{2k-2} \rangle \) be two subpaths of \(C_{4k+2} \). Moreover, let \(Q_k = \langle v, a_1, \ldots, a_{2k-2} \rangle \) and \(Q_k^\perp = \langle v, b_1, \ldots, b_{2k-2} \rangle \). By Lemma 1, \(f(Q_k) = f(Q_k^\perp) = 2^k + 1 \) and \(f((Q_k)^2) = f((Q_k^\perp)^2) = 2^{k-1} + 1 \).

Lemma 4. Let \(p \) be a distribution on \(G_4^2 \), where \(k \geq 3 \). If \(p(y) \geq 2^{k+1} - 2p(Q_4^2) \geq 2, \) then one pebble can be moved to \(v \).

Proof. If \(t = p(a_{2k}) \), \(r = p(a_{2k-1}) \) and \(s = p((Q_k^\perp)^2) \), then \(p(y) \geq 2^{k+1} - 2(r + s + t) \).

Case 1: If \(s = 0 \), then \(p(y) \geq 2^{k+1} - 2(r + t) \). First, suppose that \(r \) is even. We have
\[
\begin{align*}
& a_{2k-1} \xrightarrow{r} a_{2k-2} \\
& y \xrightarrow{2^{k-1} - r} a_{2k} \xrightarrow{2^{k-1} - \frac{r}{2}} a_{2k-2} \implies \tilde{p}(a_{2k-2}) = 2^{k-1}.
\end{align*}
\]

Second, suppose that \(r \) is odd. Since \(p(y) \geq 2 \), we have
\[
\begin{align*}
& y \xrightarrow{1} a_{2k-1} \xrightarrow{r+1} a_{2k-2} \\
& y \xrightarrow{2^{k-1} - r - 1} a_{2k} \xrightarrow{2^{k-1} - \frac{r+1}{2}} a_{2k-2} \implies \tilde{p}(a_{2k-2}) = 2^{k-1}.
\end{align*}
\]

Thus one pebble can be moved to \(v \), since \(d(a_{2k-2}, v) = k - 1 \).

Case 2: If \(s = 1 \), then \(p(y) \geq 2^{k+1} - 2(r + 1 + t) \), and there exists a vertex \(a_j \) of \((Q_k^\perp)^2 \) with \(p(a_j) = 1 \). We first assume that \(j \) is even, and write \(d = d(a_{2k-2}, a_j) \), so \(d(a_j, v) = k - d - 1 \). We now move pebbles as follows:
\[
\begin{align*}
& a_{2k-1} \xrightarrow{1} a_{2k-2} \\
& y \xrightarrow{2^{k-1} - r - 1} a_{2k} \xrightarrow{2^{k-1} - \frac{r+1}{2}} a_{2k-2} \implies a_j \implies \tilde{p}(a_j) = 2^{k-d-1}.
\end{align*}
\]

Thus one pebble can be moved to \(v \).
Now assume that j is odd, and let $d = d(a_{2k-1}, a_j)$, so $d(a_{j-1}, v) = k - d - 1$. If $r < 2^d$, then
\[
y \xrightarrow{2^d-r} a_{2k-1} \xrightarrow{2^d-1} a_{2k-3} \ldots \xrightarrow{1} a_j \xrightarrow{1} a_{j-1}
\]
and we can move one pebble to v.

Case 3: If $s \geq 2$, then for even r,
\[
\begin{align*}
a_{2k-1} &\xrightarrow{r} a_{2k-2} \\
y &\xrightarrow{2^r-s-1} a_{2k} \xrightarrow{2^r-1-\left\lfloor \frac{s}{2} \right\rfloor} a_{2k-2}
\end{align*}
\]
and we are done.

Theorem 5. For $k \geq 3$, $f(C_{4k+2}) = 2^{k+1}$.

Proof. Since the diameter of C_{4k+2} is $k+1$, we have $f(C_{4k+2}) \geq 2^{k+1}$. Now we place 2^{k+1} pebbles on the vertices of C_{4k+2}. Without loss of generality, we may assume that $p(Q_{2}) \geq p(Q_{2})$. Next we consider the following cases.

Case 1: $p(y) = 0$ or 1.

In this case, $p(Q_{2}) \geq 2^k$. Obviously, if $p(Q_{2}) \geq 2^k + 1$, then we are done. Now we consider the case $p(Q_{2}) = 2^k$. This implies that $p(y) + p(Q_{2})^y \geq 2^k$. By Lemma 1, if $p(Q_{2})^y \geq 2^k-1+1$, then we are done. Next, if $p(Q_{2})^y \geq 2^k-1$, then $p(b_{2k-1}) + p(b_{2k}) + p(y) = 2^k - p(Q_{2})^y \geq 2^k-1 + 4(k \geq 3)$. Note that $f(P_{2}) = 4$, so one pebble can be moved from b_{2k-1}, b_{2k}, y to a_{2k} to produce $p(Q_{2}) = 2^k + 1$, and we are done.

Case 2: $p(y) = 2^{k+1} - q(q \leq 2^{k+1} - 2)$.

Obviously, $p(y) \geq 2$ and $p(Q_{2}) \geq \left\lceil \frac{q}{2} \right\rceil$. If $p(Q_{2}) \geq \left\lceil \frac{q}{2} \right\rceil + 1$, then move $2^k - \left\lceil \frac{q}{2} \right\rceil$ pebbles from y to a_{2k} so that $p(Q_{2}) \geq 2^{k+1}$, and we are done. If $p(Q_{2}) = \left\lceil \frac{q}{2} \right\rceil$, then $p(y) \geq 2^{k+1} - 2p(Q_{2})$. By Lemma 4, we are done.

Now we consider C_{4k}, where $k \geq 4$. Let $Q_{4} = (v, a_{1}, \ldots, a_{2k-2})$ and $Q_{B} = (v, b_{1}, \ldots, b_{2k-2})$. Moreover, let $Q_{4} = (v, a_{1}, \ldots, a_{2k-4})$ and $Q_{B} = (v, b_{1}, \ldots, b_{2k-4})$. By Lemma 1, $f(Q_{4}) = f(Q_{B}) = 2^{k-1} + 1$ and $f(Q_{4}) = f(Q_{B}) = 2^{k-2} + 1$. For convenience, a_{2k-1} and b_{2k-1} are denoted by x and z, respectively. In order to determine the pebbling number of C_{4k}, we first give the following lemmas.

Lemma 6. Let $k \geq 4$ and p be a distribution on C_{4k}. Let $m = p(Q_{2})$. If $p(x) + \left\lceil \frac{p(x)}{2} \right\rceil + \left\lceil \frac{p(y)}{2} \right\rceil \geq 2^k - 2m$, where $m = 0, 1, 2, 3$, then one pebble can be moved to v.

Proof. Note that $\left\lceil \frac{p(x)}{2} \right\rceil + \left\lceil \frac{p(y)}{2} \right\rceil$ pebbles can be moved from y and z to x so that $\bar{p}(x) = p(x) + \left\lceil \frac{p(x)}{2} \right\rceil + \left\lceil \frac{p(y)}{2} \right\rceil$.

Case 1: If $m = 0$, then $\bar{p}(x) \geq 2^k$. Thus we can move one pebble to v, since $d(x, v) = k$.

Case 2: If $m = 1$, then $\bar{p}(x) \geq 2^k - 2$. Suppose that a_{i} is a vertex of Q_{2} with $p(a_{i}) = 1$. Let $d = d(x, a_{i})$, so $d(a_{i}, v) = k - d$. We have

\[
\begin{align*}
x &\xrightarrow{2^{k-1}-m} a_{2k-1} \xrightarrow{2^{k-2}-1} \ldots \xrightarrow{2^{k-d}-1} a_{j} \xrightarrow{2^{k-d}-1} \ldots \xrightarrow{1} v \\
x &\xrightarrow{2^{k-1}-m} a_{2k-3} \xrightarrow{2^{k-2}-1} \ldots \xrightarrow{2^{k-d}-1} a_{j} \xrightarrow{2^{k-d}-1} \ldots \xrightarrow{1} v
\end{align*}
\]
if j is even.

\[
\begin{align*}
x &\xrightarrow{2^{k-1}-m} a_{2k-1} \xrightarrow{2^{k-2}-1} \ldots \xrightarrow{2^{k-d}-1} a_{j} \xrightarrow{2^{k-d}-1} \ldots \xrightarrow{1} v \\
x &\xrightarrow{2^{k-1}-m} a_{2k-3} \xrightarrow{2^{k-2}-1} \ldots \xrightarrow{2^{k-d}-1} a_{j} \xrightarrow{2^{k-d}-1} \ldots \xrightarrow{1} v
\end{align*}
\]
if j is odd.
Case 3: If \(m = 2 \), then \(\tilde{p}(x) \geq 2^k - 4 \). For \(p(a_{2k-2}) = 0 \), we have \(p(Q_A^2 - a_{2k-2}) = 2 \). Thus

\[
\begin{align*}
\left\{ \begin{array}{c}
x \xrightarrow{2^{k-1-m}} a_{2k-2} \\ x \xrightarrow{2^{k-1-m-1}} a_{2k-3} \\
\end{array} \right. \Rightarrow \tilde{p}(Q_A^2 - a_{2k-2}) = 2^{k-1}.
\]

(B)

Suppose that \(p(a_{2k-2}) = 1 \). When \(p(a_{2k-2}) = 0 \), there exists a vertex \(a_j \) with \(p(a_j) = 1(1 \leq j \leq 2k - 4) \). Let \(d = d(x, a_j) \), so \(d(a_j, v) = k - d \). Now we can come back to (A). When \(p(a_{2k-2}) = 1 \), we have

\[
\begin{align*}
\left\{ \begin{array}{c}
x \xrightarrow{2^{k-3}} a_{2k-4} \\
\end{array} \right. \Rightarrow \tilde{p}(Q_A^2 - a_{2k-2}) = 2^{k-1}.
\]

(C)

For \(p(a_{2k-2}) = 2 \), \(2^{k-1} - 2 \) pebbles can be moved from \(x \) to \(a_{2k-2} \) so that \(\tilde{p}(a_{2k-2}) = 2^{k-1} \). Thus we can move one pebble to \(v \), since \(d(a_{2k-2}, v) = k - 1 \).

Case 4: If \(m = 3 \), then \(\tilde{p}(x) \geq 2^k - 6 \). For \(p(a_{2k-2}) = 0 \), we have \(p(Q_A^2 - a_{2k-2}) = 3 \). Now we can come back to (B).

Suppose that \(p(a_{2k-2}) = 1 \). When \(p(a_{2k-2}) = 0 \), we have \(p((Q_A^2)^2) = 2 \), and move pebbles as follows:

\[
\begin{align*}
\left\{ \begin{array}{c}
x \xrightarrow{2^{k-4}} a_{2k-3} \\
\end{array} \right. \Rightarrow \tilde{p}((Q_A^2)^2) = 2^{k-2} + 1.
\]

When \(p(a_{2k-3}) = 1 \), there exists a vertex \(a_j \) with \(p(a_j) = 1(1 \leq j \leq 2k - 4) \). Let \(d = d(x, a_j) \), so \(d(a_j, v) = k - d \), and we have (A). When \(p(a_{2k-3}) = 2 \), we have (C).

Suppose that \(p(a_{2k-2}) = 2 \). When \(p(a_{2k-2}) = 0 \), there exists a vertex \(a_j \) with \(p(a_j) = 1(1 \leq j \leq 2k - 4) \). Let \(d = d(x, a_j) \), so \(d(a_j, v) = k - d \). If \(j \) is even, then it comes back to (A). If \(j \) is odd, then we first move one pebble from \(a_{2k-2} \) to \(a_{2k-3} \) before it comes back to (A). When \(p(a_{2k-3}) = 1 \), we move pebbles as follows:

\[
\begin{align*}
\left\{ \begin{array}{c}
x \xrightarrow{2^{k-3}} a_{2k-4} \\
\end{array} \right. \Rightarrow \tilde{p}(Q_A^2 - a_{2k-2}) = 2^{k-1}.
\]

For \(p(a_{2k-2}) = 3 \), \(2^{k-1} - 3 \) pebbles can be moved from \(x \) to \(a_{2k-2} \) so that \(\tilde{p}(a_{2k-2}) = 2^{k-1} \). Thus we can move one pebble to \(v \), since \(d(a_{2k-2}, v) = k - 1 \).

Lemma 7. Let \(p \) be a distribution on \(C_{2k}^2 \), where \(k \geq 4 \). Let \(q = p(Q_A^2) + p(Q_B^2) \). If \(p(x) + p(y) + p(z) = 2 \left[\frac{2^{k+1}}{3} \right] + 1 - q \), where \(q = 0, 1, 2, 3 \), then one pebble can be moved to \(v \).

Proof. Let \(h = p(y) \). Without loss of generality, suppose that \(p(Q_A^2) \geq p(Q_B^2) \).

Case 1: If \(q = 0 \), then \(p(Q_A^2) = p(Q_B^2) = 0 \) and

\[
p(x) + p(z) = 2 \left[\frac{2^{k+1}}{3} \right] + 1 - h.
\]

(10)

First, suppose that \(h \) is odd. If \(p(x) < 2 \), then \(p(y) + p(z) \geq 2 \left[\frac{2^{k+1}}{3} \right] \). Thus \(\left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq \frac{p(y) + p(z)}{2} - 1 \leq \left[\frac{2^{k+1}}{3} \right] - 1 \geq 2^{k-1} + 2^{k-1} - 2 \geq 2^{k-1}(k \geq 4) \). Hence we can move \(2^{k-1} \) pebbles from \(y \) to \(z \) to \(b_{2k-2} \), and we are done. Next suppose that \(p(x) \geq 2 \). If \(p(x) + \frac{p(z)}{2} + \frac{h-1}{2} \geq 2^k \), then \(p(x) + \left[\frac{p(z)}{2} \right] + \left[\frac{p(y)}{2} \right] \geq 2^k \). By Lemma 6, we are done. If \(p(x) + \frac{p(z)}{2} + \frac{h-1}{2} \leq 2^{k-1} \), then by (10), \(p(z) \geq \frac{2^{k+1}}{3} + 1 - h \). So \(p(z) + \frac{p(z)-2}{3} = \frac{p(z)+p(z)}{2} + \frac{p(y)}{2} - 1 \geq \left[\frac{2^{k+1}}{3} \right] - \frac{h-1}{2} + \frac{1}{3} \frac{2^{k+1}}{3} - \frac{h-1}{2} - 1 \geq 2^k - (h+1) \). This implies that \(p(z) + \left[\frac{p(z)-2}{3} \right] \geq 2^k - (h + 1) \). We now move pebbles as follows:

\[
\begin{align*}
\left\{ \begin{array}{c}
x \xrightarrow{\left[\frac{p(z)-2}{3} \right]} b_{2k-2} \\
\end{array} \right. \Rightarrow \tilde{p}((Q_A^2)^2) = 2^{k-1} - (h + 1).
\]

(D)

Second, suppose that \(h \) is even. If \(p(x) + \frac{p(z)}{2} + \frac{h}{2} \geq 2^k \), then \(p(x) + \left[\frac{p(z)}{2} \right] + \left[\frac{p(y)}{2} \right] \geq 2^k \). By Lemma 6, we are done. If \(p(x) + \frac{p(z)}{2} + \frac{h}{2} \leq 2^{k-1} \), then \(p(z) \geq \frac{2^{k+1}}{3} + 2 - h \) by (10). So \(p(z) + \frac{p(z)}{2} \geq 2^k - h \). This implies that \(p(z) + \left[\frac{p(z)}{2} \right] \geq 2^k - h \). We now move pebbles as follows:

\[
\begin{align*}
\left\{ \begin{array}{c}
x \xrightarrow{\frac{p(y)}{2}} z \\
\end{array} \right. \Rightarrow \tilde{p}(Q_A^2 - a_{2k-2}) = 2^{k-1} - h.
\]

(E)
Case 2: If \(q = 1 \), then \(p(Q^2_A) = 1 \), \(p(Q^2_B) = 0 \) and
\[
p(x) + p(z) = 2 \left[\frac{2^{k+1}}{3} \right] - h. \quad (11)
\]

First, suppose that \(h \) is odd. If \(p(x) < 2 \), then \(p(y) + p(z) \geq 2 \left[\frac{2^{k+1}}{3} \right] - 1 \). Thus \(\left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq \frac{p(y) + p(z) - 1}{2} = 2 \left[\frac{2^{k+1}}{3} \right] - 2 \geq 2^{k-1} - \frac{2^{k-1} - 8}{3} = 2^{k-1}(k \geq 4) \). Hence we can move \(2^{k-1} \) pebbles from \(y \) and \(z \) to \(b_{2k-2} \), and we are done.

Now suppose that \(p(x) \geq 2 \). If \(p(x) + \frac{p(y)}{2} + \frac{h-1}{2} \geq 2^{k} - 2 \), then \(p(x) + \left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq 2^{k} - 2 \). By Lemma 6, we are done. If \(p(x) + \frac{p(y)}{2} + \frac{h-1}{2} \leq 2^{k} - 3 \), then \(p(x) \geq \frac{2^{k+1}-2}{3} + 3 - h \) by (11). So \(p(x) + \frac{p(y)-2}{2} = \frac{p(x)+p(z)}{2} + \frac{p(z)}{2} - 1 \geq \frac{2^{k+1}}{3} - \frac{h+1}{2} + \frac{1}{2} \frac{2^{k+1}-2}{3} - \frac{h-3}{2} - 1 \geq 2^{k} - (h + 1) \). This implies that \(p(z) + \left[\frac{p(x)-2}{2} \right] \geq 2^{k} - (h + 1) \), and it comes back to (D).

Second, suppose that \(h \) is even. If \(p(x) + \frac{p(y)}{2} + \frac{h}{2} \geq 2^{k} - 2 \), then \(p(x) + \left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq 2^{k} - 2 \). By Lemma 6, we are done. If \(p(x) + \frac{p(y)}{2} + \frac{h}{2} \leq 2^{k} - 3 \), then \(p(x) \geq \frac{2^{k+1}-2}{3} + 4 - h \) by (11). So \(p(x) + \frac{p(y)}{2} \geq 2^{k} - h + 1 \). This implies that \(p(z) + \left[\frac{p(x)}{2} \right] \geq 2^{k} - h + 1 \). Hence we have (E).

Case 3: If \(q = 2 \), then
\[
p(x) + p(z) = 2 \left[\frac{2^{k+1}}{3} \right] - 1 - h. \quad (12)
\]

Case 3.1: \(p(Q^2_A) = p(Q^2_B) = 1 \). There exists a vertex \(b_j \) of \(Q^2 \) with \(p(b_j) = 1 \), and let \(d = d(z, b_j) \), so \(d(b_j, v) = k - d \).

Suppose that \(h \) is odd. If \(p(x) + \frac{p(y)}{2} + \frac{h-1}{2} \geq 2^{k} - 2 \), then \(p(x) + \left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq 2^{k} - 2 \). By Lemma 6, we are done. Next, if \(p(x) + \frac{p(y)}{2} + \frac{h-1}{2} \leq 2^{k} - 3 \), then by (12), \(p(x) \geq \frac{2^{k+1}-2}{3} + 1 - h \). So \(p(x) + \frac{p(y)}{2} = \frac{p(x)+p(z)}{2} + \frac{p(z)}{2} \geq \frac{2^{k+1}}{3} - \frac{h+1}{2} + \frac{1}{2} \frac{2^{k+1}-2}{3} - \frac{h-3}{2} \geq 2^{k} - h - 1 \). This implies that \(p(z) + \left[\frac{p(x)}{2} \right] \geq 2^{k} - h - 1 \). For even \(j \), we move pebbles as follows:

\[
y \frac{1}{2} \rightarrow b_{2k-2} \quad (F)
\]

For odd \(j \), we move pebbles as follows:

\[
z \frac{1}{2} \rightarrow b_{2k-3} \quad (G)
\]

\[
x \rightarrow z \frac{1}{2} \rightarrow b_{2k-2} \quad (G)
\]

\[
y \rightarrow b_{2k-2}
\]

\(\Rightarrow p(b_{j-1}) = 2^{k-d-1} \). Thus we can move one pebble to \(v \), since \(d(v, b_{j-1}) = k - d - 1 \).

Suppose that \(h \) is even. If \(p(x) + \frac{p(y)}{2} + \frac{h}{2} \geq 2^{k} - 2 \), then \(p(x) + \left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq 2^{k} - 2 \). By Lemma 6, we are done. Next, if \(p(x) + \frac{p(y)}{2} + \frac{h}{2} \leq 2^{k} - 3 \), then by (12), \(p(x) \geq \frac{2^{k+1}-2}{3} + 2 - h \). So \(p(x) + \frac{p(y)}{2} \geq 2^{k} - h - 1 \). This implies that \(p(z) + \left[\frac{p(x)}{2} \right] \geq 2^{k} - h - 1 \). For even \(j \), it comes back to (F). For odd \(j \), it comes back to (G).

Case 3.2: \(p(Q^2_A) = 2 \) and \(p(Q^2_B) = 0 \).

Suppose that \(h \) is odd. If \(p(x) + \frac{p(y)}{2} + \frac{h-1}{2} \geq 2^{k} - 4 \), then \(p(x) + \left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq 2^{k} - 4 \). By Lemma 6, we are done. Next, if \(p(x) + \frac{p(y)}{2} + \frac{h-1}{2} \leq 2^{k} - 5 \), then \(p(x) \geq \frac{2^{k+1}-2}{3} + 6 - (h + 1) \) by (12). Thus \(p(x) + \frac{p(y)}{2} = \frac{p(x)+p(z)}{2} + \frac{p(z)}{2} \geq \frac{2^{k+1}}{3} - \frac{h+1}{2} + \frac{1}{2} \frac{2^{k+1}-2}{3} - \frac{h+1}{2} + 3 - \frac{h+1}{2} \geq 2^{k} - h + 1 \). This implies that \(p(z) + \left[\frac{p(x)}{2} \right] \geq 2^{k} - h + 1 \). Hence we have (E).

Suppose that \(h \) is even. If \(p(x) + \frac{p(y)}{2} + \frac{h}{2} \geq 2^{k} - 4 \), then \(p(x) + \left[\frac{p(y)}{2} \right] + \left[\frac{p(z)}{2} \right] \geq 2^{k} - 4 \). By Lemma 6, we are done. Next, if \(p(x) + \frac{p(y)}{2} + \frac{h}{2} \leq 2^{k} - 5 \), then \(p(x) \geq \frac{2^{k+1}-2}{3} + 6 - h \) by (12). So \(p(x) + \frac{p(y)}{2} \geq 2^{k} - h + 1 \). This implies that \(p(z) + \left[\frac{p(x)}{2} \right] \geq 2^{k} - h + 1 \), and it comes back to (E).
Case 4: If \(q = 3 \), then
\[
p(x) + p(z) = 2 \left[\frac{2^{k+1}}{3} \right] - 2 - h.
\] (13)

Case 4.1: \(p(Q_A^4) = 2 \) and \(p(Q_B^4) = 1 \). There exists a vertex \(b_j \) of \(Q_b^2 \) with \(p(b_j) = 1 \), and let \(d = d(b_j, z) \), so \(d(v, b_j) = k - d \).

First, suppose that \(h \) is odd. If \(p(x) + \frac{p(x)}{2} + \frac{h-1}{2} \geq 2^k - 4 \), then \(p(x) + \left[\frac{p(x)}{2} \right] + \frac{h-1}{2} \geq 2^k - 4 \), and we are done by Lemma 6. Next, if \(p(x) + \frac{p(x)}{2} + \frac{h-1}{2} \leq 2^k - 5 \), then \(p(z) \geq \frac{2^{k+1}-2}{3} + 4 - (h + 1) \) by (13). So \(p(z) + \frac{p(z)}{2} = \frac{p(x)+p(z)}{2} + \frac{p(z)}{2} \geq \left[\frac{2^{k+1}}{3} \right] - \frac{h-1}{2} - 1 + \frac{1}{2} \left[\frac{2^{k+1}-2}{3} + 4 - \frac{h-1}{2} \right] > 2^k - h - 1 \). This implies that \(p(z) + \left[\frac{p(z)}{2} \right] > 2^k - h - 1 \). For even \(j \), we have (F).

Second, suppose that \(h \) is even. If \(p(x) + \frac{p(x)}{2} + \frac{h}{2} \geq 2^k - 4 \), then \(p(x) + \left[\frac{p(x)}{2} \right] + \frac{h}{2} \geq 2^k - 4 \), and we are done by Lemma 6. Next, if \(p(x) + \frac{p(x)}{2} + \frac{h}{2} \leq 2^k - 5 \), then \(p(z) \geq \frac{2^{k+1}-2}{3} + 4 - h \) by (13). So \(p(z) + \frac{p(z)}{2} \geq 2^k - h \). This implies that \(p(z) + \left[\frac{p(z)}{2} \right] \geq 2^k - h \). Thus we have (E).

Case 4.2: \(p(Q_A^4) = 3 \) and \(p(Q_B^4) = 0 \).

Suppose first that \(h \) is odd. If \(p(x) + \frac{p(x)}{2} + \frac{h-1}{2} \geq 2^k - 6 \), then \(p(x) + \left[\frac{p(x)}{2} \right] + \frac{h-1}{2} \geq 2^k - 6 \) By Lemma 6, we are done. And if \(p(x) + \frac{p(x)}{2} + \frac{h-1}{2} \leq 2^k - 7 \), then \(p(z) \geq \frac{2^{k+1}}{3} - 8 = (h + 1) \) by (13). So \(p(z) + \frac{p(z)}{2} = \frac{p(x)+p(z)}{2} + \frac{p(z)}{2} \geq \left[\frac{2^{k+1}}{3} \right] - \frac{h-1}{2} - 1 + \frac{1}{2} \left[\frac{2^{k+1}-2}{3} - 8 + \frac{h-1}{2} \right] > 2^k - h + 1 \). Thus we have (E).

Suppose next that \(h \) is even. If \(p(x) + \frac{p(x)}{2} + \frac{h}{2} \geq 2^k - 6 \), then \(p(x) + \left[\frac{p(x)}{2} \right] + \frac{h}{2} \geq 2^k - 6 \) By Lemma 6, we are done. And if \(p(x) + \frac{p(x)}{2} + \frac{h}{2} \leq 2^k - 7 \), then \(p(z) \geq \frac{2^{k+1}-2}{3} + 8 - h \) by (13). So \(p(z) + \frac{p(z)}{2} \geq 2^k - h + 2 \). This implies that \(p(z) + \left[\frac{p(z)}{2} \right] \geq 2^k - h + 2 \). Thus we have (E).

Theorem 8. For \(k \geq 4 \), \(f(C_{4k}^2) = 2 \left[\frac{2^{k+1}}{3} \right] + 1 \).

Proof. First, we claim that \(f(C_{4k}^2) > 2 \left[\frac{2^{k+1}}{3} \right] \). Suppose that we have only 2 \(\left[\frac{2^{k+1}}{3} \right] \) pebbles on \(x \) and \(\left[\frac{2^{k+1}}{3} \right] \) pebbles on \(z \). We see that at most \(2^{k-1} - 1 \) pebbles can be moved from \(x \) (or \(z \)) to \(a_{2k-2} \) (or \(b_{2k-2} \)). And we can move at most \(\frac{1}{2} \left[\frac{2^{k+1}-1}{3} \right] \) pebbles from \(z \) to \(x \) so that \(x \) has at most \(\left[\frac{2^{k+1}-1}{3} + \frac{1}{2} \left[\frac{2^{k+1}-1}{3} \right] \right] \) \(2^k \) pebbles. Thus no pebbles can be moved to \(v \).

Next, we place \(2 \left[\frac{2^{k+1}}{3} \right] + 1 \) pebbles on the vertices of \(C_{4k}^2 \). Without loss of generality, we may assume that \(p(Q_A^4) > p(Q_B^4) \). Let \(h = p(y) \) and \(q = p(Q_A^4) + p(Q_B^4) \). If \(q < 4 \), then we are done by Lemma 7. Next we consider the case \(q \geq 4 \). And we have
\[
p(x) + p(z) = 2 \left[\frac{2^{k+1}}{3} \right] + 1 - q - h.
\] (14)

Case 1: \(h \) is odd. If \(p(z) < 2 \), then \(p(x) \geq 2 \left[\frac{2^{k+1}}{3} \right] - q - h \) by (14). Since \(p(Q_A^4) \geq \frac{q}{2} \), so
\[
y \xrightarrow{\frac{h-1}{2}} a_{2k-2} \quad \left[\frac{2^{k+1}}{3} \right] - \frac{2^{k+1}}{3} - 1 \xrightarrow{\frac{h-1}{2}} a_{2k-2}
\]

Thus we can assume that \(p(z) \geq 2 \).

Suppose that \(p(Q_A^4) = 0 \) and \(p(Q_B^4) = q \). If \(p(x) + \frac{h-1}{2} + p(z) \geq 2^k \), then \(p(x) + \left[\frac{p(x)}{2} \right] + \frac{h-1}{2} \geq 2^k \), and we are done by Lemma 6. And if \(p(x) + \frac{h-1}{2} + p(z) \leq 2^k - 1 \), then \(p(x) \geq 2^k - 3q - (h + 1) \) by (14). So \(p(z) + p(x) = \frac{p(x)+p(z)}{2} + \frac{p(x)}{2} - 1 = \left[\frac{2^{k+1}}{3} \right] - \frac{h-1}{2} + \frac{1}{2} \left[\frac{2^{k+1}-1}{3} + 1 - q - \frac{h-1}{2} \right] - 1 \geq 2^k - \frac{3q}{2} - h - 1 \). This implies that \(p(z) + \frac{p(z)}{2} + p(x) \geq 2^k - \frac{3q}{2} - h - 1 \). We now move pebbles as follows:
\[
z \xrightarrow{\frac{h+1}{2}} a_{2k-2} \quad \left[\frac{2^{k+1}-1}{3} - \frac{3q}{2} + \frac{h+1}{2} \right] \xrightarrow{\frac{h+1}{2}} a_{2k-2}
\]

Thus we have (E).
Suppose that \(p(Q^2_a) = 1 \) and \(p(Q^2_a) = q - 1 \). If \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \geq 2^k - 2 \), then \(\left\lceil \frac{p(x)}{2} \right\rceil + \left\lceil \frac{p(y)}{2} \right\rceil + p(z) \geq 2^k - 2 \).

By Lemma 6, we are done. If \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \leq 2^k - 3 \), then \(p(x) \geq \frac{2k+1-2}{3} + 6 - 2q - (h + 1) \) by (14). So \(\frac{p(x)}{2} + p(x) = \frac{p(x)+p(z)}{2} + \frac{p(x)}{2} - 1 \geq \left\lceil \frac{2k+1-2}{3} \right\rceil - q - \frac{h}{2} - \frac{1}{2} \frac{2k+1-2}{3} + 3 - q - \frac{h}{2} - 1 \geq 2^k - \frac{3q}{2} - h + 1 \). This implies that \(\left\lceil \frac{p(x)}{2} \right\rceil + p(x) \geq 2^k - \frac{3q}{2} - h + 1 \). We now move pebbles as follows:

\[
\begin{align*}
X \quad \frac{h+1}{2} & \rightarrow a_{2k-2} \\
Y \quad \frac{p(x)}{2} - \frac{h+1}{2} + 1 & \rightarrow a_{2k-2} \\
Z \quad X, Y & \rightarrow a_{2k-2}
\end{align*}
\]

Suppose that \(p(Q^2_a) \geq 2 \). Note that \(p(Q^2_a) \geq \frac{q}{2} \). If \(p(x) + \frac{p(y)}{2} \geq 2^k - q - h + 2 \), then \(p(x) + \left\lceil \frac{p(x)}{2} \right\rceil \geq 2^k - q - h + 1 \).

We now move pebbles as follows:

\[
\begin{align*}
X \quad \frac{h+1}{2} & \rightarrow a_{2k-2} \\
Y \quad \frac{p(x)}{2} - \frac{h+1}{2} + 1 & \rightarrow a_{2k-2} \\
Z \quad X, Y & \rightarrow a_{2k-2}
\end{align*}
\]

Next, if \(p(x) + \frac{p(x)}{2} \leq 2^k - q - h + 1 \), then \(p(z) \geq \frac{2k+1-2}{3} - 2 \) by (14). So \(p(z) + \frac{p(x)}{2} = \frac{p(x)+p(z)}{2} + \frac{p(x)}{2} \geq \left\lceil \frac{2k+1-2}{3} \right\rceil - q - \frac{h}{2} - \frac{1}{2} \frac{2k+1-2}{3} + 3 - q - \frac{h}{2} - 1 \geq 2^k - \frac{3q}{2} - h + 1 \). Thus we can assume that \(p(Q^2_a) \leq \frac{q}{2} + 1 \), so \(p(Q^2_a) \geq \frac{q}{2} - 1 \). Furthermore, if \(\frac{p(z)}{2} + \frac{h}{2} + p(z) \geq 2^k - 4 \), then \(p(z) + \frac{p(y)}{2} + p(z) \geq 2^k - 4 \). By Lemma 6, we are done since \(p(Q^2_a) \geq 2 \). And if \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \leq 2^k - 5 \), then \(p(x) \geq \frac{2k+1-2}{3} + 9 - 2q - h \) by (14). So \(p(x) + \frac{p(x)}{2} = \frac{p(x)+p(z)}{2} + \frac{p(x)}{2} - 1 \geq \left\lceil \frac{2k+1-2}{3} \right\rceil - q - \frac{h}{2} - \frac{1}{2} \frac{2k+1-2}{3} + 4 - q - \frac{h}{2} - 1 \geq 2^k - 3 - \frac{3q}{2} - h \). This implies that \(p(x) + \left\lceil \frac{p(x)}{2} \right\rceil \geq 2^k - 3 - \frac{3q}{2} - h \). We now move pebbles as follows:

\[
\begin{align*}
X \quad \frac{h}{2} & \rightarrow a_{2k-2} \\
Y \quad \frac{p(x)}{2} - h + 2 & \rightarrow a_{2k-2} \\
Z \quad X, Y & \rightarrow a_{2k-2}
\end{align*}
\]

Case 2: \(h \) is even. Suppose that \(p(Q^2_a) = 0 \) and \(p(Q^2_a) = q \). If \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \geq 2^k \), then \(\left\lceil \frac{p(x)}{2} \right\rceil + \left\lceil \frac{p(y)}{2} \right\rceil + p(z) \geq 2^k \), and we are done by Lemma 6. And if \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \leq 2^k - 1 \), then \(p(x) \geq \frac{2k+1-2}{3} + 2 - 2q - h \) by (14). So \(\frac{p(x)}{2} + p(x) \geq 2^k - \frac{3q}{2} - h \).

This implies that \(\left\lceil \frac{p(x)}{2} \right\rceil + p(x) \geq 2^k - \frac{3q}{2} - h \). We now move pebbles as follows:

\[
\begin{align*}
X \quad \frac{h}{2} & \rightarrow a_{2k-2} \\
Y \quad \frac{p(x)}{2} - h & \rightarrow a_{2k-2} \\
Z \quad X, Y & \rightarrow a_{2k-2}
\end{align*}
\]

Suppose that \(p(Q^2_a) = 1 \) and \(p(Q^2_a) = q - 1 \). If \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \geq 2^k - 2 \), then \(\left\lceil \frac{p(x)}{2} \right\rceil + \left\lceil \frac{p(y)}{2} \right\rceil + p(z) \geq 2^k - 2 \). By Lemma 6, we are done. And if \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \leq 2^k - 3 \), then \(p(x) \geq \frac{2k+1-2}{3} + 6 - 2q - h \) by (14). So \(\frac{p(x)}{2} + p(x) \geq 2^k - \frac{3q}{2} - h + 2 \).

This implies that \(\left\lceil \frac{p(x)}{2} \right\rceil + p(x) \geq 2^k - \frac{3q}{2} - h + 2 \). We now move pebbles as follows:

\[
\begin{align*}
X \quad \frac{h}{2} & \rightarrow a_{2k-2} \\
Y \quad \frac{p(x)}{2} - h & \rightarrow a_{2k-2} \\
Z \quad X, Y & \rightarrow a_{2k-2}
\end{align*}
\]

Suppose that \(p(Q^2_a) \geq 2 \). Note that \(p(Q^2_a) \geq \frac{q}{2} \). If \(p(x) + \frac{p(x)}{2} \geq 2^k - q - h + 2 \), then \(p(x) + \left\lceil \frac{p(x)}{2} \right\rceil \geq 2^k - q - h + 2 \). We now move pebbles as follows:

\[
\begin{align*}
X \quad \frac{h}{2} & \rightarrow a_{2k-2} \\
Y \quad \frac{p(x)}{2} - h + 1 & \rightarrow a_{2k-2} \\
Z \quad X, Y & \rightarrow a_{2k-2}
\end{align*}
\]
Next, if \(p(x) + \frac{p(y)}{2} \leq 2^k - q - h + 1 \), then \(p(z) \geq \frac{2^{k+1} - 3}{3} - 2 \) by (14). So \(p(z) + \frac{p(y)}{2} + \frac{p(x)}{2} \geq \frac{2^{k+1}}{3} - \frac{q}{2} + \frac{h}{2} + \frac{1}{2} \). Thus \(\tilde{p}(Q_{2}^2) = \frac{p(x) + p(y) + p(z)}{2} + p(Q_{2}^2) \geq 2^{k-1} - \frac{q}{4} - 1 + p(Q_{2}^2) \). Obviously, if \(p(Q_{2}^2) \geq \frac{q}{4} + 2 \), then \(\tilde{p}(Q_{2}^2) \geq 2^{k-1} + 1 \), and we are done. Thus we can assume that \(p(Q_{2}^2) \leq \frac{q}{4} + 1 \), so \(p(Q_{2}^2) \geq \frac{3q}{4} - 1 \). Furthermore, if \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \geq 2^k - 4 \), then \(p(x) + \frac{p(y)}{2} + p(z) \geq p(z) + 2^k - 4 \). By Lemma 6, we are done since \(p(Q_{2}^2) \geq 2 \).

If \(\frac{p(x)}{2} + \frac{h}{2} + p(z) \leq 2^k - 5 \), then \(p(x) \geq \frac{2^{k+1} - 3}{3} + 10 - 2q - h \) by (14). So \(p(x) + \frac{p(y)}{2} \geq 2^k + 4 - \frac{3q}{2} - h \). This implies that \(p(x) + \left[\frac{p(y)}{2} \right] \geq 2^k + 4 - \frac{3q}{2} - h \). We have

\[
\begin{align*}
y \xrightarrow{\frac{p(y)}{2}} a_{2k-2} \\
z \xrightarrow{\frac{p(x)}{2} + \frac{h}{2} + 2} x \xrightarrow{2^{k-1} - \frac{3q}{2} - \frac{h}{2} + 2} a_{2k-2}
\end{align*}
\]

Therefore we are done. \(\square \)

Combining Theorems 2, 3, 5 and 8, we obtain the pebbling number of \(C_{2n}^2 \).

Acknowledgments

Thanks to the anonymous referees for many useful comments and suggestions, which greatly improved the proofs of the paper.

References