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Abstract 

Snover, S.L., C. Wavereis and J.K. Williams, Rep-tiling for triangles, Discrete Mathematics 91 

(1991) 193-200. 

In this paper we prove that one can only tile a triangle with tiles all congruent to each other 

and similar to the original triangle when k ‘, I* + k*, or 3k* tiles are used. The result is based on 
the geometry of packing and a result of I. Niven’s on rational trigonometric values. In addition 

we describe how to tile most triangles. 

Introduction 

Golomb [2] introduced the notion of ‘rep-tiling’ in which a plane figure is 
partitioned into replicas of the original. In particular, we say that a triangle has 
been n-tiled if it can be partitioned into IZ pairwise congruent triangles each 
similar to the original. Of particular interest to us in Golomb’s article was the 
statement that a triangle can be n-tiled if and only if IZ is in the form k*, k* + l* or 
3k2. In this paper we give a complete proof of Golomb’s theorem and use the 
results from the proof to show exactly what the triangles that can be 3k2 or 
(k* + /*)-tiled must look like. We are grateful to the referee for pointing out the 
existence of a brief sketch of a proof published by Posner [4]. We begin by first 
restating the simple construction arguments that lead to k*, 3k*, and (k* + l*)- 

tilings. 

1. Constructions 

Construction of a k2-tiling. Take any triangle and divide each of its sides into k 

pieces of equal length. Then draw the line segments joining the corresponding 
points as in Fig. 1. 
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Fig. 1 

Construction of a 3kz-tiliig. First 3-tile a 30-60-90 triangle as in Fig. 2. Then 
k2-tile each of the three tiles. 

n=3 

Fig. 2. 

Construction of a (k’ + I’)-tiling. This construction is a bit more complicated 
than the previous two. Draw a right triangle with shorter sides of lengths k and I 
and draw the altitude to the hypotenuse as indicated in Fig. 3. 

Now Z2-tile the triangle on the left and k2-tile the triangle on the right. The area 
of a tile for the triangle on the left is: 

a b 

Fig. 3. 
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while the area of a tile for the triangle on the right is 

2. Main result 

Theorem (the main result). There exists a triangle that can be n-tiled if and only if 
n = k2, n = k2 + 12, or n = 3k2. 

The proof of the if part of this implication was given in section one. For the 
only if part, the proof will consist of a result of I. Niven’s on rational 
trigonometric values, two geometric lemmas, and the observation that if n is not a 
perfect square, 1 and fi are linearly independent over the rationals. First we 
need to set up some notation. 

After scaling we may label the sides of the tiles 1, x, and y where 1 s x =z y and 
corresponding angles CX, /3, 6, with CY S /3 G 6. The large triangle will then have 
sides of length fi, fix, and fi y with the same angles (see Fig. 4). 

If a triangle is tiled, each side of the large triangle must be packed with sides of 
the tiles. This leads to three linear equations: 

a+bx+cy=fi, (1) 
d+ex+fy=fix, (2) 
g+hx+iy=fiy. (3) 

Here all the coefficients are nonnegative integers. We shall call these the packing 
equations. 

The result of Niven we will need is the following [3, p. 411. 

Lemma 1. Zf a is a rational multiple of JC and COS(LY), sin(a) or tan(a) is rational, 

then a is 0, x/6, x/4, or ~113 mod(Jc/2). 

P 
Y A 1 

OL 6 

x Jn x 

Fig. 4. 
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x Y 

Fig. 5. 

The two geometric lemmas we need are the following. 

Lemma 2. In the packing equsions, either e and i are nonzero or f and h are 

nonzero. 

Lemma 3. In the packing equations, if i = 0 then 6 = 3x12 or 6 = /I 

Proof of Lemma 2. Since a is the smallest angle, the (Y angle in the large triangle 
can only be filled with the (or angle of a tile. That forces the tile to be placed in 
one of the two ways pictured in Fig. 5. 

Proof of Lemma 3. If i = 0, then only sides of tiles of length 1 and x pack the side 
of length fiy. Therefore the 6 angle always touches the fi y side. Either 6 
packs cu, 6 packs /3, or 6 meets 6 somewhere in between (see Fig. 6). If 6 packs 
C-K, then (Y = 6 = 6. If 6 packs j3, then 6 = /3. If 6 meets 6, then 6 + 6 + 8 = JC 
where 8 is some combination of 6, /3 and (Y. Use (Y 6 p G 6 and cx + p + 6 = JC 
(since they are angles of a triangle) along with the previous equation to obtain: 
(Y - 8 = 6 - /I > 0. But since (Y is the smallest angle, 8 is either equal to (Y or 0 is 
zero. If 0 = CX, then 6 = p. If 0 = 0, then 6 is n/2. Cl 

Now we will complete the proof of the main theorem in three steps found in 
Lemmas 4, 5, and 7. 

LY 6 

Fig. 6. 
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Lemma 4. If a triangle is n-tiled and x is rational, then n = k2 or n = k2 + 12. 

Proof of Lemma 4. Assume that x is rational and n is not a perfect square. From 
the first two packing equations, if either c or f is zero, fi would be rational, 
hence n would be a perfect square. Therefore both c and f are not zero. 

Use Equations (1) and (2) to eliminate y and obtain: 

fa - cd + (fb - ec)x = fi (f - cx). 

Since the left side is rational, the right side must be, too. Therefore, x = f /c. Plug 
x into equation (1) and solve for y to obtain: 

y=_(ca+fb) +Ifi. 
C2 C 

Plug these values for x and y into Equation (3). Equating irrational parts then 
gives the following equation: 

ci = -(ca +fb). 

Since a, b, and i are non-negative and c and f are positive, i = a = b = 0. This 
makes y = (l/c)fi. From Lemma 3, i = 0 implies 6 = 42 or 6 = p. If 6 = p, 
then x =y. But since y = (l/c)< IZ an x is rational, 6 is rational contradicting d 
the assuml ‘ion that n is not a perfect square. If 6 is rc/2, then y2 =x2 + 1. This 
gives 

c=f2+1 or n=f2+c2. 0 
c2 c2 

Lemma 5. if a triangle is n-tiled and y is rational, then n = k2 or n = 3k2. 

Proof of Lemma 5. Assume y is rational and n is not a perfect square. Repeating 
the argument in the proof of the previous lemma switching y with x and Equation 
(2) with Equation (3) yields the following information: b and h are not zero, 
a=c=c=O > x = (l/b)fi and y = h/b. Now plug these values of x and y into 
equation (3). The rational part of this equation yields: 

bg + ih = 0. 

Since g and i are nonnegative and b and h are positive, g = i = 0. From Lemma 3, 
since i = 0 either 6 = 42 or 6 = p. If 6 = /? then x = y and as before this 
contradicts the assumption that n is not a perfect square. Therefore 6 is x/2. 
Since i and g are zero, the fi y side is packed entirely with sides of tiles of length 
x. Therefore angle /I in the large triangle must be packed entirely with cr’s. Since 
6 is x/2 and p is a multiple of (Y, (Y must be a rational multiple of n. Also since 
sin(a) is l/y, sin(a) is rational. Therefore by Lemma 1, (Y = SC/~. Hence x = fi. 
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Therefore 

fi=kI& or n=3b2. Cl 

The last part of the proof of the theorem involves showing that when x and y 
are irrational, IZ must be a perfect squre. In order to do this we need to introduce 
some more notation. If II is not a perfect square then 

o(~)={w:w=u+v~,u,vinQ} 

is an extension of the rationals with basis 1 and fi. Any number in Q(fi) can 
then be written uniquely as u + ufi where u and u are rational numbers. We 
shall call u the rational part of w and denote it Ra(w) and v the irrational part of 
w and denote it Ir(w). Finally we shall denote the conjugate of w, u - vfi, as W. 

Observe that we may solve for x and y in Equations (1) and (2) in terms of the 
integers a through f and fi. Therefore x and y are in O(G). 

Lemma 6. Zf If n, x, and y are irrational then either: 

Ra(x) < 0, Ir(x) > 0, Ra(y) > 0, Ir(y) < 0, and Ir(xy) < 0 

or 
Ra(x) > 0, Ir(x) < 0, Ra(y) < 0, Ir(y) > 0, and Ir(xy) > 0. 

Proof of Lemma 6. The rational part of Equation (1) is a + b Ra(x) + c Ra(y) = 
0. Therefore either Ra(x), Ra(y), or both are negative. 

Assume that Ra(x) < 0. Since x > 0, Ir(x) > 0. The irrational part of Equation 
(2) is e Ir(x) +f Ir(y) = Ra(x). Since Ir(x) > 0 and Ra(x) < 0, Ir(y) < 0. Again 
since y > 0 and Ir(y) < 0, Ra(y) > 0. 

Now since Ra(x) < 0 and Ir(x) > 0, 2 < 0. Since Ra(y) > 0 and Ir(y) < 0, jJ > 0. 
Therefore z?y < 0 and xy > 0. Putting these two together, we obtain: 

2fi Ir(.i?y) = Xy - xy < 0. 

The proof of the second case is obtained by switching y with x and substituting 
Equation (3) for Equation (2). 0 

Lemma 7. ‘Zf x and y are irrational then n = k*. 

Proof of Lemma 7. Assume n is not a perfect square. Using the packing 
equations, multiply Equation (2) by y and equate irrational parts. This yields: 

-d Ir(y) + e Ir(xJ) = Ra(xjj). 

Now multiply Equation (3) by X and equate the irrational parts. This yields: 

-g Ir(x) + i Ir(xy) = Ra(xy). 
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Now using the relationship Ra(iy) = Ra(xJ) and Ir(jy) = -Ir(xy), we can 
combine the two equations above to obtain: 

-g Ir(x) + d Ir(y) + (e + i)Ir(Zy) = 0. 

FromLemma6,g=d=e=i=O. 
Since d =e=O, fy =If n x. Therefore f Ra(y) = n Ir(x) and f Ir(y) = Ra(x). 

We may put these two equations together to yield: 

f’Ra(y)Ir(y) = n Ra(x)Ir(x). 

Since i = 0, Lemma 3 gives 6 = rr/2 or 6 = /I. If 6 = /3 then x =y contradicting 
Lemma 6. If 6 = n/2 then y2 = x2 + 1. The irrational part of this equation yields: 

2 Ra(y)Ir(y) = 2 Ra(x)Ir(x). 

Since both the rational and irrational parts of x and y are nonzero from Lemma 6, 
we may combine this equation with the previous equation giving n = f*, 
contradicting the original assumption. 0 

Conclusion 

First note that our list of admissible integers does not exhaust the integers. 

Corollary 1. The set of integers n for which there is no triangle which can be 

n-tiled is infinite. 

The corollary follows by noting that our result shows that n is admissible only if 
n is the sum of three or fewer squares and then by applying Lagrange’s 
four-square theorem. The latter includes the result that no integer of the form 
4’(8.r + 7) can be written as the sum of three or fewer squares [l, theorem 12-51. 
Note that the set of non-admissible integers is larger than this and starts 6, 7, 
11,. . . . 

We can also draw a few conclusions from the last section on what the triangles 
for specific n-tilings look like. 

Corollary 2. If a triangle is (k* + l*)-tiled when k* + I* is not a perfect square, then 

the triangle is a right triangle. 

Note that there is a unique triangle for each pair of integers k and 1. However, 
some integers can be written as the sum of squares of integers in several different 
ways. For example, 65 is l* + 8* and 7* + 4*. Therefore there may be several right 
triangles that are n-tilable when n = k2 + l*. 

Corollary 3. Zf a triangle is 3k2-tiled, then the triangle is a 30-60-90 triangle. 
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A c 
Fig. 7. 

We cannot say exactly what form a tiling may take. Actually there may be 
several ways to n-tile a triangle. Any right triangle may be 4-tiled in either of the 
two ways in Fig. 7. 

This means that one could 4’-tile any right triangle by first 4-tiling it in either of 
the ways above and then 4-tiling each tile in either of the two ways above and so 
on. 

The authors have found 117 ways to 1Ztile a 30-60-90 triangle! 
Finally, if we relax the condition that n-tiling requires congruent 

instead ask whether for any integer IZ there exists a triangle that can be 
12 tiles all similar to the original, we find that indeed the answer is yes. 

tiles and 
tiled with 

Corollary 4. For any integer n, there exists a triangle that can be tiled with n tiles 

each similar to the original triangle. 

Proof of Corollary 4. By Lagrange’s four-square theorem, we may represent any 
integer n as the sum of one, two, three or four squares [l, theorem 12-71. The 
main theorem covers the first two cases. If IZ =j2 + k2 + l2 where j, k, and 1 are all 
nonzero, first 3-tile a 30-60-90 triangle and then j2-tile the first tile, k2-tile the 
second, and 12-tile the third. If 12 =j2 + k2 + l2 + m2 where j, k, 1, and m are all 
nonzero, 4-tile any triangle and then j2-tile the first tile, k2-tile the second, 12-tile 
the third and m2-tile the fourth. 0 
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