Rep-tiling for triangles

Stephen L. Snover, Charles Waiveris and John K. Williams
University of Hartford, West Hartford, CT 06117, USA

Received 10 February 1989
Revised 21 November 1989

Abstract

Snover, S.L., C. Wavereis and J.K. Williams, Rep-tiling for triangles, Discrete Mathematics 91 (1991) 193-200.

In this paper we prove that one can only tile a triangle with tiles all congruent to each other and similar to the original triangle when $k^{2}, l^{2}+k^{2}$, or $3 k^{2}$ tiles are used. The result is based on the geometry of packing and a result of I. Niven's on rational trigonometric values. In addition we describe how to tile most triangles.

Introduction

Golomb [2] introduced the notion of 'rep-tiling' in which a plane figure is partitioned into replicas of the original. In particular, we say that a triangle has been n-tiled if it can be partitioned into n pairwise congruent triangles each similar to the original. Of particular interest to us in Golomb's article was the statement that a triangle can be n-tiled if and only if n is in the form $k^{2}, k^{2}+l^{2}$ or $3 k^{2}$. In this paper we give a complete proof of Golomb's theorem and use the results from the proof to show exactly what the triangles that can be $3 k^{2}$ or $\left(k^{2}+l^{2}\right)$-tiled must look like. We are grateful to the referee for pointing out the existence of a brief sketch of a proof published by Posner [4]. We begin by first restating the simple construction arguments that lead to $k^{2}, 3 k^{2}$, and $\left(k^{2}+l^{2}\right)$ tilings.

1. Constructions

Construction of a \boldsymbol{k}^{2}-tiling. Take any triangle and divide each of its sides into \boldsymbol{k} pieces of equal length. Then draw the line segments joining the corresponding points as in Fig. 1.

Fig. 1.

Construction of a $\mathbf{3} \boldsymbol{k}^{\mathbf{2}}$-tiling. First 3 -tile a $30-60-90$ triangle as in Fig. 2. Then k^{2}-tile each of the three tiles.

Fig. 2.

Construction of a $\left(\boldsymbol{k}^{\mathbf{2}}+\boldsymbol{l}^{\mathbf{2}}\right)$-tiling. This construction is a bit more complicated than the previous two. Draw a right triangle with shorter sides of lengths k and l and draw the altitude to the hypotenuse as indicated in Fig. 3.

Now l^{2}-tile the triangle on the left and k^{2}-tile the triangle on the right. The area of a tile for the triangle on the left is:

$$
L=\frac{a h}{2 k^{2}}=\frac{a}{2 k^{2}}\left(\frac{b k}{l}\right)=\frac{a b}{2 k l},
$$

Fig. 3.
while the area of a tile for the triangle on the right is

$$
R=\frac{b h}{2 l^{2}}=\frac{b}{2 l^{2}}\left(\frac{a l}{k}\right)=\frac{a b}{2 k l} .
$$

2. Main result

Theorem (the main result). There exists a triangle that can be n-tiled if and only if $n=k^{2}, n=k^{2}+l^{2}$, or $n=3 k^{2}$.

The proof of the if part of this implication was given in section one. For the only if part, the proof will consist of a result of I. Niven's on rational trigonometric values, two geometric lemmas, and the observation that if n is not a perfect square, 1 and \sqrt{n} are linearly independent over the rationals. First we need to set up some notation.

After scaling we may label the sides of the tiles $1, x$, and y where $1 \leqslant x \leqslant y$ and corresponding angles α, β, δ, with $\alpha \leqslant \beta \leqslant \delta$. The large triangle will then have sides of length $\sqrt{n}, \sqrt{n} x$, and $\sqrt{n} y$ with the same angles (see Fig. 4).

If a triangle is tiled, each side of the large triangle must be packed with sides of the tiles. This leads to three linear equations:

$$
\begin{align*}
& a+b x+c y=\sqrt{n} \tag{1}\\
& d+e x+f y=\sqrt{n} x \tag{2}\\
& g+h x+i y=\sqrt{n} y . \tag{3}
\end{align*}
$$

Here all the coefficients are nonnegative integers. We shall call these the packing equations.

The result of Niven we will need is the following [3, p. 41].
Lemma 1. If α is a rational multiple of π and $\cos (\alpha), \sin (\alpha)$ or $\tan (\alpha)$ is rational, then α is $0, \pi / 6, \pi / 4$, or $\pi / 3 \bmod (\pi / 2)$.

Fig. 4.

Fig. 5.

The two geometric lemmas we need are the following.
Lemma 2. In the packing equations, either e and i are nonzero or f and h are nonzero.

Lemma 3. In the packing equations, if $i=0$ then $\delta=\pi / 2$ or $\delta=\beta$.
Proof of Lemma 2. Since α is the smallest angle, the α angle in the large triangle can only be filled with the α angle of a tile. That forces the tile to be placed in one of the two ways pictured in Fig. 5.

Proof of Lemma 3. If $i=0$, then only sides of tiles of length 1 and x pack the side of length $\sqrt{n} y$. Therefore the δ angle always touches the $\sqrt{n} y$ side. Either δ packs α, δ packs β, or δ meets δ somewhere in between (see Fig. 6). If δ packs α, then $\alpha=\beta=\delta$. If δ packs β, then $\delta=\beta$. If δ meets δ, then $\delta+\delta+\theta=\pi$ where θ is some combination of δ, β and α. Use $\alpha \leqslant \beta \leqslant \delta$ and $\alpha+\beta+\delta=\pi$ (since they are angles of a triangle) along with the previous equation to obtain: $\alpha-\theta=\delta-\beta \geqslant 0$. But since α is the smallest angle, θ is either equal to α or θ is zero. If $\theta=\alpha$, then $\delta=\beta$. If $\theta=0$, then δ is $\pi / 2$.

Now we will complete the proof of the main theorem in three steps found in Lemmas 4, 5, and 7.

Fig. 6.

Lemma 4. If a triangle is n-tiled and x is rational, then $n=k^{2}$ or $n=k^{2}+l^{2}$.

Proof of Lemma 4. Assume that x is rational and n is not a perfect square. From the first two packing equations, if either c or f is zero, \sqrt{n} would be rational, hence n would be a perfect square. Therefore both c and f are not zero.

Use Equations (1) and (2) to eliminate y and obtain:

$$
f a-c d+(f b-e c) x=\sqrt{n}(f-c x) .
$$

Since the left side is rational, the right side must be, too. Therefore, $x=f / c$. Plug x into equation (1) and solve for y to obtain:

$$
y=-\frac{(c a+f b)}{c^{2}}+\frac{1}{c} \sqrt{n}
$$

Plug these values for x and y into Equation (3). Equating irrational parts then gives the following equation:

$$
c i=-(c a+f b)
$$

Since a, b, and i are non-negative and c and f are positive, $i=a=b=0$. This makes $y=(1 / c) \sqrt{n}$. From Lemma 3, $i=0$ implies $\delta=\pi / 2$ or $\delta=\beta$. If $\delta=\beta$, then $x=y$. But since $y=(1 / c) \sqrt{n}$ and x is rational, \sqrt{n} is rational contradicting the assum ${ }_{1}$ ion that n is not a perfect square. If δ is $\pi / 2$, then $y^{2}=x^{2}+1$. This gives

$$
\frac{n}{c^{2}}=\frac{f^{2}}{c^{2}}+1 \quad \text { or } \quad n=f^{2}+c^{2}
$$

Lemma 5. If a triangle is n-tiled and y is rational, then $n=k^{2}$ or $n=3 k^{2}$.

Proof of Lemma 5. Assume y is rational and n is not a perfect square. Repeating the argument in the proof of the previous lemma switching y with x and Equation (2) with Equation (3) yields the following information: b and h are not zero, $a=c=e=0, x=(1 / b) \sqrt{n}$ and $y=h / b$. Now plug these values of x and y into equation (3). The rational part of this equation yields:

$$
b g+i h=0 .
$$

Since g and i are nonncgative and b and h are positive, $g=i=0$. From Lemma 3, since $i=0$ either $\delta=\pi / 2$ or $\delta=\beta$. If $\delta=\beta$ then $x=y$ and as before this contradicts the assumption that n is not a perfect square. Therefore δ is $\pi / 2$. Since i and g are zero, the $\sqrt{n} y$ side is packed entirely with sides of tiles of length x. Therefore angle β in the large triangle must be packed entirely with α 's. Since δ is $\pi / 2$ and β is a multiple of α, α must be a rational multiple of π. Also since $\sin (\alpha)$ is $1 / y, \sin (\alpha)$ is rational. Therefore by Lemma $1, \alpha=\pi / 6$. Hence $x=\sqrt{3}$.

Therefore

$$
\sqrt{3}=\frac{1}{b} \sqrt{n} \text { or } n=3 b^{2}
$$

The last part of the proof of the theorem involves showing that when x and y are irrational, n must be a perfect squre. In order to do this we need to introduce some more notation. If n is not a perfect square then

$$
\mathbb{Q}(\sqrt{n})=\{w: w=u+v \sqrt{n}, u, v \text { in } \mathbb{Q}\}
$$

is an extension of the rationals with basis 1 and \sqrt{n}. Any number in $\mathbb{Q}(\sqrt{n})$ can then be written uniquely as $u+v \sqrt{n}$ where u and v are rational numbers. We shall call u the rational part of w and denote it $\mathrm{Ra}(w)$ and v the irrational part of w and denote it $\operatorname{Ir}(w)$. Finally we shall denote the conjugate of $w, u-v \sqrt{n}$, as \bar{w}.

Observe that we may solve for x and y in Equations (1) and (2) in terms of the integers a through f and \sqrt{n}. Therefore x and y are in $\mathbb{Q}(\sqrt{n})$.

Lemma 6. If \sqrt{n}, x, and y are irrational then either:

$$
\operatorname{Ra}(x)<0, \quad \operatorname{Ir}(x)>0, \quad \operatorname{Ra}(y)>0, \quad \operatorname{Ir}(y)<0, \quad \text { and } \quad \operatorname{Ir}(\bar{x} y)<0
$$

or

$$
\operatorname{Ra}(x)>0, \quad \operatorname{Ir}(x)<0, \quad \operatorname{Ra}(y)<0, \quad \operatorname{Ir}(y)>0, \quad \text { and } \quad \operatorname{Ir}(\bar{x} y)>0 .
$$

Proof of Lemma 6. The rational part of Equation (1) is $a+b \operatorname{Ra}(x)+c \operatorname{Ra}(y)=$ 0 . Therefore either $\operatorname{Ra}(x), \operatorname{Ra}(y)$, or both are negative.

Assume that $\operatorname{Ra}(x)<0$. Since $x>0, \operatorname{Ir}(x)>0$. The irrational part of Equation (2) is $e \operatorname{Ir}(x)+f \operatorname{Ir}(y)=\operatorname{Ra}(x)$. Since $\operatorname{Ir}(x)>0$ and $\operatorname{Ra}(x)<0, \operatorname{Ir}(y)<0$. Again since $y>0$ and $\operatorname{Ir}(y)<0, \operatorname{Ra}(y)>0$.

Now since $\operatorname{Ra}(x)<0$ and $\operatorname{Ir}(x)>0, \bar{x}<0$. Since $\operatorname{Ra}(y)>0$ and $\operatorname{Ir}(y)<0, \bar{y}>0$. Therefore $\bar{x} y<0$ and $x \bar{y}>0$. Putting these two together, we obtain:

$$
2 \sqrt{n} \operatorname{Ir}(\bar{x} y)=\bar{x} y-x \bar{y}<0
$$

The proof of the second case is obtained by switching y with x and substituting Equation (3) for Equation (2).

Lemma 7. If x and y are irrational then $n=k^{2}$.
Proof of Lemma 7. Assume n is not a perfect square. Using the packing equations, multiply Equation (2) by \bar{y} and equate irrational parts. This yields:

$$
-d \operatorname{Ir}(y)+e \operatorname{Ir}(x \bar{y})=\operatorname{Ra}(x \bar{y})
$$

Now multiply Equation (3) by \bar{x} and equate the irrational parts. This yields:

$$
-g \operatorname{Ir}(x)+i \operatorname{Ir}(\bar{x} y)=\operatorname{Ra}(\bar{x} y)
$$

Now using the relationship $\operatorname{Ra}(\bar{x} y)=\operatorname{Ra}(x \bar{y})$ and $\operatorname{Ir}(\bar{x} y)=-\operatorname{Ir}(x \bar{y})$, we can combine the two equations above to obtain:

$$
-g \operatorname{Ir}(x)+d \operatorname{Ir}(y)+(e+i) \operatorname{Ir}(\bar{x} y)=0 .
$$

From Lemma 6, $g=d=e=i=0$.
Since $d=e=0, f y=\sqrt{n} x$. Therefore $f \operatorname{Ra}(y)=n \operatorname{Ir}(x)$ and $f \operatorname{Ir}(y)=\operatorname{Ra}(x)$. We may put these two equations together to yield:

$$
f^{2} \operatorname{Ra}(y) \operatorname{Ir}(y)=n \operatorname{Ra}(x) \operatorname{Ir}(x) .
$$

Since $i=0$, Lemma 3 gives $\delta=\pi / 2$ or $\delta=\beta$. If $\delta=\beta$ then $x=y$ contradicting Lemma 6. If $\delta=\pi / 2$ then $y^{2}=x^{2}+1$. The irrational part of this equation yields:

$$
2 \operatorname{Ra}(y) \operatorname{Ir}(y)=2 \operatorname{Ra}(x) \operatorname{Ir}(x) .
$$

Since both the rational and irrational parts of x and y are nonzero from Lemma 6, we may combine this equation with the previous equation giving $n=f^{2}$, contradicting the original assumption.

Conclusion

First note that our list of admissible integers does not exhaust the integers.
Corollary 1. The set of integers n for which there is no triangle which can be n-tiled is infinite.

The corollary follows by noting that our result shows that n is admissible only if n is the sum of three or fewer squares and then by applying Lagrange's four-square theorem. The latter includes the result that no integer of the form $4^{r}(8 s+7)$ can be written as the sum of three or fewer squares [1, theorem 12-5]. Note that the set of non-admissible integers is larger than this and starts 6, 7 , 11, . . .

We can also draw a few conclusions from the last section on what the triangles for specific n-tilings look like.

Corollary 2. If a triangle is $\left(k^{2}+l^{2}\right)$-tiled when $k^{2}+l^{2}$ is not a perfect square, then the triangle is a right triangle.

Note that there is a unique triangle for each pair of integers k and l. However, some integers can be written as the sum of squares of integers in several different ways. For example, 65 is $1^{2}+8^{2}$ and $7^{2}+4^{2}$. Therefore there may be several right triangles that are n-tilable when $n=k^{2}+l^{2}$.

Corollary 3. If a triangle is $3 k^{2}$-tiled, then the triangle is a 30-60-90 triangle.

Fig. 7.

We cannot say exactly what form a tiling may take. Actually there may be several ways to n-tile a triangle. Any right triangle may be 4 -tiled in either of the two ways in Fig. 7.

This means that one could 4^{r}-tile any right triangle by first 4 -tiling it in either of the ways above and then 4 -tiling each tile in either of the two ways above and so on.

The authors have found 117 ways to 12 -tile a $30-60-90$ triangle!
Finally, if we relax the condition that n-tiling requires congruent tiles and instead ask whether for any integer n there exists a triangle that can be tiled with n tiles all similar to the original, we find that indeed the answer is yes.

Corollary 4. For any integer n, there exists a triangle that can be tiled with n tiles each similar to the original triangle.

Proof of Corollary 4. By Lagrange's four-square theorem, we may represent any integer n as the sum of one, two, three or four squares [1, theorem 12-7]. The main theorem covers the first two cases. If $n=j^{2}+k^{2}+l^{2}$ where j, k, and l are all nonzero, first 3 -tile a $30-60-90$ triangle and then j^{2}-tile the first tile, k^{2}-tile the second, and l^{2}-tile the third. If $n=j^{2}+k^{2}+l^{2}+m^{2}$ where j, k, l, and m are all nonzero, 4 -tile any triangle and then j^{2}-tile the first tile, k^{2}-tile the second, l^{2}-tile the third and m^{2}-tile the fourth.

References

[1] D. Burton, Elementary Number Theory (Allyn and Bacon, Newton, MA, 1980).
[2] S.W. Golomb, Replicating figures in the plane, Math. Gaz. 48 (1964) 403-412.
[3] I. Niven, Irrational Numbers, The Carus Mathematical Monographs, No. 11 (The Mathematical Association of America, 1967).
[4] E.C. Posner, Replicating triangles, JPL Program Summary, No. 37-20, Vol. IV (April 1963) 97-98.

