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Abstract
An (h, J)-distinct sum set is a set of J integers such that all sums of & elements {repetitions
allowed) are distinct. An (h, I, J)-set of disjoint distinct sum sets is a set of I disjoint (h, J)-

distinct sum sets with positive elements. A number of constructions of such sets are given.
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1. Introduction

Babcock [2] studied radio systems having frequencies without intermodulation
interference. To avoid intermodulation interference of order 2h — 1 and less, his
construction required sets such that all sums of h elements from the set are distinct. In
our notation such a set of size J is called an (h, J)-DS or an (h, 1, J)-DDS. It is also
known as a finite B,-set. Such sets have been studied in a number of contexts, and for
h =2 also under various other names, see e.g. [1, 3,5, 14, 16, 19].

A generalization of the problem was considered by Chen [9]. He considered
a mobile radio system for a collection of I areas, and without intermodulation
interference of order up to 2h — 1 within each area. His construction requires a set of
I disjoint (h, J)-distinct sum sets with positive elements (in our notation: an (h, I. J)-
DDS). In this paper we give a number of constructions of DDS.

Let ;

Ch,J)= {)E = (Xy, X3, ..., X;)| X; nonnegative integers and z X;= h}.

Ji=1

An (h, J)-distinct sum set (DS)isaset A4 = {a;| 1 <j < J} of distinct integers such that

J J
if X, 7eC(h,J) and ) x;a;= ) y;a;, thenx=j.
Jj=1 Jj=1
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Note that any permutation of a sequence in C(h, J) also belongs to C(k, J). Hence the
definition of DS does not depend on a particular ordering of the elements in A.
An (h, 1, J)-set of Disjoint Distinct Sum sets (DDS) is a set

A = {Al,Az, ,AI}

of I disjoint (h, J)-DS with positive elements. We denote the elements of A; by
a1, dia, ... ,a;;, and usually we assume that they are sorted in increasing order, i.e.

1 <Cli1 < dAjp < -+ < dyy.
Let
v=v(d)=max{a;|1 <i<], 1<j<J}.

For the application we want an (h, I, J)-DDS with v as small as possible. Let
N1, J) = min{v(4)| 4 is an (h, I, J) — DDS}.

To determine N,(1, J) in general seems to be a very hard problem. N, (1, J) is known
only for J < 18 where it has been determined by computer search. Even less is known
about N,(I, J) in general.

In [9, 17] we gave a number of results on (2, I, J)-DDS. Some of these results
generalizes immediately or with minor modifications to general h. The generalizations
are given below without proofs. We also give some new general results.

There are a number of known lower bounds on N,(1, J), see [9]. New bounds that
improve Chen’s bounds asymptotically were given by Chen, Li and Klgve [10] and,
independently by Jia [15] for even h and S. Chen [6] for odd 4.

For general I we have the following simple lower bounds on N, (1, J).

Proposition 1. For all h, I, J we have
(@) Na(I,J) = Nu(1,J) + 1~ 1,
(m) N(I,J) = 1J.

If Ais an (h, I, J)-DDS such that v(4) = IJ, we call A perfect. We note that

N.(1,J
N(LY+1—-1<1J ifandonlyif = Th(—l) (1)
Hence the first bound in Proposition 1 is best for small I and the second for large I. In
particular, we see that perfect (k, I, J)-DDS can exist only for I sufficiently large.
Below we show that for all J there exists an 1,(J) such that perfect (h, I, J)-DDS do
exist for all I = 1,(J).

2. Constructions and upper bounds

There are several known constructions of DS, but not many for DDS in general.
One class of constructions was given by Xin [21]. We will now give some new
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constructions of DDS and the corresponding upper bounds on N,(1, J). In particular
we are interested in those (I, J) for which Ny(I, J) = IJ. i.e. for which perfect (1, J)-
DDS exist. Our first construction is the immediate generalization of Construction 1
in [17].
Construction 1. Let

4=1{{a;|1<j<I}I<i<]}
be an (h, I, J)-DDS such that v(4) = N,(1, J) and

A ={{ayll <j<I}I<i<T}
an (h, I', J)-DDS such that v(A') = N,(I', J). Then

F'=AU{{N(LJ)+ a1 <j<J}1<i<T}
isan (h, I + I',J)-DDS and v(I') = N,(I, J) + N,(I', J).

From Construction 1 we get the following bound:
Propesition 2. For all I, I', N,(I + I', J) < N,(I, J) + N,(I', J).

For completeness we give simple construction of the best possible (h, I, 1)-DDS
(h, 1, 2)-DDS and (h I, 3)-DDS.

Construction 2. (i) {{i}|1<i<1I}isan (h I, 1)-DDS.
(i) {{i,] +i}|1<i<I) isan (hI,2)-DDS.
(i) {({i| (h+3)2 |+ih+1+i | 1<i<I}isan(h 1 3)-DDSifI<| hj2 |.
(V) (i I+ 14020+ |1 <i<I—1O{{LI+1,31}) is an (h 1,3)-DDS if
1> h/2 .

Proof. The first two are trivial and the last two follow from the following lemma.

Lemma 1. [fO0<a<bb>2h+1,gcd(a.b)=1,andi >0, then {i,a+i.b+i}isan
(h, 3)-DS.
Proof. Suppose (x1, X3, X3), (¥1» y2, V1) € C(h, 3) such that

Xy + xa(a+ 0+ x3(b + 1) =y + ya(a+ 1)+ ys(b + i) (2)
Then

X,a + x3b = y,a + y;b. (3)

In particular x,a = y,a (mod b). Hence x, = y, (mod b). Since b > h we have x, = y,,
and so x3 = y3 by (3). Finally, x; = y, since x; + X3 + x3 =y, + V> + V3. [
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Proposition 3. We have

N1, 1) =1,
N1, 2) =21,
h+1+1 ifI<|d)
Ny(LL3) = if 1< 3|
37 otherwise.

Proof. The Proposition follows from Construction 2 and Proposition 1 except for
J=3and I €| /2 | In the remaining case Construction 2 and Proposition 1 give

N(1L,3)+ I —-1<NJ(L3Y<h+ 141

In [19] it is shown that N,(1,3) =h + 2. Hence N,(I.,3)=h+ 1+ 1. O

Our next construction of DDS will be based on a generalization of sonar sequences
introduced by Golomb and Taylor [13]. The construction is a generalization of
Construction 4 in [17].

Construction 3. Let d = (ay, as, ... ,a;) be a sequence of nonnegative integers such that

J

J
ifx,yeC(h,J), Y xa;= Y ya; and
j=1 i

=1

<h, thenx=7y.

J J
Yoixi— >y
i=1 =1

4
Let

J J
I>10=max{z x;a;— Y. ya;| %, yeC(h, J), X # "}
i=1 j

ji=1
Define A = {{a;|1 <j<J}1<i<I} by
aianj+i(mOdI), (]—— 1)] <a,-j<j1.

Then A is a perfect (h, 1, J)-DDS.

Any (h, J)-DS clearly satisfies (4). In [17] we constructed sequences which satisfy (4)
for h = 2 and which have a much smaller largest element then any (h, J)-DS. Con-
struction to general & have been discussed in [18].

Already Construction 3 is sufficient to prove the existence of perfect (h, I, J)-DDS
for I sufficiently large. Define 1,(J) as the minimal integer such that N,(I, J) = IJ for
alt I = 1,(J).

Construction 3 proves that 1,(J) < kN,(1, J). However, our next construction will
improve this bound.
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Construction 4. Let v be a positive integer and let a = (a,, as, ..., dy) be a sequence such
that

J J
if X, yeC(h,J) and ) x;a; Z a;(modv), then X =j.

Let a; = a, and let 1 be a multiple of v. Define

A=agll <j< V1 <i<]]
by
a;=a;+i(modl), (j— DI<ay;<jl

Then A is a perfect (h, I, J)-DDS.

Proof. If i # i, then
a;;—ap;=1i—1i #0(modI)

Hence a;; # a;.;. Further, if j < j, then a;; <jI < (j’ — 1)] < a;; for all i, i'. Therefore,
the elements are distinct. We show that the sums are dlstmct.
Let X, e C(h, J) be such that ¥ /_, x;a; = ¥7_, y;a;;. Since a; = a, we get

J J
= ) X — ) Yiai
j=1 i=1
J

(x1+x2a2+2xa—(y1+y2a2 Zvj,modl).

ji=3 j=

In particular, this is true modulo v. Hence.

X+ X2=y;+ > (5)
and
x;=y; for3<j<J.

Further we note that a;; = a;; + I and so

Xy + xolay + 1) — viay — yolag + 1) = Z xja — Y.y, =0.
Combining this with (5) we get x; = y; and x, = y,. Hence x = j. [J
Let (a,, as, ... ,a;) be an (h, J — 1)-DS, where

1=a2<a3< <aJ:Nh(1,J—1},

andlet v = hN,(1,J — 1) — h + 1. Then the conditions of Construction 4 are satisfied.
Choosing I = v, we get the following proposition.

Proposition 4. For all J = 2 we have
Wy <hN(1,J = 1) —h + 1.
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When I is small compared to N,(1,J — 1), perfect (h, I, J)-DDS do not exist. Our
final two constructions give some upper bounds on N,(I, J) for small I.

First, we construct an (h, g — 1, g)-DDS by a modification of a construction of Bose
[4]. The construction is a generalization of the Construction 7 in [17].

Construction 5. Let g be a prime power, and let GF(q) = {fo. /1, .- .fo—1} wheref, = 0.
Let p(x)=x" —YF_ cx""* be a primitive polynomial over GF(q) and « a root of
p(x) = 0. For each be GF(g)* = GF(¢g)\{0}, let

A, ={a|l <a<q"—1, o —baeGF(q)}.
Then {4,|be GF(q)*} is an (h, q — 1, q)-DDS.
Proof. Clearly, there are (g — 1) sets 4,, they are disjoint, and each contains g ele-
ments:
a,; may be defined by o = ba + f;
For xe C(h, q) let ¢,(x), 0 < | < h, be defined by

f} Z+fyr= Y a2

X)).
C(h,q) and suppose that

Then X is uniquely determined by (64(X), 61(X), ..., ou(
We show that the sums are distinct. Let X,y
Y o1 X5 = L }o 1 Vilsj-

Then

q q
0 = ot L= touy — a2i=1xm

q

= ]j] (b + f;y — [ (b + f;)

j=1

M=

1

{a/(x) — 6u(P)} (ba)*~".

0

Since « is a primitive root of a polynomial of degree h and ¢4(X) = (6o(y) = 1, this
implies that ¢,(x) = 0;(7) for 0 <I< h. Hence x = j. [

Proposition 5. If q is a prime power, then Ny(q — 1,9) < q -1
Construction 6. Let A = {ay, a,, ... ,a,} be a set of integers and v an integer such that if

X, yeC(h,n) and Y xja;=
i=1

y;a; (mod v), then X = .
J =1

J
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ForbeCh—1,nand 1 <i<nlet
_ n
ah,iy=a; — > b;a;(modv), 0<a(hi)<v—1,
ji=1

r'(b) = {a(b,i)|b; = 0},
s(B) = #{j|b; #0}.

Note that #T'(B) = n — s(b). Let r be such that 1 <r <min{h — 1,n — 1} and let
4= {4(B)|s(B) <1}

where A(b) is any subset of I'(b) containing n — r elements.
Then A is an (h,1,,n — r)-DDS and v(A) < v — 1, where

206

Proof. First we show that the elements are distinct, Suppose that a(b, i) = a(c, I). Then

n

n
a;— Y bjaj=a,— Y cpa,(modv)
ji=1 m=1

and so
a;+ Y. Cplm=a;+ Y. bja;(mod v).
m= j=1

=1 j=

Since b; = 0 this is possible only if | =i and ¢; = b; for all j.
Next consider sums of elements of A(b). If x, e C(h, n) and

i x;a(b, i) = i yia(b, i)
i=1 i=1

then

1=
R
=

i
=

]
—
It

i=1

x,-(ai—— Z bjaj>+h Z bjaj
j=1 ji=1

i
=

il
—

xia(B, l) + h Z bja]
=1

J

M=

viab, )+ h Y, b;a;
j=1

I
[,

=

i

Yi<ai— > bj“j) +h Y b
1 i=1 =1

J

™=

y:a; (mod t)

it

i=1

and so x; = y; for all i.
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Since 4(b) contains n — r elements, this proves that 4 is an (h, I,, n — r)-DDS where

L= Y #{bls6) =K}

r

=3 Y #Ch-1k

k=1 ay,a, ...,a,

_ Zr: n\ [ h—2
B k) \k—-1)
k=1
Finally, 1 < a(b, i) < v — 1 for all i such that a(b, i)e 4(b). Hence v(4) <v—1. O

Proposition 6. If q is a prime power, then
(i) For 1 <r < min{h —1,q — 1} we have

(E (e

(i) For 1 <r < min{h — 1, q} we have

S g+ 1\ [(h—2 ¢t —1
l—r)<——1.
(X)) )<

Proof. Bose and Chowla [5] proved that there exist sets 4 with the modular distinct
sum property assumed in Construction 6 when g is a prime power and n = g,
v=q"—1and also n=g+ 1, v =(¢""* — 1)/(q — 1). The bounds on H given in
Proposition 6 therefore follows from Construction 6. []
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