DISCRETE MATHEMATICS

Disjoint sets of distinct sum sets ${ }^{1}$

Wende Chen ${ }^{\mathrm{a}}$, Torleiv Kløve ${ }^{\mathrm{b}, *}$
${ }^{a}$ Institute of Systems Sciences, Academia Sinica, Beijing 100080, China
'Department of Informatics, University of Bergen, Hegteknologisenteret, N-5020 Bergen, Norway

Received 19 Octoher 1993; revised 21 March 1996

Abstract

An (h, J)-distinct sum set is a set of J integers such that all sums of h elements (repetitions allowed) are distinct. An (h, I, J)-set of disjoint distinct sum sets is a set of I disjoint (h, J) distinct sum sets with positive elements. A number of constructions of such sets are given.

Kevwords: Distinct sum set; Intermodulation interference

1. Introduction

Babcock [2] studied radio systems having frequencies without intermodulation interference. To avoid intermodulation interference of order $2 h-1$ and less, his construction required sets such that all sums of h elements from the set are distinct. In our notation such a set of size J is called an (h, J)-DS or an ($h, 1, J$)-DDS. It is also known as a finite B_{h}-set. Such sets have been studied in a number of contexts, and for $h=2$ also under various other names, see e.g. [1, 3, 5, 14, 16, 19].

A generalization of the problem was considered by Chen [9]. He considered a mobile radio system for a collection of I areas, and without intermodulation interference of order up to $2 h-1$ within each area. His construction requires a set of I disjoint (h, J)-distinct sum sets with positive elements (in our notation: an (h,I, $)$)DDS). In this paper we give a number of constructions of DDS.

Let

$$
C(h, J)=\left\{\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{j}\right) \mid x_{j} \text { nonnegative integers and } \sum_{j=1}^{J} x_{j}=h\right\} .
$$

An (h, J)-distinct sum set (DS) is a set $A=\left\{a_{j} \mid 1 \leqslant j \leqslant J\right\}$ of distinct integers such that.

$$
\text { if } \bar{x}, \bar{y} \in C(h, J) \quad \text { and } \quad \sum_{j=1}^{J} x_{j} a_{j}=\sum_{j=1}^{J} y_{j} a_{j}, \quad \text { then } \bar{x}=\bar{y} .
$$

[^0]Note that any permutation of a sequence in $C(h, J)$ also belongs to $C(h, J)$. Hence the definition of DS does not depend on a particular ordering of the elements in A.

An (h, I, J)-set of Disjoint Distinct Sum sets (DDS) is a set

$$
\Delta=\left\{\Delta_{1}, \Delta_{2}, \ldots, \Delta_{I}\right\}
$$

of I disjoint (h, J)-DS with positive elements. We denote the elements of Δ_{i} by $a_{i 1}, a_{i 2}, \ldots, a_{i J}$, and usually we assume that they are sorted in increasing order, i.e.

$$
1 \leqslant a_{i 1}<a_{i 2}<\cdots<a_{i J}
$$

Let

$$
v=v(\Lambda)=\max \left\{a_{i j} \mid 1 \leqslant i \leqslant I, 1 \leqslant j \leqslant J\right\}
$$

For the application we want an (h, I, J)-DDS with v as small as possible. Let

$$
N_{h}(I, J)=\min \{v(A) \mid \Delta \text { is an }(h, I, J)-\operatorname{DDS}\}
$$

To determine $N_{h}(I, J)$ in general seems to be a very hard problem. $N_{2}(1, J)$ is known only for $J \leqslant 18$ where it has been determined by computer search. Even less is known about $N_{h}(I, J)$ in general.

In $[9,17]$ we gave a number of results on $(2, I, J)$-DDS. Some of these results generalizes immediately or with minor modifications to general h. The generalizations are given below without proofs. We also give some new general results.

There are a number of known lower bounds on $N_{h}(1, J)$, see [9]. New bounds that improve Chen's bounds asymptotically were given by Chen, Li and Kløve [10] and, independently by Jia [15] for even h and S. Chen [6] for odd h.

For general I we have the following simple lower bounds on $N_{h}(I, J)$.

Proposition 1. For all h, I, J we have
(i) $N_{h}(I, J) \geqslant N_{h}(1, J)+I-1$,
(ii) $N_{h}(I, J) \geqslant I J$.

If Δ is an (h, I, J)-DDS such that $v(\Delta)=I J$, we call Δ perfect. We note that

$$
\begin{equation*}
N_{h}(1, J)+I-1<I J \quad \text { if and only if } \quad I \geqslant \frac{N_{h}(1, J)}{J-1} \tag{1}
\end{equation*}
$$

Hence the first bound in Proposition 1 is best for small I and the second for large I. In particular, we see that perfect (h, I, J)-DDS can exist only for I sufficiently large. Below we show that for all J there exists an $l_{h}(J)$ such that perfect (h, I, J)-DDS do exist for all $I \geqslant l_{h}(J)$.

2. Constructions and upper bounds

There are several known constructions of DS, but not many for DDS in general. One class of constructions was given by Xin [21]. We will now give some new
constructions of DDS and the corresponding upper bounds on $N_{h}(I, J)$. In particular we are interested in those (I, J) for which $N_{h}(I, J)=I J$. i.e. for which perfect (I, J) DDS exist. Our first construction is the immediate generalization of Construction 1 in [17].

Construction 1. Let

$$
\Delta=\left\{\left\{a_{i j} \mid 1 \leqslant j \leqslant J\right\} \mid 1 \leqslant i \leqslant I\right\}
$$

be an (h,I, J)-DDS such that $v(A)=N_{h}(I, J)$ and

$$
\Lambda^{\prime}=\left\{\left\{a_{i j}^{\prime} \mid 1 \leqslant j \leqslant J\right\} \mid 1 \leqslant i \leqslant I^{\prime}\right\}
$$

an $\left(h, I^{\prime}, J\right)$-DDS such that $v\left(\Delta^{\prime}\right)=N_{h}\left(I^{\prime}, J\right)$. Then

$$
\Gamma=\Delta \cup\left\{\left\{N_{h}(I, J)+a_{i j}^{\prime} \mid 1 \leqslant j \leqslant J\right\} \mid 1 \leqslant i \leqslant I^{\prime}\right\}
$$

is an $\left(h, I+I^{\prime}, J\right)$-DDS and $v(\Gamma)=N_{h}(I, J)+N_{h}\left(I^{\prime}, J\right)$.
From Construction 1 we get the following bound:
Proposition 2. For all $I, I^{\prime}, N_{h}\left(I+I^{\prime}, J\right) \leqslant N_{h}(I, J)+N_{h}\left(I^{\prime}, J\right)$.
For completeness we give simple construction of the best possible (h,I, 1)-DDS ($h, I, 2$)-DDS and ($h I, 3$)-DDS.

Construction 2. (i) $\{\{i\} \mid 1 \leqslant i \leqslant I\}$ is an (h, $I, 1)$-DDS.
(ii) $\{\{i, I+i\} \mid 1 \leqslant i \leqslant I\}$ is an $(h, I, 2)-D D S$.
(iii) $\{\{i,\lfloor(h+3) / 2\rfloor+i, h+1+i\} \mid 1 \leqslant i \leqslant I\}$ is an $(h, I, 3)-D D S$ if $I \leqslant\lfloor h / 2\rfloor$.
(iv) $\{\{i, I+1+i, 2 I+i\} \mid 1 \leqslant i \leqslant I-1\} \cup\{\{I, I+1,3 I\}\}$ is an $(h, I, 3)$-DDS if $I>\lfloor h / 2\rfloor$.

Proof. The first two are trivial and the last two follow from the following lemma.
Lemma 1. If $0 \leqslant a \leqslant b, b \geqslant h+1, \operatorname{gcd}(a, b)=1$, and $i>0$, then $\{i, a+i, b+i\}$ is an (h, 3)-DS.

Proof. Suppose $\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right) \in C(h, 3)$ such that

$$
\begin{equation*}
x_{1} i+x_{2}(a+i)+x_{3}(b+i)=y_{1} i+y_{2}(a+i)+y_{3}(b+i) . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
x_{2} a+x_{3} b=y_{2} a+y_{3} b . \tag{3}
\end{equation*}
$$

In particular $x_{2} a \equiv y_{2} a(\bmod b)$. Hence $x_{2} \equiv y_{2}(\bmod b)$. Since $b>h$ we have $x_{2}=y_{2}$, and so $x_{3}=y_{3}$ by (3). Finally, $x_{1}=y_{1}$ since $x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3}$.

Proposition 3. We have

$$
\begin{aligned}
& N_{h}(I, 1)=I, \\
& N_{h}(I, 2)=2 I, \\
& N_{h}(I, 3)= \begin{cases}h+1+I & \text { if } I \leqslant\left\lfloor\frac{h}{2}\right\rfloor, \\
3 I & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Proof. The Proposition follows from Construction 2 and Proposition 1 except for $J=3$ and $I \leqslant\lfloor h / 2\rfloor$. In the remaining case Construction 2 and Proposition 1 give

$$
N_{h}(1,3)+I-1 \leqslant N_{h}(I, 3) \leqslant h+1+I .
$$

In [19] it is shown that $N_{h}(1,3)=h+2$. Hence $N_{h}(I, 3)=h+1+I$.

Our next construction of DDS will be based on a generalization of sonar sequences introduced by Golomb and Taylor [13]. The construction is a generalization of Construction 4 in [17].

Construction 3. Let $\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{J}\right)$ be a sequence of nonnegative integers such that

$$
\begin{equation*}
\text { if } \bar{x}, \bar{y} \in C(h, J), \sum_{j=1}^{J} x_{j} a_{j}=\sum_{j=1}^{J} y_{j} a_{j} \text { and }\left|\sum_{j=1}^{J} j x_{j}-\sum_{j=1}^{J} j y_{j}\right|<h \text {, then } \bar{x}=\bar{y} . \tag{4}
\end{equation*}
$$

Let

$$
I>I_{0}=\max \left\{\sum_{j=1}^{J} x_{j} a_{j}-\sum_{j=1}^{J} y_{j} a_{j} \mid \bar{x}, \bar{y} \in C(h, J), \bar{x} \neq \bar{y}\right\} .
$$

Define $\Delta=\left\{\left\{a_{i j} \mid 1 \leqslant j \leqslant J\right\} \mid 1 \leqslant i \leqslant I\right\}$ by

$$
a_{i j} \equiv a_{j}+i(\bmod I),(j-1) I<a_{i j} \leqslant j I .
$$

Then Δ is a perfect (h, I, J)-DDS.

Any (h, J)-DS clearly satisfies (4). In [17] we constructed sequences which satisfy (4) for $h=2$ and which have a much smaller largest element then any (h, J)-DS. Construction to general h have been discussed in [18].

Already Construction 3 is sufficient to prove the existence of perfect (h, I, J)-DDS for I sufficiently large. Define $t_{h}(J)$ as the minimal integer such that $N_{h}(I, J)=I J$ for all $I \geqslant \imath_{h}(J)$.

Construction 3 proves that $l_{h}(J) \leqslant h N_{h}(1, J)$. However, our next construction will improve this bound.

Construction 4. Let v be a positive integer and let $\bar{a}=\left(a_{2}, a_{3}, \ldots, a_{J}\right)$ be a sequence such that

$$
\text { if } \bar{x}, \bar{y} \in C(h, J) \quad \text { and } \quad \sum_{j=2}^{J} x_{j} a_{j} \equiv \sum_{j=2}^{J} y_{j} a_{j}(\bmod v), \quad \text { then } \bar{x}=\bar{y} \text {. }
$$

Let $a_{1}=a_{2}$ and let I be a multiple of v. Define

$$
\Delta=\left\{\left\{a_{i j} \mid 1 \leqslant j \leqslant J\right\} \mid 1 \leqslant i \leqslant I\right\}
$$

by

$$
a_{i j} \equiv a_{j}+i(\bmod I), \quad(j-1) I<a_{i j} \leqslant j I .
$$

Then Δ is a perfect (h, I, J)-DDS.
Proof. If $i \neq i^{\prime}$, then

$$
a_{i j}-a_{i^{\prime} j} \equiv i-i^{\prime} \not \equiv 0(\bmod I) .
$$

Hence $a_{i j} \neq a_{i^{\prime} j}$. Further, if $j<j^{\prime}$, then $a_{i j} \leqslant j I \leqslant\left(j^{\prime}-1\right) I<a_{i^{\prime} j^{\prime}}$ for all i, i^{\prime}. Therefore, the elements are distinct. We show that the sums are distinct.

Let $\bar{x}, \bar{y} \in C(h, J)$ be such that $\sum_{j=1}^{J} x_{j} a_{i j}=\sum_{j=1}^{J} y_{j} a_{i j}$. Since $a_{1}=a_{2}$ we get

$$
\begin{aligned}
0 & =\sum_{j=1}^{J} x_{j} a_{i j}-\sum_{j=1}^{J} y_{j} a_{i j} \\
& \equiv\left(x_{1}+x_{2}\right) a_{2}+\sum_{j=3}^{J} x_{j} a_{j}-\left(y_{1}+y_{2}\right) a_{2}-\sum_{j=3}^{J} y_{j} a_{j}(\bmod I) .
\end{aligned}
$$

In particular, this is true modulo v. Hence.

$$
\begin{equation*}
x_{1}+x_{2}=y_{1}+y_{2} \tag{5}
\end{equation*}
$$

and

$$
x_{j}=y_{j} \text { for } 3 \leqslant j \leqslant J .
$$

Further we note that $a_{i 2}=a_{i 1}+I$ and so

$$
x_{1} a_{i 1}+x_{2}\left(a_{i 1}+I\right)-y_{1} a_{i 1}-y_{2}\left(a_{i 1}+I\right)=\sum_{j=1}^{J} x_{j} a_{i j}-\sum_{j=1}^{J} y_{j} a_{i j}=0 .
$$

Combining this with (5) we get $x_{1}=y_{1}$ and $x_{2}=y_{2}$. Hence $\bar{x}=\bar{y}$.
Let $\left(a_{2}, a_{3}, \ldots, a_{j}\right)$ be an $(h, J-1)$-DS, where

$$
1=a_{2}<a_{3}<\cdots<a_{J}=N_{h}(1, J-1)
$$

and let $v=h N_{h}(1, J-1)-h+1$. Then the conditions of Construction 4 are satisfied. Choosing $I=v$, we get the following proposition.

Proposition 4. For all $J \geqslant 2$ we have

$$
l_{h}(J) \leqslant h N_{h}(1, J-1)-h+1 .
$$

When I is small compared to $N_{h}(1, J-1)$, perfect (h, I, J)-DDS do not exist. Our final two constructions give some upper bounds on $N_{h}(I, J)$ for small I.

First, we construct an ($h, q-1, q$)-DDS by a modification of a construction of Bose [4]. The construction is a generalization of the Construction 7 in [17].

Construction 5. Let q be a prime power, and let $\mathrm{GF}(q)=\left\{f_{0}, f_{1}, \ldots, f_{q-1}\right\}$ where $f_{0}=0$. Let $p(x)=x^{h}-\sum_{k=1}^{h} c_{k} x^{h-k}$ be a primitive polynomial over $\mathrm{GF}(q)$ and α a root of $p(x)=0$. For each $b \in \mathrm{GF}(q)^{*}=\mathrm{GF}(q) \backslash\{0\}$, let

$$
\Lambda_{b}=\left\{a \mid 1 \leqslant a \leqslant q^{h}-1, \alpha^{a}-b \alpha \in \mathrm{GF}(q)\right\} .
$$

Then $\left\{A_{b} \mid b \in \operatorname{GF}(q)^{*}\right\}$ is an $(h, q-1, q)$-DDS.
Proof. Clearly, there are $(q-1)$ sets Δ_{b}, they are disjoint, and each contains q elements:
$a_{b j}$ may be defined by $\chi^{a_{b j}}=b \alpha+f_{j}$
For $\bar{x} \in C(h, q)$ let $\sigma_{l}(\bar{x}), 0 \leqslant l \leqslant h$, be defined by

$$
\prod_{j=1}^{q}\left(Z+f_{j}\right)^{x_{j}}=\sum_{l=0}^{h} \sigma_{l}(\bar{x}) Z^{h-l} .
$$

Then \bar{x} is uniquely determined by $\left(\sigma_{0}(\bar{x}), \sigma_{1}(\bar{x}), \ldots, \sigma_{h}(\bar{x})\right)$.
We show that the sums are distinct. Let $\bar{x}, \bar{y} \in C(h, q)$ and suppose that $\sum_{j=1}^{q} x_{j} a_{b j}=\sum_{j=1}^{q} y_{j} a_{b j}$.
Then

$$
\begin{aligned}
0 & =\alpha^{\sum_{j=1 \mathrm{~L}, \mu_{j}}^{q}-\alpha^{\sum_{j=1}^{q}, j_{j} a_{j}}} \\
& =\prod_{j=1}^{q}\left(b \alpha+f_{j}\right)^{x_{j}}-\prod_{j=1}^{q}\left(b \alpha+f_{j}\right)^{y_{j}} \\
& =\sum_{l=0}^{h}\left\{\sigma_{l}(\bar{x})-\sigma_{l}(\bar{y})\right\}(b \alpha)^{h-l} .
\end{aligned}
$$

Since α is a primitive root of a polynomial of degree h and $\sigma_{0}(\bar{x})=\left(\sigma_{0}(\bar{y})=1\right.$, this implies that $\sigma_{l}(\bar{x})=\sigma_{l}(\bar{y})$ for $0 \leqslant l \leqslant h$. Hence $\bar{x}=\bar{y}$.

Proposition 5. If q is a prime power, then $N_{h}(q-1, q) \leqslant q^{h}-1$.
Construction 6. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of integers and v an integer such that if

$$
\bar{x}, \bar{y} \in C(h, n) \quad \text { and } \quad \sum_{j=1}^{n} x_{j} a_{j} \equiv \sum_{j=1}^{n} y_{j} a_{j}(\bmod v) \text {, then } \bar{x}=\bar{y} .
$$

For $\bar{b} \in C(h-1, n)$ and $1 \leqslant i \leqslant n$ let

$$
\begin{aligned}
& a(\bar{b}, i) \equiv a_{i}-\sum_{j=1}^{n} b_{j} a_{j}(\bmod v), \quad 0 \leqslant a(\bar{b}, i) \leqslant v-1, \\
& \Gamma(\bar{b})=\left\{a(\bar{b}, i) \mid b_{i}=0\right\}, \\
& s(\bar{b})=\#\left\{j \mid b_{j} \neq 0\right\} .
\end{aligned}
$$

Note that $\# \Gamma(\bar{b})=n-s(\bar{b})$. Let r be such that $1 \leqslant r \leqslant \min \{h-1, n-1\}$ and let

$$
\Delta=\{\Delta(\bar{b}) \mid s(\bar{b}) \leqslant r\}
$$

where $\Delta(\bar{b})$ is any subset of $\Gamma(\bar{b})$ containing $n-r$ elements.
Then Δ is an $\left(h, I_{r}, n-r\right)$-DDS and $v(A) \leqslant v-1$, where

$$
I_{r}=\sum_{k=1}^{r}\binom{n}{k}\binom{h-2}{k-1} .
$$

Proof. First we show that the elements are distinct. Suppose that $a(b, i)=a(\bar{c}, l)$. Then

$$
a_{i}-\sum_{j=1}^{n} b_{j} a_{j} \equiv a_{l}-\sum_{m=1}^{n} c_{m} a_{m}(\bmod v)
$$

and so

$$
a_{i}+\sum_{m=1}^{n} c_{m} a_{m} \equiv a_{l}+\sum_{j=1}^{n} b_{j} a_{j}(\bmod v) .
$$

Since $b_{i}=0$ this is possible only if $l=i$ and $c_{j}=b_{j}$ for all j.
Next consider sums of elements of $\Delta(\bar{b})$. If $\bar{x}, \bar{y} \in C(h, n)$ and

$$
\sum_{i=1}^{n} x_{i} a(b, i)=\sum_{i=1}^{n} y_{i} a(b, i)
$$

then

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} a_{i} & =\sum_{i=1}^{n} x_{i}\left(a_{i}-\sum_{j=1}^{n} b_{j} a_{j}\right)+h \sum_{j=1}^{n} b_{j} a_{j} \\
& \equiv \sum_{i=1}^{n} x_{i} a(b, i)+h \sum_{j=1}^{n} b_{j} a_{j} \\
& \equiv \sum_{i=1}^{n} y_{i} a(\bar{b}, i)+h \sum_{j=1}^{n} b_{j} a_{j} \\
& \equiv \sum_{i=1}^{n} y_{i}\left(a_{i}-\sum_{j=1}^{n} b_{j} a_{j}\right)+h \sum_{j=1}^{n} b_{j} a_{j} \\
& \equiv \sum_{i=1}^{n} y_{i} a_{i}(\bmod v)
\end{aligned}
$$

and so $x_{i}=y_{i}$ for all i.

Since $\Delta(b)$ contains $n-r$ elements, this proves that Δ is an $\left(h, I_{r}, n-r\right)$-DDS where

$$
\begin{aligned}
I_{r} & =\sum_{k=1}^{r} \#\{\bar{b} \mid s(\bar{b})=k\} \\
& =\sum_{k=1}^{r} \sum_{a_{i,}, a_{i,}, \ldots, a_{i k}} \# C(h-1, k) \\
& =\sum_{k=1}^{r}\binom{n}{k}\binom{h-2}{k-1} .
\end{aligned}
$$

Finally, $1 \leqslant a(\bar{b}, i) \leqslant v-1$ for all i such that $a(b, i) \in \Delta(\bar{b})$. Hence $v(\Delta) \leqslant v-1$.
Proposition 6. If q is a prime power, then
(i) For $1 \leqslant r \leqslant \min \{h-1, q-1\}$ we have

$$
N_{h}\left(\sum_{k=1}^{r}\binom{q}{k}\binom{h-2}{k-1}, q-r\right) \leqslant q^{h}-2
$$

(ii) For $1 \leqslant r \leqslant \min \{h-1, q\}$ we have

$$
N_{h}\left(\sum_{k=1}^{r}\binom{q+1}{k}\binom{h-2}{k-1}, q+1-r\right) \leqslant \frac{q^{h+1}-1}{q-1}-1 .
$$

Proof. Bose and Chowla [5] proved that there exist sets A with the modular distinct sum property assumed in Construction 6 when q is a prime power and $n=q$, $v=q^{h}-1$ and also $n=q+1, v=\left(q^{h+1}-1\right) /(q-1)$. The bounds on H given in Proposition 6 therefore follows from Construction 6.

References

[1] M.D. Atkinson, N. Santoro and J. Urrutia, Integer sets with distinct sums and differences and carrier frequency assignment for nonlinear repeaters, IEEE Trans. Comm. COM-34 (1986) 614-617.
[2] W.C. Babcock, Intermodulation interference in radio systems, Bell System Tech. J. 31 (1953) 63-73.
[3] G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, in: Lecture Notes in Mathematics, vol. 642 (Springer, Berlin, 1976) 53-65.
[4] R.C. Bose, An affine analogue of Singer's theorem, J. Indian Math. Soc. 6 (1942) 1-15.
[5] R.C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962-1963) 141-147.
[6] S. Chen, On the size of finite Sidon sequences, Proc. Amer. Math. Soc. 121 (1994) 353-356.
[7] W. Chen, A mathematical problem in the distribution of frequencies for mobile radio systems, J. Systems Math. Sci. 2 (1982) 28-35 (in Chinese).
[8] W. Chen, Lower bound of constraint length of self-orthogonal convolutional codes, Kexue Tongbao (Special Issue) (1983) 75-78.
[9] W. Chen, Further results on the problem of distribution of frequencies, Kexue Tongbao 29 (1984) 427-432.
[10] W. Chen, D. Li and T. Kløve, Lower bounds on intermodulation-free frequencies assignment, Kexue Tongbao 37 (21) (1992) 2015-2016 (in Chinese).
[11] W. Chen, and Q. Kong, Frequency distribution problem in mobile radio systems, J. China Inst. Commun. 4 (4) (1983) 33-39 (in Chinese).
[12] R.J.F. Fang and W.A. Sandrin, Carrier frequency assignment for nonlinear repeaters, Comsat Tech. Rev. 7 (1977) 227-245.
[13] S.W. Golomb and H. Taylor, Two-dimensional synchronization patterns for minimum ambiguity, IEEE Trans. Inform. Theory IT-28 (1982) 600-604.
[14] H. Halberstam and K.F. Roth, Sequences (Oxford Univ. Press, Oxford, 1966).
[15] X. Jia, On finite Sidon sequences, J. Number Theory 44 (1993) 84-92.
[16] T. Kløve, Bounds on the size of optimal difference sets, IEEE Trans. Inform. Theory IT-34 (1988) 355-361.
[17] T. Klove, Bounds and constructions of disjoint sets of distinct difference sets, IEEE Trans. Inform. Theory IT-36 (1990) 184-190.
[18] T. Kløve. K-sequences, a generalization of $B_{h}[g]$-sequences, Reports in Informatics, Dept. of Informatics, Univ. Bergen, No. 47, June 1990.
[19] T. Kløve, Constructions of $B_{h}[g]$-sequences, Acta Arith. 58 (1) (1991) 65-78.
[20] J.B. Shearer, Some new optimum Golomb rulers, IEEE Trans. Inform. Theory IT-36 (1990) 183-184.
[21] X. Xin, Translational channel assignment in mobile radio systems, J. China Inst. commun. 6 (2) (1985) 49-54 (in Chinese).

[^0]: *Corresponding author. E-mail:torleiv@ii.uib.no.
 ${ }^{1}$ The research for this paper was supported by The Norwegian Research Council.

