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This paper deals with finite-amplitude axisymmetric disturbances in a 
self-gravitating fluid column of finite radius R. It is shown that the cutoff wave- 
length /\.i above which gravitational breakup occurs now depends on the 
relative amplitude E/R of the initial perturbation. Actually, for small- but 
finite-amplitude disturbances, h,,, = hr (1 - 0.34368 l a/R2), where hr 
(= 5.8898R) designates the cutoff wavelength predicted in the linear approxima- 
tion. 

I. INTRODUCTION 

The response of a self-gravitating, incompressible cylinder to small 
axisymmetric disturbances was investigated by Chandrasekhar and Fermi [2] 
by means of an energy principle. Soon afterwards, Oganesian [9] was the first 
to perform a detailed normal mode analysis for both axisymmetric and non- 
axisymmetric perturbations. These linearized results show that a breakup 
occurs when the wavelengths of axisymmetric deformations exceed (appro- 
ximately) the circumference of the cylinder; the latter is stable for all non- 
axisymmetric disturbances (cf. also Chandrasekhar [I]). 

The foregoing question also resembles the problem of the breakup of a 
liquid jet held together in its equilibrium position by capillary forces. More 
recent experiments were performed by Crane, Birch, and McCormack [3], 
and Donnelly and Glaberson [4]. A qualitative agreement was found between 
the experimental results and the linearized theory devised by Rayleigh [lo]. 
However, quasiperiodic flow patterns were observed, thus indicating that 
jinite-amplitude motions should be considered. A recent work by Nayfeh [8] 
shows that this is indeed the case. 

The main purpose of the present paper is to determine, for a self-gravitating 
cylinder, the nonlinear cutoff wavelength above which no stable flow pattern 
exists. Actually, this work ensues from our interest in the appearance of 
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condensations within astronomical bodies. The nonlinear gravitational 
instability of a plane-parallel fluid slab of finite thickness was considered at 
length in a previous paper (Tassoul and Dedic [l 11, referred to hereinafter as 
“Paper I”). In this paper, our problem, very much akin to the capillary 
instability of a liquid jet, is solved by means of a singular perturbation techni- 
que devised by Nayfeh [6, 71. The basic results are summarized in the closing 
section. 

II. FORMULATION 

Consider an infinite cylinder of an incompressible, inviscid fluid. The self- 
gravitating system, imbedded in vacua, is characterized by a constant material 
density p, and a radius R. Let us now assume that, at t = 0 (say), the surface 
r = R is deformed so that it becomes 

r = R, + E cos kz, (1) 

where z is measured along the axis of symmetry; E and k denote, respectively, 
the amplitude and the wave number of our initial disturbance (without loss of 
generality, we can assume that k is positive). By virtue of the conservation of 
mass, the constant R, is related to the equilibrium radius R by the relation 

Ro2 + $ c2 = R2. (2) 

In order to discuss the nonlinear “sausage” instability of the cylindrical 
configuration, we will now describe the motion of its surface by means of the 
Lagrangian displacement &z, t). Hence, in view of Eqs. (1) and (2), we can 
assume that1 

&z, 0) = (1 - ; ~~)l’~ - 1 + E cos ka; (3) 

in addition, we shall let 
5,&, 0) = 0, (4) 

at our arbitrarily chosen initial instant t = 0. 
By virtue of the foregoing assumptions, we know that at every subsequent 

instant t (> 0) the motion can be described by a potmtialflbw. Hence, the 
basic equations of hydrodynamics can be rewritten in the form 

VW = 0, (5) 

vv = 1, and v2w = 0. (6) 

1 From now on, all physical variables are normalized by means of the characteristic 
length R, and the characteristic time (4nGp)- 112, where G is the constant of gravitation. 
In particular, the wave number k is measured in the unit R-‘. Moreover, an index 
after a comma will denote a derivative. 
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The functions @, I’, and W denote, respectively, the velocity potential, and 
the (internal and external) gravitational potentials (cf. footnote 1). The fluid 
velocity can be derived at once from @‘; the pressure is given by the Bernoulli 
theorem. 

Furthermore, we must impose appropriate boundary conditions; they are 
given by 

and 

@,, + :@r + @“z, + v = 0, (7) 

v.7 = wr 9 and v,, = wz > (8) 

t.t + 5.P.z - @,r = 0, (9) 

on the aariable surface r = 1 + &z, t). Equation (7) imposes the vanishing 
of the pressure on the moving boundary. Continuity of gravity is provided by 
conditions (8). Finally, Eq. (9) expresses the fact that the limiting surface 
retains its material identity in the course of time. 

III. PERTURBATION TECHNIQUE NEAR THE LINEAR CUTOFF 

Let us first mention that by linearizing the foregoing equations we recover 
the well-known solution 

where 

&, t) = E cos a,t cos kz, (10) 

which introduces modified Bessel functions. It is apparent from Eq. (11) that 
stable flows only exist when K >, k, , where k, is solution of the transcendental 
equation 

Q - A,&) KM = 0, (12) 

viz., k, = 1.0668. On the contrary, when k < k, , we have uo2 -=c 0; and, 
hence, exponentially growing motions occur. This can most readily be seen 
from the fact that, in the immediate vicinity of the linear cutoff, 

ao2(k) = a(k - kJ + O[(k - h)7, (13) 

where a = 0.23434; to be specific, we have 

These results were established by Chandrasekhar and Fermi [2]. 
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If exception is made for geometric differences, the results obtained in 
Paper I (Appendix A) can easily be extended to show that, in the nonlinear 
regime, quasiperiodic flows always occur in the range k > k1 + O(8); by 
the same token, no small-amplitude motion exists, when k < k, - O(c2) 
and E # 0. However, no firm inference can be drawn in the range 
1 k - k, 1 5 O(c2); henceforth, particular interest is attached to the behavior 
of the system in the latter domain. 

Let us now investigate small-but finite-amplitude flows in the range 
1 k - k, / 5 O(E~). Second-order asymptotic expansions can be obtained 
by means of the multiple time scales method [6, 71. We can first magnify the 
domain by putting 

or(k) = (k - k,)/c2, (15) 

which is now of O(1). In addition, let us introduce the two time scales t,, = t 
and tl = et. If Y denotes an arbitrary function of time, we thus have 

(In the remainder of the present paper, indices “0” and “1” after a comma 
designate a derivative with respect to t, and t, , respectively). Finally, it is 
convenient to let 

y = kz = (k, + cie2) z. (17) 

In agreement with our perturbation technique, we will next assume that 

and 

f = 4 + c252 + ~“sf3 + ***, (18) 

CD = --a t, + ED1 + 2@, + &D3 + a**, (19) 

v = $ r2 + EVl + 2v2 + e”V, + ***, (20) 

w = Q log r + CW, + l “W, + C”W, + ***, (21) 

where all functions depend on r, y, to , and tl . If we now insert expansions 
(18)-(21) into Eqs. (3)--(6), and equate the coefficients of equal powers of E, 
we obtain a set of equations that can be solved successively. As far as condi- 
tions (7)--(9) are concerned, it is convenient to relate their values on 
Y = 1 + &z, t) to the surface r = 1 by means of various Taylor expansions. 

a. First-order equations (order l ) 
We have 

&l(Y, 0) = COSY, and &;.o(Y, 0) = 0; 

CD 1.v + (l/r) @I,+ + kz2%,, = 0, 

(22) 

(23) 
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and two equations similar to Eq. (23), in which CD, is replaced, successively, 
by VI and W, ; finally, on r = 1, we have 

and 

55.0 - @I,, = 0, (24) 

@l.O + VI + i 5, = 0, (25) 

VL, - WL, = 0, (26) 

VI,, - WI*, + 5, = 0. (27) 

b. Second-order equations (order l 2) 

We have 

(22(Y, 0) = -a, and t2.o(Y, 0) = -~l;,l(Y, 0); (28) 

@2,n + (l/y) @jzJ + V@p,>,, = 0, (29) 

and two equations similar to Eq. (29), in which Qz is replaced, successively, 
by V2 and W2; finally, on I = 1, we have 

and 

c. Third-order equations (order 8) 

We have 

(34) 

(35) 

(36) 

and 

(37) 
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finally, on r = 1, we must have 

Now, given the results derived in Appendix B of Paper I (cf. also Nayfeh 
[8]), we know that the second-order asymptotic expansions should be of the 
form 

I N 4(h) cos Y + ~2a40(~o) -+ ~&)I cm 3 + eL(f,)h 

@ 2 -2 to + EY&) + +%o@o> ~0s 2y(lo(2kzy>/2kzr,(2k/;,)) 

+ @24$) cosy(lo(k,r)lkzl,(kz)) + ~2W, 

V = t y2 + OK cosy(~o(kz~)/4,&)) 

+ W’G(43) + %&)I ~0s 2r(~~o(2kzr)ir,(zkz)), 

(42) 

(43) 

(4) 

and 

w N B 1% T + r%(G) cm YFo@z~m-o(kzN 
+ ~“P%&> + %&,)I ~0s 2y(Ko(2kzy>i~o(2kz)). 

(45) 

Let us first consider Eqs. (23)-(27). In making use of Eq. (12), we 
obtain 

%(h> = K(b) = -4 4 * (46) 

in which 6, remains, for the time being, an arbitrary function oft, . By virtue 
of Eqs. (22) and (28), we must also have 

4(O) = 1, and 4,(O) = 0. (47) 
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Equations (28)-(33) imply next that 

e&J = -p cos wto ) 

~,&I) = P12, 

~2(4) = -t h2, 

@20(to) = @J sin wt, , 
and 

@2&l) = 4.1 3 
where 

(48) 

(49) 

(50) 

(51) 

(52) 

fJJ2 = 2~t(wMQ~J> [: - 4(2&) K3(WI 
(viz., ,!I = -0.37367 and 1 w [ = 0.62838). We also obtain 

(54) 

(55) 

note, however, that the functions !P2 and Yr play no important role in the 
present analysis, for @ is a velocity potential. Finally, we can write 

Go(to) = %o(to> = KlGw ~ocw cos wto > (56) 

%h) = %1(h) + 4 b2 

= i~oc&) Ko(%) PwGwJ/rc,cw~ - (4/3 + l)l~,a- 
(57) 

If we now insert Eqs. (46)-(57) into expansions (42)-(45) we see that all 
solutions can be related to the single unknown function 0,(t,). The latter can 
be obtained by requiring that expansions (42)-(45) be genuine second-order 
asymptotic series. Therefore, in order to eliminate secular terms in neglected 
quantities, we must eventually resort to the third-order Eqs. (34)(41). 

A close inspection of Eqs. (42)-(45) shows that & , @a , V, , and W, (cf. 
Eqs. (18~(21)) contain terms which are proportional to cos y and cos 3y 
(@a also includes a term which is proportional to cos 2~). However, for the 
purpose of eliminating secular terms, it is only necessary to consider those 
expressions which are proportional to cos y. Thus, we can write 
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and 

(cf., in particular, Eqs. (36) and (37)). Equations (34)-(41) will now be used 
to express the fact that the foregoing unknown functions are free of terms 
proportional to to . (It can be shown that ignored quantities in Eqs. 
(58~(61) do not contain secular terms.) 

Equation (40) implies that 

6 - % = 8 (4/9 - 1) h3 + (dk) 4 + f@o)s (62) 

wheref(t,,) includes all terms which do not solely depend on t, (cf. Eqs. (48) 
and (51)). From Eq. (41), we obtain the relation 

wdw4w % + wwl)IKJ&N “w; + 03 

= -8 (4/3 - 2 + V) h3 + g(t3); 
(63) 

similarly, the function g(t,,) contains all quantities depending on to , and 
which are irrelevant to the present discussion. If we now combine Eqs. (62) 
and (63) to eliminate W3 , we immediately find 

where p(t,) is a combination of f(ta) and g(t,,). Finally, by virtue of Eqs. (39) 
and (64), we obtain 

y,*rJ = - PI,, + m% - 2b2h3) + 4(4J, (65) 

in which all circular functions of t, are contained in q(t,,). The constant a 
was already defined in Eq. (14); we also have that b = 0.20726, i.e., 

It can now readily be seen from Eq. (65) that, in order to remove secular 
terms from U; (as from 0,) V3, and Wa), we must impose the condition 

8 1.11 = 2b2(h3 - 4), (67) 
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where 

u = +& ) and ac = 2b2/a, (68) 

viz., 0~~ = 0.36663. In view of conditions (47), a first integral of Eq. (67) can 
be written down at once. We obtain 

fl,z,l = b”(e,z - 1) (0; + 1 - 2u), (69) 

which must be solved with the condition that 0,(O) = 1. Also, on the outside 
of the domain 1 k - k, 1 5 O(e2), e,(ct) must tend toward the function cos a,t 
(cf. Eq. (13), and Paper I). 

IV. DISCUSSION 

To sum up, near the linear cutoff, the distortion of the cylindrical surface 
can be brought to the form 

gz, t) N Eel(d) cos kz + 2{p[e1yEt) - ~0~ d] C~S 2k - ; e12(d)j, (70) 

with an error of O(S); B,(<t) designates one particular solution of Eq. (69). 
Let us first note that, in view of Eq. (69), no small amplitude motion exists 

when u < 1 (a < CY,). Indeed, in the latter case, 8i always grows from its 
initial value one. On the contrary, when u 2 1 (a 3 a,), e2 < 1; and, then, 
the cylindrical system merely oscillates about its position of equilibrium. 
Therefore, the value u = 1 separates stable from unstable flows. Hence, if 
we return to definitions (15) and (68) we see that the wave number 

k,, = &(I + 0.34368~~) (71) 

defines the nonlinear cutoff, when allowance is made for small-but finite- 
amplitude motions. Nonlinearity thus slightly reduces the critical wavelength 
beyond which no stable flow pattern can be maintained. For growing motions, 
however, expansion (70) is only valid for a finite period of time. 

Equation (69) can easily be solved by means of Jacobian elliptic functions 
(cf., e.g., Jeffreys and Jeffreys [5]). By making use of the usual compact 
notation, we can express the function @,(,t) as follows: in the range u >, 1, we 

get 
ekt) = Cdh , K1>y (72) 

where 

-rl = cb(2u - 1)1’2 t, and K1 = (2f4 - l)-1’2; (73) 
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in the domain 4 < u < 1, we have 

edd = dc(T2 , Kz), (74) 
in which 

72 = de, and Kg = (224 - l)l/‘; (75) 

finally, when u < &, 

e&t) = nc(T3 , K3), (76) 
where 

73 = Eb(2 - 2U)i’2 t, and Kg = ((1 - 2u)/(2 - 2U))1’2. (77) 

Evidently, solutions (72) and (74) both reduce to ei(~t) = 1 when u = 1. 
Moreover, solutions (74) and (76) become equal (as they should) when 
u = 4. Finally, in the limits u -+ + 03 and u -+ -co, Eqs. (72) and (76) 
reduce to cos u,,t and cash / us 1 t, respectively (cf. Eqs. (13), (15), and (68)). 

In Fig. 1, we illustrate the behavior of &(et) for different values of k. Note in 

a : 1.0668 a : 1.0668 

b : 1.0686 b : 1.0686 

c : 1.0705 c : 1.0705 

d : 1.0723 d : 1.0723 

e : 1.0760 e : 1.0760 

FIG. 1. The function 0,(~t) for some values of k, when l = 0.1. The origin of 
the vertical scale is defined by the fact that, for each solution, 0,(O) = 1. The curves 
correspond to the different values of R listed on the figure. Unstable solutions labeled 
“a” and “b” become invalid when t 2 50 and t 2 60, respectively. 

particular that, in view of Eqs. (70) and (71), the value k = k, already 
corresponds to a time-dependent, unstable flow (in the linear approximation, 
at K = K, , the motion would then not depend on time; cf. Eq. (10) with 
a0 = 0). Also, when K = k,, , solution (70) becomes 

&i, t) = .!& 0) + S/3(1 - cos Wt) cos 2Rz + O(S). (78) 
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Thus, the nonlinear marginal state k = k,, depends on time. This is in 
sharp contrast with the results of the linearized theory. 

To conclude, it is also worth mentioning that the configuration exhibits a 
quasiperiodical behavior, when K >/ k,,(u >, 1). This typical nonlinear feature 
is due to the existence of two distinct periods (i.e., P, = 2n/w, and 
PO = ~K(K,)/E~(~u - 1)1/2, where K denotes the complete elliptic integral 
of the first kind) which are not commensurable. The same conclusion holds 
true for wave numbers well above the nonlinear cutoff. 
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