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Abstract

Suppose that k is an arbitrary field. Let k[[x1, . . . , xn]] be the ring of formal power series in n variables with coefficients in
k. Let k be the algebraic closure of k and σ ∈ k[[x1, . . . , xn]]. We give a simple necessary and sufficient condition for σ to be
algebraic over the quotient field of k[[x1, . . . , xn]]. We also characterize valuation rings V dominating an excellent Noetherian
local domain R of dimension 2, and such that the rank increases after passing to the completion of a birational extension of R. This
is a generalization of the characterization given by M. Spivakovsky [Valuations in function fields of surfaces, Amer. J. Math. 112
(1990) 107–156] in the case when the residue field of R is algebraically closed.
c© 2008 Elsevier B.V. All rights reserved.

MSC: 13F25; 13F30

1. Introduction

Suppose that k is an arbitrary field. Consider the field k((x1, . . . , xn)), which is the quotient field of the ring
k[[x1, . . . , xn]] of formal power series in the variables x1, . . . , xn , with coefficients in k. Suppose that k is an algebraic
closure of k, and σ ∈ k[[x1, . . . , xn]] is a formal power series. In this paper, we give a very simple necessary and
sufficient condition for σ to be algebraic over k((x1, . . . , xn)). We prove the following theorem, which is restated in
an equivalent formulation in Theorem 3.2.

Theorem 1.1. Suppose that k is a field of characteristic p ≥ 0, with algebraic closure k. Suppose that

σ(x1, . . . , xn) =

∑
i1,...,in∈N

αi1,...,in x i1
1 x i2

2 · · · x in
n ∈ k[[x1, . . . , xn]]

where αi1,...,in ∈ k for all i . Let

L = k({αi1,...,in | i1, . . . , in ∈ N})
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be the extension field of k generated by the coefficients of σ(x1, . . . , xn). Then σ(x1, . . . , xn) is algebraic over
k((x1, . . . , xn)) if and only if there exists r ∈ N such that [kL pr

: k] < ∞, where kL pr
is the compositum of k

and L pr
in k.

In the case that L is separable over k (Corollary 3.4), or that k is a finitely generated extension field of a perfect field
(Corollary 3.3), we have a stronger condition. In these cases, σ is algebraic if and only if [L : k] < ∞. The finiteness
condition [L : k] < ∞ does not characterize algebraic series over arbitrary base fields k of positive characteristic. To
illustrate this, we give a simple example, in Example 2.3, of an algebraic series in one variable for which [L : k] = ∞.

In Section 2, we prove Theorem 1.1 in the case n = 1. The most difficult part of the proof arises when k is
not perfect. Our proof uses the theorem of resolution of singularities of a germ of a plane curve singularity over an
arbitrary field (cf. [1,20,8]). In Section 3, we prove Theorem 1.1 for any number of variables n. The proof involves
induction on the number of variables, and uses the result for one variable proven in Section 2.

In the case when k has characteristic zero and n = 1, the conclusions of Theorem 1.1 are classical. We recall the
very strong known results, under the assumption that k has characteristic zero, and there is only one variable (n = 1).
The algebraic closure of the field of formal meromorphic power series k((x)) in the variable x is

k((x)) = ∪F

∞⋃
n=1

F((x
1
n )) (1)

where F is any finite field extension of k contained in the algebraic closure k of k. The equality (1) is stated and
proven in Ribenboim and Van den Dries’ article [24]. A proof can also be deduced from Abhyankar’s Theorem ([3]
or Section 2.3 of [11]). The equality (1) already follows for an algebraically closed field k of characteristic zero from
a classical algorithm of Newton [6,8].

If k has characteristic p > 0, then the algebraic closure of k((x)) is much more complicated, even when k is
algebraically closed, because of the existence of Artin Schreier extensions, as is shown in Chevalley’s book [7]. In
fact, the series

σ(x) =

∞∑
i=1

x
1−

1
pi , (2)

considered by Abhyankar in [4], is algebraic over k((x)), as it satisfies the relation

σ p
− x p−1σ − x p−1

= 0.

When k is an algebraically closed field of arbitrary characteristic, the “generalized power series” field k((xQ)) is
algebraically closed, as is shown by Ribenboim in [23]. The approach of studying the algebraic closure of k((x))

through generalized power series is developed by Benhessi [5], Hahn [12], Huang, [15], Poonen [21], Rayner [22],
Stefanescu [26] and Vaidya [28]. A complete solution when k is a perfect field is given by Kedlaya in [16]. He shows
that the algebraic closure of k((x)) consists of all “twist recurrent series” u =

∑
αi x i in k((xQ)) such that all αi lie

in a common finite extension of k.
When n > 1, the algebraic closure of k((x1, . . . , xn)) is known to be extremely complicated, even when k is

algebraically closed of characteristic 0. In this case, difficulties occur when the ramification locus of a finite extension
is very singular. There is a good understanding in some important cases, such as when the ramification locus is a simple
normal crossings divisor and the characteristic of k is 0 or the ramification is tame (Abhyankar [3], Grothendieck and
Murre [11]) and for quasi-ordinary singularities (Lipman [18], González-Pérez [10]).

More generally, subrings of a power series ring can be very complex, and are a source of many extraordinary
examples, such as [19,25,14].

As an application of our methods, we give a characterization of valuation rings V which dominate an excellent,
Noetherian local domain R of dimension two, and such that the rank increases after passing to the completion
of a birational extension of R. The characterization is known when the residue field of R is algebraically closed
(Spivakovsky [27]). In this case (R/m R algebraically closed) the rank increases under completion if and only if
dimR(V ) = 0 (V/mV is algebraic over R/m R) and V is discrete of rank 1.

However, the characterization is more subtle over nonclosed fields. In Theorem 4.2, we show that the condition
that the rank increases under completion is characterized by the two conditions that the residue field of V is finite
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over the residue field of R, and that V is discrete of rank 1. The case when the residue field of V is infinite algebraic
over the residue field of R and the value group is discrete of rank 1 can occur, and the rank of such a valuation does
not increase when passing to completion. In Corollary 4.3, we show that there exists a valuation ring V dominating R
whose value group is discrete of rank 1 with dimR(V ) = 0 such that the rank of V does not increase under completion
if and only if the algebraic closure of R/m R has infinite degree over R/m R .

We point out the contrast of the conclusions of Theorem 1.1 with the results of Section 4. The finiteness condition
[L : k] < ∞ of the coefficient field of a series over a base field k does not characterize algebraicity of a series in
a positive characteristic, while the corresponding finiteness condition on residue field extensions does characterize
algebraicity (the increase of rank) in the case of valuations dominating a local ring of Theorem 4.2. We illustrate this
distinction in Example 4.4 by constructing the valuation ring determined by the series of Example 2.3. We conclude
by showing a simple standard power series representation of the valuation associated to the algebraic series of (2),
whose exponents do not have bounded denominators.

The concept of the rank increasing when passing to the completion already appears implicitly in Zariski’s
paper [29]. Some papers where the concept is developed are [27,13,9].

If R is a local (or quasi local) ring, we will denote its maximal ideal by m R .

2. Series in one variable

Lemma 2.1. Suppose that R is a two-dimensional regular local ring, and x ∈ m R is part of a regular system of
parameters.

Suppose that k0 is a coefficient field of R̂ and y ∈ R̂ is such that x, y are regular parameters in R̂. This determines
an isomorphism

R̂
λ0
→ k0[[x, y]]

of R̂ with a power series ring. Suppose that α is separably algebraic over k0. Let y1 =
y
x − α. Then there exists a

maximal ideal n ⊂ R[
m R
x ] and an isomorphism

̂
R
[m R

x

]
n

λ1
→ k0(α)[[x, y1]]

which makes the diagram

R̂
λ0
→ k0[[x, y]]

↓ ↓

̂
R
[m R

x

]
n

λ1
→ k0(α)[[x, y1]]

commute, where the vertical arrows are the natural maps.

Proof. There exists ỹ ∈ R such that ỹ = y + h where h ∈ m3
R R̂. We have

ỹ

x
− α = y1 +

h(x, x(y1 + α))

x
= y1 + h1(x1, y1)

where h1 ∈ k0(α)[[x, y1]] is a series of order ≥ 2. Thus we have natural change of variables k0[[x, y]] = k0[[x, ỹ]]

and k0(α)[[x, y1]] = k0(α)[[x,
ỹ
x − α]]. We may thus assume that y ∈ R.

We have a natural inclusion induced by λ0,

R
[ y

x

]
⊂ R̂

[ y

x

]
⊂ k0(α)[[x, y1]].

Let n = (x, y1) ∩ R[
y
x ].

Let h(t) be the minimal polynomial of α over k0, and f ∈ R[
y
x ] be a lift of

h
( y

x

)
∈ k0

[ y

x

]
∼= R

[ y

x

]
/x R

[ y

x

]
.

Then n = (x, f ) and we see that R[
y
x ]/n ∼= k0(α). Now the conclusions of the lemma follow from Hensel’s Lemma

(cf. Lemma 3.5 [8]). �
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Theorem 2.2. Suppose that k is a field, with algebraic closure k. Let k((x)) be the field of formal Laurent series in a
variable x with coefficients in k. Suppose that

σ(x) =

∞∑
i=d

αi x i
∈ k((x))

where d ∈ Z and αi ∈ k for all i . Let L = k({αi | i ∈ N}), and suppose that L is separable over k. Then σ(x) is
algebraic over k((x)) if and only if

[L : k] < ∞.

Proof. We reduce to the case where d ≥ 1, by observing that σ is algebraic over k((x)) if and only if x1−dσ is.
First suppose that [L : k] < ∞. Let M be a finite Galois extension of k which contains L . Let G be the Galois

group of M over k. G acts naturally by k algebra isomorphisms on M[[x]], and the invariant ring of the action is
k[[x]]. Let f (y) =

∏
τ∈G(y −τ(σ )) ∈ M[[x]][y]. Since f is invariant under the action of G, f (y) ∈ k[[x]][y]. Since

f (σ ) = 0, we have that σ is algebraic over k((x)).
Now suppose that σ(x) =

∑
∞

i=1 αi x i is algebraic over k((x)). Then there exists

g(x, y) = a0(x)yn
+ a1(x)yn−1

+ · · · + an(x) ∈ k[[x]][y]

such that a0(x) 6= 0, n ≥ 1, g is irreducible and g(x, σ (x)) = 0.
Let

y0 = y, y1 =
y

x
− α1, y2 =

y1

x
− α2, . . . , yi =

yi−1

x
− αi , . . .

and define

S0 = k[[x, y]], S1 = k(α1)[[x, y1]], . . . Si = k(α1, . . . , αi )[[x, yi ]], . . . .

We have natural inclusions

S0 → S1 → · · · → Si → · · · .

By Lemma 2.1, there exists a sequence of inclusions

R0 → R1 → · · · → Ri → · · · (3)

where R0 = k[[x]][y](x,y) and each Ri is a localization at a maximal ideal of the blow up of the maximal ideal m Ri−1

of Ri−1, and we have a commutative diagram of homomorphisms

S0 → S1 → · · · → Si → · · ·

↑ ↑ ↑

R0 → R1 → · · · → Ri → · · ·

where the vertical arrows induce isomorphisms of the m Ri -adic completions R̂i of Ri with Si . We further have that x
is part of a regular system of parameters in Ri for all i , and m Ri−1 Ri = x Ri for all i .

By our construction, we have that

Ri/m Ri
∼= k(α1, . . . , αi ) (4)

for all i .
For all i , write g = xbi gi where gi ∈ Ri and x does not divide gi in Ri .
In k[[x, yi ]], we have a factorization

y − σ = x i

(
yi −

∞∑
j=i+1

α j x j−i

)
.

Since y − σ divides g in k[[x, y]], we have that yi −
∑

∞

j=i+1 α j x j−i divides gi in k[[x, yi ]]. Thus gi is not a unit in

k[[x, yi ]], and is thus not a unit in Ri .
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Let C be the curve germ g = 0 in the germ Spec(R0) of a nonsingular surface. The sequence (3) is obtained
by blowing up the closed point in Spec(Ri ), and localizing at a point which is on the strict transform of C . gi = 0
is a local equation of the strict transform of C in Spec(Ri ). By embedded resolution of plane curve singularities
([1,20] or a simple generalization of Theorem 3.15 and Exercise 3.13 of [8]) we obtain that there exists i0 such that
the total transform of C in Spec(Ri ) is a simple normal crossings divisor for all i ≥ i0. Since xbi gi = g = 0 is a local
equation of the total transform of C in Spec(Ri ), we have that x, gi are regular parameters in Ri for all i ≥ i0. Thus
gi0 = x i−i0 gi for all i ≥ i0, and Ri = Ri−1[

gi−1
x ](x,gi ) for all i ≥ i0 + 1.

We thus have that Ri/m Ri
∼= Ri0/m Ri0

for all i ≥ i0, and we see that

L =

⋃
i≥0

Ri/m Ri = Ri0/m Ri0
= k(α1, . . . , αi0).

Thus [L : k] < ∞. �

Example 2.3. The conclusions of Theorem 2.2 may fail if L is not separable over k.

Proof. Let p be a prime and {ti | i ∈ N} be algebraically independent over the finite field Zp. Let k = Zp({ti | i ∈ N}).
Define

σ(x) =

∞∑
i=1

t
1
p

i x i
∈ k[[x]].

Let

f (y) = y p
−

∞∑
i=1

ti x i p
∈ k[[x]][y].

σ (x) is algebraic over k[[x]] since

f (σ (x)) = (σ (x))p
−

∞∑
i=1

ti x i p
= 0.

However,

[k({t
1
p

i | i ∈ N}) : k] = ∞. �

Suppose that k is a field of characteristic p > 0 and L is an extension field of k. For n ∈ N, let

L pn
= { f pn

| f ∈ L}.

If k has characteristic p = 0, we take L pn
= L for all n.

Theorem 2.4. Suppose that k is a field of characteristic p > 0, with algebraic closure k. Let k((x)) be the field of
formal Laurent series in the variable x with coefficients in k. Suppose that

σ(x) =

∞∑
i=d

αi x i
∈ k((x))

where d ∈ Z and αi ∈ k for all i . Let L = k({αi | i ∈ N}), and assume that L is purely inseparable over k. Then
σ(x) is algebraic over k((x)) if and only if there exists n ∈ N such that L pn

⊂ k.

Proof. As in the proof of Theorem 2.2, we may assume that d ≥ 1.
First suppose that L pn

⊂ k for some n. Then τ(x) = σ(x)pn
∈ k[[x]], and σ(x) is the root of y pn

− τ(x) = 0.
Thus σ is algebraic over k((x)).

Now suppose that σ(x) =
∑

∞

i=1 αi x i
∈ k[[x]] is algebraic over k((x)). Then there exists

g(x, y) = a0(x)yn
+ a1(x)yn−1

+ · · · + an(x) ∈ k[[x]][y]

such that a0(x) 6= 0, n ≥ 1, g is irreducible and g(x, σ (x)) = 0.
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Let K be the quotient field of k[[x]][y], and let R0 := S0 := k[[x]][y](x,y). We will first construct a series of
subrings Si of K .

Define a local k-algebra homomorphism π0 : S0 → k[[x]] by prescribing that π0(x) = x and π0(y) = σ(x). The
kernel of π0 is the prime ideal gS0.

y

x
=

∞∑
i=0

αi+1x i
∈ k[[x]]

defines a k-algebra homomorphism S0[
y
x ] → k[[x]] which extends π0. Let λ(1) ∈ N be the smallest natural number

such that α
pλ(1)

1 ∈ k. Then the maximal ideal xk[[x]] of k[[x]] contracts to

xk[[x]] ∩ S0

[ y

x

]
=

(
x,
( y

x

)pλ(1)

− α
pλ(1)

1

)
.

Set y1 =
( y

x

)pλ(1)

− α
pλ(1)

1 . Let

S1 = S0

[ y

x

]
(x,y1)

.

Let π1 : S1 → k[[x]] be the local k-algebra homomorphism induced by π0.
We have that x, y1 is a regular system of parameters in S1, with

y1 =

∞∑
i=1

α
pλ(1)

i+1 x i pλ(1)

.

S1/mS1
∼= k(α1) and

[S1/mS1 : S0/mS0 ] = [k(α1) : k] = pλ(1).

Let λ(2) ∈ N be the smallest natural number such that α
pλ(1)+λ(2)

2 ∈ k(α1). Let

y2 =

(
y1

x pλ(1)

)pλ(2)

− α
pλ(1)+λ(2)

2 .

Then there is an expansion in k[[x]]

y2 =

∞∑
i=1

α
pλ(1)+λ(2)

i+2 x i pλ(1)+λ(2)

.

Let S2 = S1[
y1

x pλ(1) , α1](x,y2) ⊂ K . We have a local k-algebra homomorphism π2 : S2 → k[[x]] which extends π1.

We have S2/mS2
∼= k(α1, α

pλ(1)

2 ), so that

[S2/mS2 : S1/mS1 ] = [k(α1, α
pλ(1)

2 ) : k(α1)] = pλ(2).

We iterate the above construction, defining for i ≥ 2,

yi =

(
yi−1

x pλ(1)+···+λ(i−1)

)pλ(i)

− α
pλ(1)+···+λ(i)

i

=

∞∑
j=1

α
pλ(1)+···+λ(i)

j+i x j pλ(1)+···+λ(i)

where pλ(i)
∈ N is the smallest natural number such that

α
pλ(1)+···+λ(i)

i ∈ k(α1, α
pλ(1)

2 , . . . , α
pλ(1)+···+λ(i−2)

i−1 ).



2002 S.D. Cutkosky, O. Kashcheyeva / Journal of Pure and Applied Algebra 212 (2008) 1996–2010

Define

Si = Si−1

[
yi−1

x pλ(1)+···+λ(i−1)
, α

pλ(1)+···+λ(i−2)

i−1

]
(x,yi )

,

to construct an infinite commutative diagram of regular local rings, which are contained in K ,

S0 → S1 → · · · → Si → · · ·

π0 ↓ π1 ↓ πi ↓

k[[x]] = k[[x]] = · · · = k[[x]] = · · ·

We have

Si/mSi
∼= Si−1/mSi−1 [α

pλ(1)+···+λ(i−1)

i ] (5)

and

[Si/mSi : Si−1/mSi−1 ] = pλ(i).

For all i , the field

ki := k(α1, α
pλ(1)

2 , . . . , α
pλ(1)+···+λ(i−2)

i−1 ) ⊂ Si ,

and

Si/mSi
∼= ki [α

pλ(1)+···+λ(i−1)

i ].

We now construct a sequence

R0 → R1 → · · · → Ri → · · ·

of birationally equivalent regular local rings such that there is a commutative diagram of local k-algebra
homomorphisms

R0 → R1 → · · · → Ri → · · ·

↓ ↓ ↓

S0 → S1 → · · · → Si → · · ·

satisfying

m Ri Si = mSi and Si/mSi
∼= Ri/m Ri

for all i . The vertical arrows are inclusions.
This is certainly the case for R0 = S0, so we suppose that we have constructed the sequence out to Ri → Si , and

show that we may extend it to Ri+1 → Si+1.
We have

α
pλ(1)+···+λ(i+1)

i+1 ∈ k(α1, α
pλ(1)

2 , . . . , α
pλ(1)+···+λ(i−1)

i ) ∼= Ri/m Ri .

Thus there exists ϕ ∈ Ri such that the class of ϕ in Ri/m Ri is

[ϕ] = α
pλ(1)+···+λ(i+1)

i+1 .

Our assumptions m Ri Si = mSi and Si/mSi
∼= Ri/m Ri imply that

mn
Ri

/mn+1
Ri

∼= mn
Si

/mn+1
Si

(6)

as Ri/m Ri vector spaces for all n ∈ N.
By (6), there exists zi ∈ Ri such that

zi = yi + h



S.D. Cutkosky, O. Kashcheyeva / Journal of Pure and Applied Algebra 212 (2008) 1996–2010 2003

with h ∈ m2+pλ(1)+···+λ(i)

Si
. We then have that m Ri = (x, zi ), since m Ri /m2

Ri
∼= mSi /m2

Si
as Ri/m Ri vector spaces, and

by Nakayama’s Lemma. Now(
zi

x pλ(1)+···+λ(i)

)pλ(i+1)

=

(
yi

x pλ(1)+···+λ(i)

)pλ(i+1)

+

(
h

x pλ(1)+···+λ(i)

)pλ(i+1)

=

(
yi

x pλ(1)+···+λ(i)

)pλ(i+1)

+ xh′

for some h′
∈ Si [

yi

x pλ(1)+···+λ(i) ].(
zi

x pλ(1)+···+λ(i)

)pλ(i+1)

− ϕ ∈ Ri

[
zi

x pλ(1)+···+λ(i)

]
⊂ Si

[
yi

x pλ(1)+···+λ(i)

]
has residue(

yi

x pλ(1)+···+λ(i)

)pλ(i+1)

− α
pλ(1)+···+λ(i+1)

i+1

in Si+1/x Si+1 ∼= Si/mSi

[
yi

x pλ(1)+···+λ(i)

]
. Thus

mSi+1 ∩ Ri

[
zi

x pλ(1)+···+λ(i)

]
= (x,

(
zi

x pλ(1)+···+λ(i)

)pλ(i+1)

− ϕ).

Let

Ri+1 = Ri

[
zi

x pλ(1)+···+λ(i)

]
(x,

(
zi

x pλ(1)+···+λ(i)

)pλ(i+1)

−ϕ)

.

We have m Ri+1 Si+1 = mSi+1 (by Nakayama’s Lemma) and Ri+1/m Ri+1
∼= Si+1/mSi+1 .

We have factorizations g(x, y) = xβi gi where βi ∈ N and gi ∈ Ri is either irreducible or a unit. gi is a strict
transform of g in Ri . Since πi (x) 6= 0, we have that gi is contained in the kernel of the map Ri → Si

π
→ k[[x]], and

thus the ideal (gi ) is the (nontrivial) kernel of Ri → k[[x]]. In particular, gi ∈ MRi for all i .
Each extension Ri → Ri+1 can be factored as a sequence of pλ(1)+···+λ(i) birationally equivalent regular local

rings, each of which is a quadratic transform (the blow up of the maximal ideal followed by localization). The j-th
local ring with j < pλ(1)+···+λ(i), has the maximal ideal (x,

zi
x j ).

By embedded resolution of plane curve singularities [1,8,20], we obtain that there exists i0 such that g = 0 is a
simple normal crossings divisor in Spec(Ri ) for all i ≥ i0, so that x, gi is a regular system of parameters in Ri for all
i ≥ i0. Thus

Ri+1 = Ri

[
zi

x pλ(1)+···+λ(i)

]
(x,

gi

x pλ(1)+···+λ(i) )

for all i ≥ i0, and

Si+1/mSi+1
∼= Ri+1/m Ri+1

∼= Ri/m Ri
∼= Si/mSi

for all i ≥ i0. Thus λ(i) = 0 for all i ≥ i0 + 1.
Let

M = k(α1, α
pλ(1)

2 , . . . , α
pλ(1)+···+λ(i0−1)

i0
) ∼= Si0/mSi0

.

From (5), we see that L pλ(1)+···+λ(i0)
⊂ M . Since M is a finitely generated purely inseparable extension of k, there

exists r ∈ N such that M pr
⊂ k. Thus L pλ(1)+···+λ(i0)+r

⊂ k. �
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Theorem 2.5. Suppose that k is a field of characteristic p ≥ 0, with algebraic closure k. Let k((x)) be the field of
formal Laurent series with coefficients in k. Suppose that

σ(x) =

∞∑
i=d

αi x i
∈ k((x))

where d ∈ Z and αi ∈ k for all i . Let L = k({αi | i ∈ N}). Then σ(x) is algebraic over k((x)) if and only if there
exists n ∈ N such that [kL pn

: k] < ∞, where kL pn
is the compositum of k and L pn

in k.

Proof. First suppose that [kL pn
: k] < ∞ for some n. After possibly replacing n with a larger value of n, we may

assume that kL pn
is separable over k. Then σ(x)pn

is algebraic over k((x)) by Theorem 2.2, and thus σ(x) is algebraic
over k((x)).

Now suppose that σ(x) is algebraic over k((x)). Let M be the separable closure of k in L . Then σ(x) is algebraic
over M((x)). Since L is a purely inseparable extension of M , it follows from Theorem 2.4 that τ(x) = σ(x)pn

∈

M[[x]] for some n ∈ N. Since τ(x) is algebraic over k((x)), we have that [kL pn
: k] < ∞ by Theorem 2.2. �

Corollary 2.6. Suppose that k is a field of characteristic p ≥ 0 such that k is a finitely generated extension of a
perfect field, with algebraic closure k. Let k((x)) be the field of formal Laurent series with coefficients in k. Suppose
that

σ(x) =

∞∑
i=d

αi x i
∈ k((x))

where d ∈ Z and αi ∈ k for all i . Let L = k({αi | i ∈ N}). Then σ(x) is algebraic over k((x)) if and only if

[L : k] < ∞.

Proof. If [L : k] < ∞, then σ(x) is algebraic over k((x)) by Theorem 2.5.
Suppose that σ(x) is algebraic over k((x)). By assumption, there exists a perfect field F and s1, . . . , sr ∈ k such that

k = F(s1, . . . , sr ). By Theorem 2.5, there exists n such that [kL pn
: k] < ∞. Thus kL pn

= F(s1, . . . , sr , β1, . . . , βs)

where β1, . . . , βs ∈ kL pn
are algebraic over k. Thus

L ⊂ F(s
1

pn

1 , . . . , s
1

pn
r , β

1
pn

1 , . . . , β
1

pn
s ).

Now

[F(s
1

pn

1 , . . . , s
1

pn
r ) : F(s1, . . . , sr )] < ∞

and since β1, . . . , βs are algebraic over F(s1, . . . , sr ),

[F(s
1

pn

1 , . . . , s
1

pn
r , β

1
pn

1 , . . . , β
1

pn
s ) : F(s

1
pn

1 , . . . , s
1

pn
r )] < ∞.

Thus

[L : k] ≤ [F(s
1

pn

1 , . . . , s
1

pn
r , β

1
pn

1 , . . . , β
1

pn
s ) : k] < ∞. �

3. Series in several variables

We will now generalize Theorem 2.5 to higher dimensions.
Denote by X an n-dimensional indeterminate vector (x1, x2, . . . , xn) and by I an n-dimensional exponent vector

(i1, i2, . . . , in) ∈ Nn . Then for 1 ≤ l ≤ n write Xl = (x1, x2, . . . , xl), Il = (i1, i2, . . . , il) and X I
l = X Il

l =

x i1
1 x i2

2 · · · x il
l . If E is a field denote by E[[X ]] the formal power series ring in n variables with coefficients in E and by

E((X)) the quotient field of E[[X ]]. Also denote by Ec the perfect closure of E and by E the algebraic closure of E .
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Lemma 3.1. Suppose that E is a field and F is a field extension of E. Let

σ =

∑
I∈Nn

αI X I
∈ F[[X ]], with αI ∈ F,

be a formal power series in n variables with coefficients in F. For any 1 ≤ l ≤ n and I ∈ Nn define the following
power series in 1 variable with coefficients in F

aI,l =

∞∑
j=0

αJ x j
l , where J = (i1, i2, . . . , il−1, j, il+1, . . . , in).

Then σ is algebraic over E((X)) implies aI,l is algebraic over E((xl)).

Proof. We use induction on the number of variables. If n = 1 the statement is trivial. Suppose that n > 1. After
possibly permuting the variables we may assume that l = 1. Write Xn−1 = (x1, . . . , xn−1) and for all m ∈ N consider
the power series in n − 1 variables

δm =

∑
R∈Nn , rn=m

αR X R
n−1 =

∑
R∈Nn , rn=m

αR xr1
1 xr2

2 · · · xrn−1
n−1 .

If δin is algebraic over E((Xn−1)) it will follow from the inductive hypothesis that aI,1 is algebraic over E((x1)). We
will show that δm is algebraic over E((Xn−1)) for all m ∈ N.

Consider the algebraic dependency relation for σ over E((X))

ct (X)σ t
+ ct−1(X)σ t−1

+ · · · + c1(X)σ + c0(X) = 0.

By clearing the denominators we may assume that c j ∈ E[[X ]] for all 0 ≤ j ≤ t . Let g be the highest power of xn

that divides c j for all j . Set c′

j = (x−g
n c j )(x1, x2, . . . , xn−1, 0). Then c′

j ∈ E[[Xn−1]] and the following equation
holds:

c′
t (Xn−1)δ

t
0 + c′

t−1(Xn−1)δ
t−1
0 + · · · + c′

1(Xn−1)δ0 + c′

0(Xn−1) = 0,

where c′

j 6= 0 for some 0 ≤ j ≤ t . Thus δ0 is algebraic over E((Xn−1)).

Set σ1 = x−1
n (σ − δ0). Then σ1 ∈ F[[X ]] and it is algebraic over E((X)). Arguing as above we get that δ1 is

algebraic over E((Xn−1)). In general we define σm = x−1
n (σm−1 − δm−1) recursively for all m ∈ N and use σm to

prove that δm is algebraic over E((Xn−1)). �

Theorem 3.2. Suppose that k is a field of characteristic p ≥ 0. Suppose that

σ =

∑
I∈Nn

αI X I
∈ k[[X ]], with αI ∈ k

is a formal power series in n variables with coefficients in k. Let L = k({αI | I ∈ Nn
}) be the extension field of

k generated by the coefficients of σ . Then σ is algebraic over k((X)) if and only if there exists r ∈ N such that
[kL pr

: k] < ∞, where kL pr
is the compositum of k and L pr

in k.

Proof. First suppose that there exists r ∈ N such that [kL pr
: k] < ∞. After possibly increasing r we may

assume that kL pr
is a separable extension of k. Let M be a finite Galois extension of k which contains kL pr

.
Notice that kL pr

= k({α
pr

I | I ∈ Nn
}) and, therefore σ pr

∈ M[[X ]]. Let G be the Galois group of M over
k. G acts naturally by k algebra isomorphisms on M[[X ]], and the invariant ring of the action is k[[X ]]. Let
f (y) =

∏
τ∈G(y − τ(σ pr

)) ∈ M[[X ]][y]. Since f is invariant under the action of G, f (y) ∈ k[[X ]][y]. Since
f (σ pr

) = 0, we have that σ is algebraic over k[[X ]].
To prove the other implication we use induction on the number of variables. When n = 1 the statement follows

from Theorem 2.5. Assume that n > 1.
For all I ∈ Nn let

aI =

∞∑
j=0

αJ x j
n , with J = (i1, i2, . . . , in−1, j),



2006 S.D. Cutkosky, O. Kashcheyeva / Journal of Pure and Applied Algebra 212 (2008) 1996–2010

be a power series in 1 variable with coefficients in k. If K = k((xn)) then by Lemma 3.1 aI is algebraic over K for
all I ∈ Nn . Then

σ =

∑
{I∈Nn |in=0}

aI X I
n−1

is a series in n−1 variables with coefficients in K . By the inductive hypothesis there exists N ∈ N and r ∈ N such that
K ({a pr

I | I ∈ Nn
}) = K (a pr

I1
, a pr

I2
, . . . , a pr

IN
). Thus, for all I ∈ Nn we have a pr

I is a polynomial in a pr

I1
, a pr

I2
, . . . , a pr

IN
with coefficients in K .

Fix I ∈ N, if j ∈ N set J = (i1, i2, . . . , in−1, j) and write

∞∑
j=0

α
pr
J x j pr

n = a pr

I =

∑
S∈{0,1,...,T }N

(
∞∑

m=−MS

γS,m xm
n

)
(a pr

I1
)s1(a pr

I2
)s2 · · · (a pr

IN
)sN ,

where T ∈ N, S = (s1, s2, . . . , sN ) is an index vector, MS ∈ N and γS,m ∈ k for all S and m. This implies that for all

I ∈ N and j ∈ N, α
pr

J is a polynomial in the coefficients of power series a pr

I1
, a pr

I2
, . . . , a pr

IN
over k. Moreover, for all

r ′
≥ r we also have α

pr ′

J is a polynomial in the coefficients of power series a pr ′

I1
, a pr ′

I2
, . . . , a pr ′

IN
over k. Thus kL pr ′

is

the field extension of k generated by the coefficients of power series a pr ′

I1
, a pr ′

I2
, . . . , a pr ′

IN
.

Applying Theorem 2.5 to each of the series aI1 , aI2 , . . . , aIN we see that there exists R ∈ N such that kL pR
is

finitely generated over k. �

Similarly to the case of one variable we deduce the following corollary.

Corollary 3.3. Suppose that k is a field of characteristic p ≥ 0 such that k is a finitely generated extension of a
perfect field. Suppose that

σ =

∑
I∈Nn

αI X I
∈ k[[X ]], with αI ∈ k

is a formal power series in n variables with coefficient in k. Let L = k({αI | I ∈ Nn
}) be the extension field of k

generated by the coefficients of σ . Then σ is algebraic over k((X)) if and only if [L : k] < ∞.

Also notice that if E is a field of characteristic p ≥ 0 and a is separable algebraic over E ; then for all r ∈ N we
have E[a pr

] = E[a]. Thus if F is a separable extension of E , E F pr
= F for all r ∈ N. So we have the following

statement in case of separable extensions.

Corollary 3.4. Suppose that k is a field of characteristic p ≥ 0. Suppose that

σ =

∑
I∈Nn

αI X I
∈ k[[X ]], with αI ∈ k

is a formal power series in n variables with coefficient in k. Let L = k({αI | I ∈ Nn
}) be the extension field of k

generated by the coefficients of σ . Suppose that L is separable over k. Then σ is algebraic over k((X)) if and only if
[L : k] < ∞.

4. Valuations whose rank increases under completion

Suppose that K is a field and V is a valuation ring of K . We will say that the rank of V increases under completion
if there exists an analytically normal local domain T with quotient field K such that V dominates T and there exists
an extension of V to a valuation ring of the quotient field of T̂ which dominates T̂ which has higher rank than the
rank of V .

Suppose that V dominates an excellent local ring R of dimension 2. Then by resolution of surface singularities [17],
there exists a regular local ring R0 and a birational extension R → R0 such that V dominates R0. Let

R0 → R1 → · · · → Rn → · · · (7)
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be the infinite sequence of regular local rings obtained by blowing up the maximal ideal of Ri and localizing at the
center of V . Since R has dimension 2, we have that V = ∪

∞

i=0 Ri (as is shown in [2]), and thus V/mV = ∪
∞

i=0 Ri/m Ri .
We see that V/mV is countably generated over R/m R .

Suppose that the rank of V increases under completion. Then there exists n such that for all i ≥ n, there exists a
valuation ring V1 of the quotient field of the regular local ring R̂i which extends V , dominates R̂i , and has rank larger
than 1. By the Abhyankar inequality ([2] or Proposition 3 of Appendix 2 [30]), we have that Ri has dimension 2, V1
is discrete of rank 2, and V1/mV1 is algebraic over R̂i/m R̂i

. Thus V/mV is algebraic over R/m R and V is discrete of
rank 1.

It was shown by Spivakovsky [27] in the case that R/m is algebraically closed that the converse holds, giving the
following simple characterization.

Theorem 4.1 (Spivakovsky [27]). Suppose that V dominates an excellent two-dimensional local ring R who residue
field R/m R is algebraically closed. Then the rank of V increases under completion if and only if dimR(V ) = 0 and
V is discrete of rank 1.

The condition that the transcendence degree dimR(V ) of V/mV over R/m R is zero is just the statement that V/mV
is algebraic over R/m R . In the case that R/m R is algebraically closed, dimR(V ) = 0 if and only if V/mV = R/m R .

Using a similar method to that used in the proof of our algebraicity theorem on power series, Theorem 2.2, we
prove the following extension of Theorem 4.1.

Theorem 4.2. Suppose that V is a valuation ring of a field K , and V dominates an excellent two-dimensional local
domain R whose quotient field is K . Then the rank of V increases under completion if and only if V/mV is finite
over R/m R and V is discrete of rank 1.

Proof. First assume that the rank of V increases under completion. Consider the sequence (7). We observed above
after (7) that V/mV is algebraic over R/m R and V is discrete of rank 1. Further, there exists Ri and a valuation V1 of
the quotient field of R̂i which dominates R̂i whose intersection with the quotient field K of R is V , and the rank of
V1 is 2. Without loss of generality, we may assume that Ri = R0.

For i ≥ 0, let p(Ri )∞ be the (nontrivial) prime ideal in R̂i of Cauchy sequences whose value is greater than n for
any n ∈ N (Section 5 of [9]). Since R̂i is a two-dimensional regular local ring, p(Ri )∞ is generated by an irreducible
element in R̂i for all i . Let f be a generator of p(R0)∞. By resolution of plane curve singularities [1,8,20], there
exists i in the sequence (7) such that f = hi fi , where hi ∈ Ri is such that hi = 0 is supported on the exceptional
locus of Spec(Ri ) → Spec(R), and fi ∈ R̂i is such that R̂i/ fi R̂i is a regular local ring. We necessarily have that
p(Ri )∞ = fi R̂i . Again, without loss of generality, we may assume that i = 0. Let T0 = R̂0, and let

T0 → T1 → · · · → Tn → · · ·

be the infinite sequence of regular local rings obtained by blowing up the maximal ideal of the regular local ring Ti
and localizing at the center of V1. We then have a commutative diagram

R0 → R1 → · · · → Ri → · · ·

↓ ↓ ↓

T0 → T1 → · · · → Ti → · · ·

↓ ↓ ↓

R̂0 → R̂1 → · · · → R̂i → · · · .

(8)

There exists x ∈ R0 such that x, f0 is a regular system of parameters in T0. Thus T1 = T0[
f0
x ]

(x,
f0
x )

. Define fi =
f0
x i

for i ≥ 1. Then Ti = T0[ fi ](x, fi ) and p(Ri )∞ = fi R̂i for all i ≥ 0. Thus Ri/m Ri
∼= Ti/mTi

∼= T0/(x, f0) ∼= R0/m R0

for all i . Since V/mV = ∪i≥0 Ri/m Ri = R0/m R0 and R0/m R0 is finite over R/m R , we have the conclusions of the
theorem.

Now assume that V/mV is finite over R/m R and V is discrete of rank 1. Consider the sequence (7). There exists i
such that Ri/m Ri = V/mV . Without loss of generality, we may assume that R = Ri . Let ν be a valuation of K such
that V is the valuation ring of ν. We may also assume that there are regular parameters x, y in R such that ν(x) = 1
generates the value group Z of ν. Let π : R → R/m R = V/mV be the residue map. Let y0 = y. There exists n0 ∈ N
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such that ν(y) = n0. Let α0 ∈ R be such that π(α0) = [
y

xn0 ] ∈ V/mV . Let y1 = y − α0xn0 , and let n1 = ν(y1).
We have n1 > n0. Iterate, to construct yi ∈ R and ni ∈ N with ν(yi ) = ni for i ∈ N by choosing αi ∈ R such that
yi+1 = yi − αi xni satisfies ni+1 > ni . Thus {yi } is a Cauchy sequence in R. Let σ be the limit of {yi } in R̂. Let ν̂

be an extension of ν to the quotient field of R̂ which dominates R̂. Then ν̂(σ ) > n for all n ∈ N, so that ν̂ has rank
2 > 1, and we see that the rank of V increases under completion. �

We see that the condition that V/mV is finite over R/m R thus divides the class of discrete rank 1 valuation rings
with dimR(V ) = 0 into two subclasses, those whose rank increases under completion ([V/mV : R/m R] < ∞), and
those whose rank does not increase ([V/mV : R/m R] = ∞). We have the following precise characterization of when
this division into subclasses is nontrivial.

Corollary 4.3. Suppose that R is an excellent two-dimensional local ring. Then there exists a rank 1 discrete valuation
ring V of the quotient field of R which dominates R such that dimR(V ) = 0 and the rank of V does not increase
under completion if and only if [k : k] = ∞, where k is the algebraic closure of k = R/m R .

Proof. Suppose that [k : k] < ∞, and V is a rank 1 discrete valuation ring of the quotient field of R which dominates
R such that dimR(V ) = 0. Then

[V/mV : k] ≤ [k : k] < ∞.

Thus the rank of V must increase under completion by Theorem 4.2.
Now suppose that [k : k] = ∞. We will construct a rank 1 discrete valuation ring V of the quotient field of R

which dominates R such that dimR(V ) = 0 and the rank of V does not increase under completion.
There exists a two-dimensional regular local ring R0 which birationally dominates R. We have [k : R0/m R0 ] = ∞.

Let x, y0 be a regular system of parameters in R0. We will inductively construct an infinite birational sequence of
regular local rings

R0 → R1 → · · · → Ri → · · ·

such that Ri has a regular system of parameters x, yi and [Ri/m Ri : Ri−1/m Ri−1 ] > 1 for all i . Suppose that we have
defined the sequence out to Ri . Choose αi+1 ∈ k − Ri/m Ri . Let hi+1(t) be the minimal polynomial of αi+1 in the
polynomial ring Ri/m Ri [t]. We have an isomorphism

Ri

[m Ri

x

]
/x Ri

[m Ri

x

]
∼= Ri/m Ri

[ yi

x

]
.

Let yi+1 be a lift of hi+1(
yi
x ) to Ri

[
m Ri

x

]
. Let

Ri+1 = Ri

[m Ri

x

]
(x,yi+1)

.

We have that Ri+1/m Ri+1
∼= Ri/m Ri (αi+1).

Let V = ∪
∞

i=0 Ri . V is a valuation ring which dominates R (as is shown in [2]). V/mV = ∪
∞

i=0 Ri/m Ri so that
dimR(V ) = 0 and [V/mV : k] = ∞.

V must have rank 1 since [V/mV : k] = ∞ (for instance by the Abhyankar inequality, [2] or Proposition 3 [30]).
By our construction, ν(x) ≤ ν( f ) for any f ∈ mV = ∪

∞

i=1 m Ri . Thus the value group of V is discrete. Since
[V/mV : k] = ∞, by Theorem 4.2 the rank of V does not increase under completion. �

When a valuation ring V with quotient field K is equicharacteristic and discrete of rank 1, it can be explicitly
described by a representation in a power series ring in one variable over the residue field of V . In fact, since V is
discrete of rank 1, it is Noetherian (Theorem 16, Section 10, Chapter VI [30]). As V is equicharacteristic, the mV -adic
completion V̂ of V has a coefficient field L by Cohen’s theorem, and thus V̂ ∼= L[[t]] is a power series ring in one
variable over L ∼= V/mV . We have V = K ∩ V̂ . The subtlety of this statement is that if k is a subfield of K contained
in V such that V/mV is not separably generated over k, then there may not exist a coefficient field L of V̂ which
contains k.

Although the completion of a rank 1 valuation ring is a power series ring, in positive characteristic, the valuation
determined by associating to a system of parameters specific power series may not be easily recognizable from a
series representation of the valuation ring. This can be seen from the contrast of the conclusions of Theorem 1.1 with
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the results of this section. The finiteness condition [L : k] < ∞ of the coefficient field of a series over a base field k
does not characterize algebraicity of a series in positive characteristic, while the corresponding finiteness condition on
residue field extensions does characterize algebraicity in the case of valuations dominating a local ring of Theorem 4.2.
We illustrate this distinction in the following example.

Example 4.4. The valuation induced by the series of Example 2.3, whose coefficient field is infinitely algebraic over
the base field k, has a residue field which is finite over k.

Proof. With notation of Example 2.3, we have a k-algebra homomorphism

R = k[u, v](u,v)
π
→ k[[x]]

defined by the substitutions

u = x, v = σ(x) =

∞∑
i=1

t
1
p

i x i .

π is 1–1 since x, y and the t
1
p

i are algebraically independent over k. The order valuation on k[[x]] induces a rank 1
valuation ν on the quotient field of R. Let v1 = ( v

u )p
− t1.

R1 = R[
v
u ](u,v1) is dominated by ν. From the expansion

v1 =

∞∑
i=1

ti+1x i p,

we inductively define

v j+1 =
v j

u p − t j+1 =

∞∑
i=1

ti+ j x i p

and

R j+1 = Ri

[ v j

u p

]
(u,v j+1)

for j ≥ 1. The R j are dominated by ν for all j , so that V = ∪ j≥1 R j is the valuation ring of ν. We have that the

residue field of V is V/mV = R1/m R1 = k(t
1
p

1 ). This is a finite extension of k, in contrast to the fact that the field of

coefficients L = k({t
1
p

i | i ∈ N}) of σ(x) has infinite degree over k. �

An especially strange representation of a rank 2 discrete valuation is given by the example (2) of a power series
whose exponents have unbounded denominators.

Let k be a field of characteristic p > 0, and consider the series

σ =

∞∑
i=1

x
1−

1
pi (9)

of (2). σ is algebraic over k(x), with irreducible relation σ p
− x p−1σ − x p−1

= 0.
Consider the two-dimensional regular local ring R0 = k[x, y](x,y). x and y are regular parameters in R0. Let

y = σ(x). We see from (9) that y does not have a fractional power series representation in terms of x . However, by
expanding x in terms of y, we have an expansion

x = y
p

p−1 (1 + y)
−

1
p−1 (10)

which represents x as a fractional power series in y with bounded denominators.
Let g = y p

− x p−1 y − x p−1
∈ R0. g = 0 has a singularity of order p − 1 in R. Let

R1 = R

[
x

y
, y

]
( x

y ,y)

.
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x1 =
x
y and y are regular parameters in R1. g = y p−1g1, where

g1 = y − x p−1
1 y − x p−1

1

is a strict transform of g in R1. g1 = 0 is nonsingular. From the equation g1 = 0 we deduce that

y = x p−1
1 (1 − x p−1

1 )−1

= x p−1
1 (1 + x p−1

1 + x2(p−1)

1 + · · ·)

=

∞∑
i=1

x i(p−1)

1 ,

obtaining a standard power series expansion of y in terms of x .
We obtain a fractional power series of x1 in terms of y with bounded denominators either from the equation g1 = 0,

or by substitution in (10).
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