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We study the diffusive logistic equation with a free boundary in
higher space dimensions and heterogeneous environment. Such
a model may be used to describe the spreading of a new or in-
vasive species, with the free boundary representing the expanding
front. For simplicity, we assume that the environment and the solu-
tion are radially symmetric. In the special case of one space dimen-
sion and homogeneous environment, this free boundary problem
was investigated in Du and Lin (2010) [10]. We prove that the
spreading–vanishing dichotomy established in Du and Lin (2010)
[10] still holds in the more general and ecologically realistic setting
considered here. Moreover, when spreading occurs, we obtain best
possible upper and lower bounds for the spreading speed of the
expanding front. When the environment is asymptotically homoge-
neous at infinity, these two bounds coincide. Our results indicate
that the asymptotic spreading speed determined by this model
does not depend on the spatial dimension.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

An important problem in invasion ecology is to understand the nature of spreading of the invasive
species. It is well known that many animal species spread to their new environment in a linear
fashion, namely the spreading radius eventually exhibits a linear growth curve against time [27,22].
This phenomenon seems first observed by Skellam [28] in examining the spreading of muskrat in
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Europe in the early 1900s. He calculated the area of the muskrat range from a map obtained from
field data, took the square root (which gives the spreading radius) and plotted it against years, and
found that the data points lay on a straight line. Several mathematical models have been proposed to
describe this phenomenon and one may find many in [27].

One of the most successful mathematical approaches to this problem is based on the investigation
of front propagation governed by the following diffusive logistic equation over the entire space R

N :

ut − d�u = u(a − bu), t > 0, x ∈ R
N . (1.1)

Here u = u(t, x) may be regarded as the population density of a spreading species with diffusion
rate d, intrinsic growth rate a and habitat carrying capacity a/b. In the pioneering works of Fisher [13]
and Kolmogorov et al. [18], for space dimension N = 1, traveling wave solutions have been found
for (1.1): For any c � c∗ := 2

√
ad, there exists a solution u(t, x) := W (x − ct) with the property that

W ′(y) < 0 for y ∈ R
1, W (−∞) = a/b, W (+∞) = 0;

no such solution exists if c < c∗ . The number c∗ is called the minimal speed of the traveling waves.
Fisher [13] claims that c∗ is the spreading speed for the advantageous gene in his research, and used
a probabilistic argument to support his claim. Skellam [28] was able to use a linear model (i.e., (1.1)
with b = 0) and a similar probabilistic argument to show that c∗ should be the speed of spreading.
A clearer description and rigorous proof of this fact were given by Aronson and Weinberger (see
Section 4 in [1]), who showed that for a new population u(t, x) (governed by the above logistic
equation) with initial distribution u(0, x) confined to a compact set of x (i.e., u(0, x) = 0 outside a
compact set), one has

lim
t→∞,|x|�(c∗−ε)t

u(t, x) = a/b, lim
t→∞,|x|�(c∗+ε)t

u(t, x) = 0

for any small ε > 0. These results have been extended to higher dimensions in [2], and further related
research may be found, for example, in [3–5,14,20,29,30] and the references therein.

A shortcoming of this approach is that it predicts successful spreading and establishment of the
new species with any nontrivial initial population u(0, x) (namely u(t, x) → a/b as t → ∞), regardless
of its initial size and supporting area. This is in sharp contrast to numerous empirical evidences; for
example, the introduction of several bird species from Europe to North America in the 1900s was
successful only after many initial attempts.

The phenomenon that a species starting with small initial size may fail to establish is often ex-
plained by the “Allee effect”, which states that populations shrink at very low densities because, on
average, individuals cannot replace themselves in such a situation. In mathematics, to include the
Allee effect, one usually replaces the logistic reaction term u(a − bu) in (1.1) by a bistable function
f (u) such as

f0(u) = au(1 − u)(u − θ), θ ∈ (0,1/2).

It is well known that for a bistable nonlinear term f (u) behaving like f0(u), there is a unique c0 > 0
such that the equation

ut − duxx = f (u), x ∈ (−∞,+∞)

has a unique traveling wave solution (up to translation in x) with speed c0, and no traveling wave
solution exists for any other speed c (see, e.g., [1]). The constant c0 is also the spreading speed for
the model, and when the special form f0(u) is used, then (see [15,16])

c0 = (1/2 − θ)
√

2ad.
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Recently, Du and Lin [10] used a free boundary model to study the spreading of species in one
space dimension with the same logistic nonlinearity as in (1.1), and showed that, depending on the
initial size, both spreading and vanishing can happen. The model in [10] has the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − duxx = u(a − bu), t > 0, 0 < x < h(t),

ux(t,0) = 0, u
(
t,h(t)

) = 0, t > 0,

h′(t) = −μux
(
t,h(t)

)
, t > 0,

h(0) = h0, u(0, x) = u0(x), 0 � x � h0,

(1.2)

where x = h(t) is the moving boundary to be determined, h0, μ, d, a and b are given positive con-
stants, and the initial function u0(x) satisfies

u0 ∈ C2([0,h0]
)
, u′

0(0) = u0(h0) = 0, u0 > 0 in [0,h0). (1.3)

Here u(t, x) stands for the population density of a new or invasive species over a one-dimensional
habitat, and the initial function u0(x) stands for the population of the species in the very early stage
of its introduction, which occupies an initial region [0,h0]. It is assumed that the species can only
invade further into the environment from the right end of the initial region, and the spreading front
expands at a speed that is proportional to the population gradient at the front, which gives rise
to the Stefan condition h′(t) = −μux(t,h(t)). It was shown in [10] that (1.2) has a unique solution
(u(t, x),h(t)) defined for all t > 0, with u(t, x) > 0 and h′(t) > 0. Moreover, a spreading–vanishing
dichotomy holds for (1.2), namely, as time t → ∞, the population u(t, x) either successfully establishes
itself in the new environment (called spreading), in the sense that h(t) → ∞ and u(t, x) → a/b, or

the population fails to establish and vanishes eventually (called vanishing), namely h(t) → h∞ � π
2

√
d
a

and u(t, x) → 0. Furthermore, when spreading occurs, for large time, the spreading speed approaches
a positive constant k0, i.e., h(t) = [k0 +o(1)]t as t → ∞. The asymptotic spreading speed k0 is uniquely
determined by an auxiliary elliptic problem induced from (1.2), and is independent of the initial
population size u0. The criteria for spreading or vanishing are as follows. If the initial occupying

area [0,h0] is beyond a critical size, namely h0 � π
2

√
d
a , then regardless of the initial population size

u0(x) (satisfying (1.3)), spreading always happens. On the other hand, if h0 < π
2

√
d
a , then whether

spreading or vanishing occurs is determined by the initial population size u0 and the coefficient μ in
the Stefan condition (assuming the other parameters are fixed). It was shown that for such h0, with
each given u0, there exists a critical μ∗ > 0 depending on u0, such that spreading occurs if μ > μ∗
and vanishing happens when μ � μ∗ .

If the left boundary x = 0 in (1.2) is replaced by a free boundary x = g(t) governed by g′(t) =
−μux(t, g(t)), it was proved in [10] that a similar spreading–vanishing dichotomy holds, and in the
case of spreading, both the left front x = g(t) and the right front x = h(t) expand to infinity at the
same asymptotic speed k0.

The main purpose of this paper is to show that most of these results of [10] continue to hold in the
more realistic situation of higher space dimensions and heterogeneous environment. For simplicity, we
assume that the environment and the solution are radially symmetric. (The general case is considered
in [9].) So we will study the behavior of the positive solution u(t, r), r = |x|, x ∈ R

N (N � 2), to the
following problem,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − d�u = u
(
α(r) − β(r)u

)
, t > 0, 0 < r < h(t),

ur(t,0) = 0, u
(
t,h(t)

) = 0, t > 0,

h′(t) = −μur
(
t,h(t)

)
, t > 0,

(1.4)
h(0) = h0, u(0, r) = u0(r), 0 � r � h0,
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where �u = urr + N−1
r ur , r = h(t) is the moving boundary to be determined, h0, μ and d are given

positive constants, α,β ∈ Cν0 ([0,∞)) for some ν0 ∈ (0,1), and there are positive constants κ1 � κ2
such that

κ1 � α(r) � κ2, κ1 � β(r) � κ2 for r ∈ [0,∞). (1.5)

The initial function u0(r) satisfies

u0 ∈ C2([0,h0]
)
, u′

0(0) = u0(h0) = 0, u0 > 0 in [0,h0). (1.6)

Thus problem (1.4) describes the spreading of a new or invasive species with population density
u(t, |x|) over an N-dimensional habitat, which is radially symmetric but heterogeneous. The initial
function u0(|x|) stands for the population in the very early stage of its introduction, which occupies
an initial region Bh0 . Here and in what follows we use B R to stand for the ball with center at 0
and radius R . The spreading front is represented by the free boundary |x| = h(t), which is the sphere
∂ Bh(t) whose radius h(t) grows at a speed that is proportional to the population gradient at the
front: h′(t) = −μur(t,h(t)). The coefficient function α(|x|) represents the intrinsic growth rate of the
species, β(|x|) measures its intra-specific competition, and d is the diffusion rate.

In Section 2 below, we first state the global existence and uniqueness result for (1.4) (Theorem 2.1),
then we prove the spreading–vanishing dichotomy (Theorem 2.4) and obtain sharp thresholds that
govern the alternatives in the dichotomy (Theorems 2.5 and 2.10). The proof of Theorem 2.1 is post-
poned to Section 4, since it is rather long and is only a modification of the proof in Section 2 of [10],
which in turn follows the approach in [7]. In Section 3, we obtain estimates for the spreading speed,
namely best possible bounds for limt→+∞

h(t)
t and limt→+∞ h(t)

t (see Theorem 3.6). These bounds
are determined by an auxiliary elliptic equation over the half line [0,∞) (see Proposition 3.1), which
arises naturally from the original problem, and was first introduced in [10]. If the environment is
asymptotically homogeneous at infinity, namely, α(r) → α∗ and β(r) → β∗ as r → +∞, these bounds
coincide and hence the limit of h(t)

t exists as t → +∞.
Though the outline of the approach in this paper largely follows that of [10], most of the technical

proofs here are different from and much more involved than the corresponding ones in [10], and
some of the results here are proved by completely different methods.

We now briefly compare (1.4) with (1.1). Firstly, the spreading–vanishing dichotomy for (1.4) ap-
pears more realistic than the persistent spreading predicted by (1.1). Secondly, for any finite t > 0, our
density function u(t, x) is supported on a finite domain of x, which expands as t increases. This more
closely resembles the spreading processes in the real world than (1.1), whose solution is positive for
all x as long as t > 0. Finally we notice that, while (1.1) gives an asymptotic spreading speed of 2

√
ad

(for large time), which is independent of b and is increasing with the diffusion rate d, the asymptotic
spreading speed of (1.4) (with asymptotically homogeneous environment) depends on all the parame-
ters and on α(r), β(r) in (1.4), and in sharp contrast, it is not increasing with respect to d (at least for
large d); moreover, the bounds of the spreading speed determined by (1.4) are always smaller than
2
√

ad, and both upper and lower bounds converge to 2
√

ad as μ → ∞ (see (3.3)).
Similar free boundary conditions to the one in (1.2) have been used in ecological models over

bounded spatial domains in several earlier papers; see, for example, [23–25,17,21]. But the purposes
of these papers are very different from ours.

Our results can be easily extended to cover a more general reaction term f (r, u) which behaves
like α(r)u − β(r)u2. We leave this to the interested reader.

2. The spreading–vanishing dichotomy

In this section we prove the spreading–vanishing dichotomy. Though our approach here mainly
follows the lines of [10], considerable changes in the proofs are needed, since the situation here is
more general and difficult.
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The following existence uniqueness result can be proved by adequately modifying the arguments
in Section 2 of [10]. So we state the result here but postpone its proof to Section 4 below.

Theorem 2.1. Problem (1.4) has a unique solution (u(t, r),h(t)), which is defined for all t > 0. Moreover,
u(t, r) > 0, h′(t) > 0 for t > 0 and 0 � r < h(t), and h ∈ C1([0,∞)), u ∈ C1,2(D), with D = {(t, r): t > 0,

0 � r � h(t)}.

It follows from Theorem 2.1 that r = h(t) is monotonic increasing and therefore there exists h∞ ∈
(0,+∞] such that limt→+∞ h(t) = h∞ .

Let λ1(d,α, R) be the principal eigenvalue of the problem

{−d�φ = λα
(|x|)φ in B R ,

φ = 0 on ∂ B R .
(2.1)

It is well known that λ(d,α, ·) is a strictly decreasing continuous function and

lim
R→0+ λ1(d,α, R) = +∞, lim

R→+∞λ1(d,α, R) = 0.

Therefore, for fixed d > 0 and α ∈ Cν0 ([0,∞)), there is a unique R∗ := R∗(d,α) such that

λ1
(
d,α, R∗) = 1 (2.2)

and

1 > λ1(d,α, R) for R > R∗; 1 < λ1(d,α, R) for R < R∗.

The spreading–vanishing dichotomy is a consequence of the following two lemmas.

Lemma 2.2. If h∞ < +∞, then h∞ � R∗ , and limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0.

Proof. We first prove that h∞ � R∗ . Otherwise h∞ > R∗ and there exists T > 0 such that h(t) > R∗
for all t � T . Thus,

1 > λ1
(
d,α,h(t)

)
for all t � T .

Moreover, for any sufficiently small ε > 0, there is T0 := T0(ε) > T such that for t � T0,

R∗ < h∞ − ε < h(t) < h∞.

Consider the problem

⎧⎪⎨
⎪⎩

wt − d�w = w
(
α(r) − β(r)w

)
, t � T0, r ∈ [0,h∞ − ε],

wr(t,0) = 0, w(t,h∞ − ε) = 0, t � T0,

w(T0, r) = u(T0, r), r ∈ [0,h∞ − ε].
(2.3)

This is a logistic problem with 1 > λ1(d,α,h∞ −ε). It is well known (see, for example, Proposition 3.3
in [6]) that (2.3) admits a unique positive solution w = wε(t, r). Moreover,

w(t, ·) → Vh∞−ε in C2([0,h∞ − ε]) as t → ∞, (2.4)



Y. Du, Z. Guo / J. Differential Equations 250 (2011) 4336–4366 4341
where Vh∞−ε(r) is the unique positive (radial) solution of the problem

{
−d�V = V

(
α(r) − β(r)V

)
in Bh∞−ε,

V = 0 on ∂ Bh∞−ε.
(2.5)

By the comparison principle

u(t, r) � w(t, r) for t > T0, r ∈ [0,h∞ − ε]. (2.6)

This implies that

lim
t→+∞

u(t, r) � Vh∞−ε(r) for r ∈ [0,h∞ − ε]. (2.7)

On the other hand, consider the problem

⎧⎪⎨
⎪⎩

wt − d�w = w
(
α(r) − β(r)w

)
, t � T0, r ∈ [0,h∞],

wr(t,0) = 0, w(t,h∞) = 0, t � T0,

w(T0, r) = ũ(T0, r), r ∈ [0,h∞],
(2.8)

where

ũ(T0, r) =
{

u(T0, r) for r ∈ [0,h(T0)],
0 for r ∈ (h(T0),h∞].

Similarly (2.8) admits a unique positive solution w(t, r) with

w(t, ·) → Vh∞ in C2([0,h∞]) as t → +∞, (2.9)

where Vh∞ is the unique positive (radial) solution of the problem

{
−d�V = V

(
α(r) − β(r)V

)
in Bh∞ ,

V = 0 on ∂ Bh∞ .
(2.10)

Meanwhile, the comparison principle implies that

u(t, r) � w(t, r) for t > T0, r ∈ [
0,h(t)

]
(2.11)

and hence

lim
t→+∞ u(t, r) � Vh∞(r) for r ∈ [0,h∞]. (2.12)

By a standard compactness and uniqueness argument, we can easily show that

Vh∞−ε → Vh∞ in C2
loc

([0,h∞)
)

as ε → 0+.

Thus, (2.7), (2.12) and the arbitrariness of ε imply
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lim
t→∞ u(t, r) = Vh∞(r) for r ∈ [0,h∞). (2.13)

We claim that

∥∥u(t, ·) − Vh∞
∥∥

C2([0,h(t)]) → 0 as t → +∞.

Indeed, if we straighten the free boundary as in the proof of Theorem 2.1, so that [0,h(t)] is changed
to [0,h0], u(t, r) is changed to ũ(t, r) and Vh∞ is changed to Ṽh∞ , then by standard regularity theory
it is easily seen that ũ(t, .) has a common bound in C2,ν ([0,h0]) for all t � 1. Thus for each sequence
tn → +∞ we can extract a subsequence, still denoted by tn , such that ũ(tn, r) converges to some Ṽ
in C2([0,h0]). By (2.13), we necessarily have Ṽ = Ṽh∞ . This implies that

∥∥ũ(t, ·) − Ṽh∞
∥∥

C2([0,h0]) → 0 as t → ∞,

which is equivalent to the claimed convergence on u(t, x) → Vh∞(x).
Thus, as t → ∞,

ur
(
t,h(t)

) → V ′
h∞(h∞) < 0.

It follows that

h′(t) = −μur
(
t,h(t)

) → −μV ′
h∞(h∞) > 0 as t → ∞,

which implies h∞ = ∞, a contradiction to our assumption that h∞ < ∞. Therefore we must have
h∞ � R∗ .

We are now ready to show that ‖u(t, ·)‖C([0,h(t)]) → 0 as t → ∞. Let u(t, r) denote the unique
positive solution of the problem

⎧⎪⎨
⎪⎩

ut − d�u = u
[
α(r) − β(r)u

]
, t > 0, 0 < r < h∞,

ur(t,0) = 0, u(t,h∞) = 0, t > 0,

u(0, r) = ũ0(r), 0 < r < h∞,

(2.14)

where

ũ0(r) =
{

u0(r), 0 � r � h0,

0, r � h0.

The comparison principle gives 0 � u(t, r) � u(t, r) for t > 0 and r ∈ [0,h(t)]. Since h∞ � R∗ , we
have 1 � λ1(d,α,h∞) and it follows from a well-known conclusion on the logistic problem (2.14)
that u(t, r) → 0 uniformly for r ∈ [0,h∞] as t → +∞ (see, for example, Corollary 3.4 in [6]). Thus
limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0. �
Lemma 2.3. If h∞ = +∞, then

lim
t→+∞ u(t, r) = Û (r) locally uniformly for r ∈ [0,+∞), (2.15)

where Û (|x|) is the unique positive (radial) solution of the equation

−d�u = u
[
α

(|x|) − β
(|x|)u

]
in R

N . (2.16)
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Proof. The existence and uniqueness of a positive solution of (2.16) follows from Theorem 2.3 of [11]
(by choosing both γ and τ there to be 0). It must be radially symmetric since (2.16) is invariant
under rotations around the origin of R

N .
To show (2.15), we use a squeezing argument introduced in [12]. We first consider the Dirichlet

problem

−d�v = v
[
α(r) − β(r)v

]
, v(R) = 0,

and the boundary blow-up problem

−d�w = w
[
α(r) − β(r)w

]
, w(R) = +∞.

When R is large, it is well known that these problems have positive radial solutions v R and w R ,
respectively. By the comparison principle given in [12], as R → +∞, v R increases to the unique
positive solution Û of (2.16) and w R decreases to Û .

Choose an increasing sequence of positive number Rn such that Rn → +∞ as n → ∞, and 1 >

λ1(d,α, Rn) for all n. Then, as n → ∞, both v Rn and w Rn converge to Û . For each n, we can find
Tn > 0 such that h(t) � Rn for t � Tn . The problem

⎧⎪⎨
⎪⎩

wt − d�w = w
(
α(r) − β(r)w

)
, t � Tn, r ∈ [0, Rn],

wr(t,0) = 0, w(t, Rn) = 0, t � Tn,

w(Tn, r) = u(Tn, r), r ∈ [0, Rn],
(2.17)

admits a unique positive solution wn(t, r) and

wn(t, r) → v Rn (r) uniformly for r ∈ [0, Rn] as t → +∞. (2.18)

By the comparison principle, we have

wn(t, r) � u(t, r) for t � Tn and r ∈ [0, Rn].
Therefore,

lim
t→+∞

u(t, r) � v Rn (r) uniformly in r ∈ [0, Rn].

Sending n → ∞, we obtain

lim
t→+∞

u(t, r) � Û (r) locally uniformly for r ∈ [0,+∞). (2.19)

Analogously, by arguments similar to those in the proof of Theorem 4.1 of [12], we see that

lim
t→+∞ u(t, r) � w Rn (r) uniformly for r ∈ [0, Rn],

which implies (by sending n → ∞)

lim
t→+∞ u(t, r) � Û (r) locally uniformly for r ∈ [0,+∞). (2.20)

From (2.19) and (2.20) we see that (2.15) holds. �
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Combining Lemmas 2.2 and 2.3, we immediately obtain the following spreading–vanishing di-
chotomy:

Theorem 2.4. Let (u(t, r),h(t)) be the solution of the free boundary problem (1.4). Then the following alter-
native holds:

Either

(i) Spreading: h∞ = +∞ and

lim
t→+∞ u(t, r) = Û (r) locally uniformly for r ∈ [0,∞),

or

(ii) Vanishing: h∞ � R∗ and limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0.

We next decide exactly when each of the two alternatives occurs. We need to divide our discussion
into two cases:

(a) h0 � R∗, (b) h0 < R∗.

In case (a), due to h′(t) > 0 for t > 0, we must have h∞ > R∗ . Hence Lemma 2.2 implies the following
result.

Theorem 2.5. If h0 � R∗ , then h∞ = +∞.

As in [10], in order to study case (b), and also for later applications, we need a comparison prin-
ciple which can be used to estimate both u(t, r) and the free boundary r = h(t).

Lemma 2.6. Suppose that T ∈ (0,∞), h ∈ C1([0, T ]), u ∈ C1,2(D∗
T ) with D∗

T = {(t, r) ∈ R
2: 0 � t � T , 0 �

r � h(t)}, and

⎧⎪⎨
⎪⎩

ut − d�u � u
[
α(r) − β(r)u

]
, 0 < t � T , 0 < r < h(t),

u = 0, h′(t) � −μur, 0 < t � T , r = h(t),

ur(t,0) � 0, 0 < t � T .

If

h0 � h(0) and u0(r) � u(0, r) in [0,h0],

then the solution (u,h) of the free boundary problem (1.4) satisfies

h(t) � h(t) in (0, T ], u(r, t) � u(r, t) for t ∈ (0, T ] and r ∈ (
0,h(t)

)
.

Proof. This is almost identical to the proof of Lemma 3.5 in [10]. So we omit the details. �
Remark 2.7. The pair (u,h) in Lemma 2.6 is usually called an upper solution of the problem (1.4). We
can define a lower solution by reversing all the inequalities in the obvious places. Moreover, one can
easily prove an analogue of Lemma 2.6 for lower solutions.
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Let us now consider case (b), where h0 < R∗ . We first examine the case that μ is large, then we
look at the case μ > 0 is small, and finally we use Lemma 2.6 and Remark 2.7 to prove the existence
of a critical μ∗ so that spreading occurs when μ > μ∗ and vanishing happens if μ ∈ (0,μ∗].

Lemma 2.8. Suppose h0 < R∗ . Then there exists μ0 > 0 depending on u0 such that spreading occurs if μ � μ0 .

Proof. We argue indirectly. Suppose that there is an increasing sequence {μn} satisfying μn → +∞
as n → ∞ such that the unique solution (un,hn) of (1.4) with μ = μn satisfies hn∞ := limt→∞ hn(t) <

+∞ for all n. Then it follows from Lemma 2.2 that hn∞ � R∗ and hence

un(t, r) � w∗(t, r) for t > 0 and r ∈ [
0,hn(t)

]
, (2.21)

where w∗(t, r) is the unique positive solution of the problem

⎧⎪⎨
⎪⎩

wt − d�w = w
(
α(r) − β(r)w

)
, t > 0, r ∈ [

0, R∗],
wr(t,0) = 0, w

(
t, R∗) = 0, t > 0,

w(0, r) = û0(r), r ∈ [
0, R∗],

with

û0(r) =
{

u0(r), r ∈ [0,h0],
0, r ∈ (h0, R∗].

The fact that 1 = λ1(d,α, R∗) implies that

lim
t→+∞

∥∥w∗(t, ·)∥∥C([0,R∗]) → 0. (2.22)

This and (2.21) imply that there is T > 0 independent of n such that

un(t, r) � κ1

κ2
for t � T and r ∈ [

0,hn(t)
]
.

For convenience, we will omit n from un , hn , hn∞ and μn in the following argument.
Direct calculation gives

d

dt

h(t)∫
0

rN−1u(t, r)dr =
h(t)∫
0

rN−1ut(t, r)dr + hN−1(t)h′(t)u
(
t,h(t)

)

= d

h(t)∫
0

rN−1�u dr +
h(t)∫
0

u
[
α(r) − β(r)u

]
rN−1 dr

= d

h(t)∫
0

(
rN−1ur(r)

)
r dr +

h(t)∫
0

u
[
α(r) − β(r)u

]
rN−1 dr

= − d

μ
hN−1(t)h′(t) +

h(t)∫
u
[
α(r) − β(r)u

]
rN−1 dr.
0
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Integrating from T to t > T yields

h(t)∫
0

rN−1u(t, r)dx =
h(T )∫
0

rN−1u(T , r)dr + d

Nμ

(
h(T )N − h(t)N)

+
t∫

T

h(s)∫
0

u
[
α(r) − β(r)u

]
rN−1 dr ds

� d

Nμ

(
h(T )N − h(t)N) +

h(T )∫
0

rN−1u(T , r)dr,

since the fact that 0 < u(t, r) � κ1
κ2

for t � T and r ∈ [0,h(t)] implies

α(r) − β(r)u(t, r) � κ1 − κ2u(t, r) � 0 for t � T and r ∈ [
0,h(t)

]
.

Sending t → +∞ we obtain, in view of (2.21) and (2.22),

d

Nμ

(
h(T )N − hN∞

) +
h(T )∫
0

rN−1u(T , r)dr � 0

and hence

μ � d[(R∗)N − h(T )N ]
N

∫ h(T )

0 rN−1u(T , r)dr
. (2.23)

By Lemma 2.6, un(t, x) and hn(t) are increasing in n. Therefore

un(t, x) � u1(t, x) and hn(t) � h1(t).

Thus from (2.23) we deduce

μn � d[(R∗)N − h1(T )N ]
N

∫ h1(T )

0 rN−1u1(T , r)dr
.

This contradicts our assumption that μn → +∞ as n → ∞. �
Lemma 2.9. Suppose h0 < R∗ . Then there exists μ0 > 0 depending on u0 such that vanishing happens if
μ � μ0 .

Proof. We are going to construct a suitable upper solution to (1.4) and then apply Lemma 2.6. For
t > 0 and r ∈ [0, σ (t)], we define

σ(t) = h0

(
1 + δ − δ

2
e−γ t

)
, w(t, r) = Me−γ t V

(
h0

σ(t)
r

)
,
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where M, δ, γ are positive constants to be chosen later and V (|x|) is the first eigenfunction of the
problem

{
−d�V = λ1(d,α,h0)α

(|x|)V in Bh0 ,

V = 0 on ∂ Bh0 ,

with V � 0 and ‖V ‖∞ = 1. Since h0 < R∗ , we have

1 < λ1(d,α,h0).

We also observe that V ′(0) = 0 and

−d
(
rN−1 V ′)′ = rN−1λ1(d,α,h0)α(r)V > 0 for 0 < r < h0

imply

V ′(r) < 0 for 0 < r � h0.

Set τ (t) = 1 + δ − δ
2 e−γ t so that σ(t) = h0τ (t). Direct calculations yield

wt − d�w − w
[
α(r) − β(r)w

]
= Me−γ t[−γ V − rτ−2τ ′(t)V ′ − dτ−2 V ′′ − d(N − 1)r−1τ−1 V ′ − V

(
α(r) − β(r)Me−γ t V

)]
= Me−γ t

[
−γ V − rτ ′(t)τ−2 V ′ + τ−2λ1(d,α,h0)α

(
r

τ

)
V − V

(
α(r) − β(r)Me−γ t V

)]

� Me−γ t V

[
−γ + τ−2λ1(d,α,h0)α

(
r

τ

)
− α(r) + β(r)Me−γ t V

]

� Me−γ t V

[
−γ + λ1(d,α,h0)

(1 + δ)2
α

(
r

τ

)
− α(r) + β(r)Me−γ t V

]

= Me−γ t V

[
−γ +

(
λ1(d,α,h0)

(1 + δ)2

α( r
τ )

α(r)
− 1

)
α(r) + β(r)Me−γ t V

]
.

Clearly

1 + δ

2
� τ (t) � 1 + δ, h0

(
1 + δ

2

)
� σ(t) � h0(1 + δ).

Hence, due to 1 < λ1(d,α,h0), we can choose δ > 0 sufficiently small such that

� := min
t>0,r∈[0,σ (t)]

λ1(d,α,h0)

(1 + δ)2

α( r
τ )

α(r)
− 1 > 0. (2.24)

Setting γ = �κ1, we deduce

wt − d�w − w
[
α(r) − β(r)w

]
� 0 for t > 0, r ∈ [

0,σ (t)
]
.

We now choose M > 0 sufficiently large such that
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u0(r) � M V

(
r

(1 + δ/2)

)
= w(0, r) for r ∈ [0,h0].

We calculate

σ ′(t) = 1

2
h0γ δe−γ t,

−μwr
(
t,σ (t)

) = μMe−γ t h0

σ(t)

∣∣Vr(h0)
∣∣ � μMe−γ t |Vr(h0)|

1 + δ/2
.

Hence if we take

μ0 = δ(1 + δ/2)γ h0

2M|Vr(h0)| ,

then for any 0 < μ � μ0,

σ ′(t) � −μwr
(
t,σ (t)

)
,

and thus (w, σ ) satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt − d�w � w
[
α(r) − β(r)w

]
, t > 0, 0 < r < σ(t),

w = 0, σ ′(t) � −μwr, t > 0, r = σ(t),

wr(t,0) = 0, t > 0,

σ (0) =
(

1 + δ

2

)
h0 > h0.

Hence we can apply Lemma 2.6 to conclude that h(t) � σ(t) and u(t, r) � w(t, r) for 0 � r � h(t) and
t > 0. It follows that h∞ � limt→∞ σ(t) = h0(1 + δ) < ∞. �

We are now ready to apply Lemma 2.6 to prove the existence of a threshold value μ∗ of μ that
governs the alternatives in the spreading–vanishing dichotomy for the case h0 < R∗ .

Theorem 2.10. If h0 < R∗ , then there exists μ∗ > 0 depending on u0 such that vanishing occurs if μ � μ∗ ,
and spreading happens if μ > μ∗ .

Proof. This is similar to the proof of Theorem 3.9 in [10]. We give the details below for completeness.
Define Σ := {μ > 0: h∞ � R∗}. By Lemmas 2.9 and 2.2 we have Σ ⊃ (0,μ0]. Using Lemma 2.8

we find on the other hand Σ ∩ [μ0,∞) = ∅. Therefore μ∗ := sup Σ ∈ [μ0,μ
0]. By this definition and

Lemma 2.2, we find that h∞ = +∞ when μ > μ∗ .
We claim that μ∗ ∈ Σ . Otherwise h∞ = ∞ for μ = μ∗ . Hence we can find T > 0 such that

h(T ) > R∗ . To stress the dependence of the solution (u,h) of (1.4) on μ, we now write (uμ,hμ)

instead of (u,h). So we have hμ∗(T ) > R∗ . By the continuous dependence of (uμ,hμ) on μ, we can
find ε > 0 small so that hμ(T ) > R∗ for all μ ∈ [μ∗ − ε,μ∗ + ε]. It follows that for all such μ,

lim
t→+∞ hμ(t) > hμ(T ) > R∗.

This implies that [μ∗ − ε,μ∗ + ε] ∩ Σ = ∅, and sup Σ � μ∗ − ε , contradicting the definition of μ∗ .
This proves our claim that μ∗ ∈ Σ .
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For μ ∈ (0,μ∗), (uμ∗ ,hμ∗) is an upper solution of (1.4). Hence we can use Lemma 2.6 to deduce
that hμ(t) � hμ∗ (t) for t > 0. It follows that

lim
t→∞ hμ(t) � lim

t→∞ hμ∗(t) � R∗.

Hence μ ∈ Σ . Thus we have proved that Σ = (0,μ∗]. The proof is complete. �
3. Estimates of spreading speed

In this section we estimate the spreading speed of the expanding front r = h(t) when spreading
occurs. We will find 0 < k∗ � k∗ < ∞ such that

k∗ � lim
t→+∞

h(t)

t
� lim

t→+∞
h(t)

t
� k∗. (3.1)

Moreover, if α(r) → α∗ and β(r) → β∗ as r → ∞, we show that k∗ = k∗ and hence

lim
t→+∞

h(t)

t
= k∗.

The constants k∗ and k∗ are determined through the following result, which is a corrected version of
Propositions 4.1 and 4.3 of [10].

Proposition 3.1. Let d > 0 be given in (1.4). For any given constants a > 0, b > 0 and k ∈ [0,2
√

ad), the
problem

−dU ′′ + kU ′ = aU − bU 2 in (0,∞), U (0) = 0 (3.2)

admits a unique positive solution U = Uk = Ua,b,k, and it satisfies U (r) → a
b as r → +∞. Moreover, U ′

k(r) > 0
for r � 0, U ′

k1
(0) > U ′

k2
(0), Uk1 (r) > Uk2 (r) for r > 0 and k1 < k2 , and for each μ > 0, there exists a unique

k0 = k0(μ,a,b) ∈ (0,2
√

ad) such that μU ′
k0

(0) = k0 . Furthermore,

lim
aμ
bd →∞

k0√
ad

= 2, lim
aμ
bd →0

k0√
ad

bd

aμ
= 1/

√
3. (3.3)

It was shown in [10] that k0(μ,a,b) is increasing in μ and a, and is decreasing in b. More pre-
cisely,

μ1 � μ2, a1 � a2 and b1 � b2 imply k0(μ1,a1,b1) � k0(μ2,a2,b2),

with strict inequality holding when (μ1,a1,b1) �= (μ2,a2,b2). It can also be easily shown that
k0(μ,a,b) is a continuous function.

By (1.5), we have

α∞ := lim
r→+∞α(r) � κ2, α∞ := lim

r→+∞
α(r) � κ1;

β∞ := lim
r→+∞β(r) � κ2, β∞ := lim

r→+∞
β(r) � κ1.

We will show that in (3.1), one can take
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k∗ = k0
(
μ,α∞, β∞)

, k∗ = k0
(
μ,α∞, β∞

)
.

To prove this, we need some preparations. Firstly we need some simple variants of Lemma 2.6 and
Remark 2.7.

Lemma 3.2. Let d1(s), d2(s), a(s), b(s) and l(s) be Hölder continuous functions for s � 0, all positive except
possibly d2(s). Suppose that T ∈ (0,∞), h ∈ C1([0, T ]), u ∈ C1,2(D∗

T ) with D∗
T = {(t, r) ∈ R

2: 0 � t � T ,

0 � r � h(t)}, and

⎧⎪⎨
⎪⎩

ut − d1(r)urr − d2(r)ur � u
[
a(r) − b(r)u

]
, 0 < t � T , 0 < r < h(t),

u = 0, h′(t) � −μur, 0 < t � T , r = h(t),

u(t,0) � l(t), 0 < t � T .

If h ∈ C1([0, T ]) and u ∈ C1,2(DT ) with DT = {(t, r) ∈ R
2: 0 � t � T , 0 � r � h(t)} satisfy

0 < h(0) � h(0), 0 < u(0, r) � u(0, r) for 0 � r � h(0),

and ⎧⎪⎨
⎪⎩

ut − d1(r)urr − d2(r)ur = u
[
a(r) − b(r)u

]
, t > 0, 0 < r < h(t),

u = 0, h′(t) = −μur, t > 0, r = h(t),

u(t,0) = l(t), t > 0,

(3.4)

then

h(t) � h(t) in (0, T ], u(r, t) � u(r, t) for t ∈ (0, T ] and r ∈ (
0,h(t)

)
.

Proof. This is similar to the proof of Lemma 3.5 in [10]. For small ε > 0, let (uε,hε) denote the unique
solution of (3.4) with h0 := h(0) replaced by hε

0 := h0(1 − ε), with μ replaced by με := μ(1 − ε), and
with uε(0, r) = uε

0(r) for some uε
0 ∈ C2([0,hε

0]) satisfying

0 < uε
0(r) � u(0, r) in

[
0,hε

0

]
, uε

0

(
hε

0

) = 0,

and as ε → 0,

uε
0

(
h0

hε
0

r

)
→ u(0, r)

in the C2([0,h0]) norm. The fact that such a unique solution exists can be proved in the same way as
for (1.4).

We claim that hε(t) < h(t) for all t ∈ (0, T ]. Clearly this is true for small t > 0. If our claim does
not hold, then we can find a first t∗ � T such that hε(t) < h(t) for t ∈ (0, t∗) and hε(t∗) = h(t∗). It
follows that

h′
ε

(
t∗) � h′(t∗). (3.5)

We now compare uε and u over the region

Ωt∗ := {
(t, r) ∈ R

2: 0 < t � t∗, 0 � r < hε(t)
}
.
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The strong maximum principle yields uε(t, r) < u(t, r) in Ωt∗ . Hence w(t, r) := u(t, r) − uε(t, r) > 0
in Ωt∗ with w(t∗,hε(t∗)) = 0. It follows that wr(t∗,hε(t∗)) � 0, from which we deduce, in view of
(uε)r(t∗,h(t∗)) < 0 and με < μ, that h′

ε(t
∗) < h′(t∗). But this contradicts (3.5). This proves our claim

that hε(t) < h(t) for all t ∈ (0, T ]. We may now apply the usual comparison principle over ΩT to
conclude that uε < u in ΩT .

Since the unique solution (uε ,hε) depends continuously on the parameter ε , as ε → 0, (uε,hε)

converges to (u,h). The desired result then follows by letting ε → 0 in the inequalities uε < u and
hε < h. �

Similar to Remark 2.7, we have the following analogue of Lemma 3.2:

Lemma 3.3. Let d1(s), d2(s), a(s), b(s) and l(s) be as in Lemma 3.2. Suppose that T ∈ (0,∞), h ∈ C1([0, T ]),

u ∈ C1,2(D†
T ) with D†

T = {(t, r) ∈ R
2: 0 � t � T , 0 � r � h(t)}, and

⎧⎪⎨
⎪⎩

ut − d1(r)urr − d2(r)ur � u
[
a(r) − b(r)u

]
, 0 < t � T , 0 < r < h(t),

u = 0, h′(t) � −μur, 0 < t � T , r = h(t),

u(t,0) � l(t), 0 < t � T .

If h ∈ C1([0, T ]) and u ∈ C1,2(DT ) satisfy (3.4) and

h(0) � h(0), u(0, r) � u(0, r) for 0 � r � h(0), u(0, r) � 0 for h(0) � r � h(0),

then

h(t) � h(t) in (0, T ], u(r, t) � u(r, t) for t ∈ (0, T ] and r ∈ (
0,h(t)

)
.

We also need the following result:

Lemma 3.4. Suppose that d, a and b are given positive constants, that c(s) and l(s) are Hölder continuous
functions for s � 0 with l(s) positive, and that σ(t) is a continuous positive function for t � 0. Let v ∈ C1,2(D)

(D = {(t, r): 0 � r � σ(t), t � 0}) be a solution of

⎧⎨
⎩

vt − dvrr + c(r)vr = v(a − bv), t > 0, 0 < r < σ(t),

v(t,0) = l(t), v
(
t,σ (t)

) = 0, t > 0,

v(0, r) = v0(r) � 0, 0 < r < σ(0).

(3.6)

Suppose that

lim
r→∞ c(r) = 0, lim

t→∞ l(t) = l∞ ∈
[

a

b
,∞

)
, lim

t→∞σ(t) = ∞.

Then

lim
t→∞

v(t, r) � a

b
locally uniformly for r ∈ [0,∞).

Proof. By the maximum principle, v(t, r) > 0 for t > 0 and 0 � r < σ(t). For any given R > 0 and
small ε > 0, we can find T R > 0 such that σ(t) > R and l(t) � l∞ − ε for all t � T R . We now consider
the auxiliary problem
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⎧⎨
⎩

wt − dwrr + c(r)wr = w(a − bw), t > T R , 0 < r < R,

w(t,0) = l∞ − ε, w(t, R) = 0, t > T R ,

w(T R , r) = v(T R , r), 0 < r < R.

(3.7)

By the comparison principle we have w(t, r) � v(t, r) for t > T R and 0 � r � R . By [26], problem (3.7)
with initial function v(T R , r) replaced by 0 has a unique solution w∗(t, r) which is increasing in t , and
the same problem with initial function v(T R , r) replaced by a large constant M has a unique solution
w∗(t, r) which is decreasing in t , and moreover, w∗(t, r) < w∗(t, r) for all t > T R and 0 � r � R , and

w(r) := lim
t→∞ w∗(t, r), w(r) := lim

t→∞ w∗(t, r)

are positive solutions of the elliptic problem

−dwrr + c(r)wr = w(a − bw) for 0 < r < R, w(0) = l∞ − ε, w(R) = 0. (3.8)

By Lemma 2.1 of [12], we deduce w = w = w R , the unique positive solution of (3.8). Hence

lim
t→∞ w∗(t, r) = lim

t→∞ w∗(t, r) = w R(r).

By the comparison principle, the solution of (3.7) satisfies w∗(t, r) � w(t, r) � w∗(t, r) for t � T R and
0 � r � R . It follows that

lim
t→∞ w(t, r) = w R(r).

From [26] we also know that the above convergence is uniform in r. It follows that

lim
t→∞

v(t, r) � w R(r)

uniformly in r ∈ [0, R].
As in [12], one can easily show that as R increases to infinity, w R(r) increases to the minimal

positive solution W of

−dwrr + c(r)wr = w(a − bw) for r > 0, w(0) = l∞ − ε. (3.9)

It follows that

lim
t→∞

v(t, r) � W (r) (3.10)

locally uniformly in r ∈ [0,∞).
We show next that W (r) � min{l∞ − ε,a/b} for r � 0. We first prove that W (r) → a/b as r → ∞.

Indeed, for any increasing positive sequence rn → ∞, we define cn(r) = c(rn + r) for −rn/2 � r � rn/2.
Clearly ‖cn(r)‖L∞([−rn/2,rn/2]) → 0 as n → ∞.

Since a > 0 and rn → ∞, for all large n, the logistic problem

−dw ′′ + cn(r)w ′ = w(a − bw) in (−rn/2, rn/2), w(−rn/2) = w(rn/2) = 0

has a unique positive solution wn . By the comparison principle (see Lemma 2.1 of [12]), we have
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W (r) � wn(r − rn) for rn/2 < r < 3rn/2.

Hence W (rn) � wn(0).
On the other hand, by a standard elliptic regularity argument, one finds that, by passing to a

subsequence, wn converges in C1
loc(R

1) to a positive solution w∞ of

−dw ′′ = w(a − bw) in R
1.

By Theorem 1.1 of [12], we find that w∞ ≡ a/b. Hence the entire sequence wn converges to a/b and

lim
n→∞

W (rn) � lim
n→∞ wn(0) = a/b.

If we use wn to denote the unique positive solution of the boundary blow-up problem

−dw ′′ + cn(r)w ′ = w(a − bw) in (−rn/2, rn/2), w(−rn/2) = w(rn/2) = ∞,

we similarly deduce W (rn) � wn(0) and wn(0) → a/b as n → ∞. Thus

lim
n→∞ W (rn) � a/b.

Hence we must have limr→∞ W (r) = a/b.
For any small δ > 0, define vδ = min{l∞ −ε,a/b − δ}. Then for all large R , vδ � W (r) for r ∈ {0, R},

and

0 = −dv ′′
δ < vδ(a − bvδ).

Hence we can apply Lemma 2.1 of [12] to conclude that W (r) � vδ in [0, R]. Since R can be arbitrarily
large, this implies that W (r) � min{l∞ − ε,a/b − δ} for all r � 0. Since δ > 0 can be arbitrarily small,
we finally deduce W (r) � min{l∞ − ε,a/b} for r � 0.

We may now use (3.10) to obtain

lim
t→∞

v(t, r) � min{l∞ − ε,a/b}.

Since ε > 0 can be arbitrarily small, this implies

lim
t→∞

v(t, r) � min{l∞,a/b} = a/b. �
Remark 3.5. Under the assumptions of Lemma 3.4, it can be shown that

lim
t→∞ v(t, r) = V (r) locally uniformly for r ∈ [0,∞),

where V is the unique positive solution of

−dV ′′ = V (a − bV ) in (0,∞), V (0) = l∞.

This conclusion is not needed in this paper though.
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We are now ready to prove the main result of this section.

Theorem 3.6. If h∞ = +∞, then

lim
t→+∞

h(t)

t
� k0

(
μ,α∞, β∞

)
, lim

t→+∞
h(t)

t
� k0

(
μ,α∞, β∞)

. (3.11)

Proof. By Theorem 1.1 of [8], the unique positive solution Û of (2.16) satisfies

lim
r→∞ Û (r) � α∞

β∞
, lim

r→∞
Û (r) � α∞

β∞ .

For any ε > 0, there is R := R(ε) > 1 such that for r � R ,

α(r) � α∞
ε := α∞ + ε, α(r) � αε∞ := α∞ − ε,

β(r) � β∞
ε := β∞ + ε, β(r) � βε∞ := β∞ − ε,

and

α
ε/2∞

β∞
ε/2

< Û (r) <
α∞

ε/2

β
ε/2∞

.

Since h∞ = +∞ and limt→∞ u(t, r) = Û (r), there exists T := T (R) > 0 such that

h(T ) > 3R and u(t + T ,2R) <
α∞

ε

βε∞
for all t � 0.

Setting

ũ(t, r) = u(t + T , r + 2R) and h̃(t) = h(t + T ) − 2R,

and denoting

�̃u = urr + N − 1

r + 2R
ur,

we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũt − d�̃ũ = ũ
[
α(r + 2R) − β(r + 2R)ũ

]
, t > 0, 0 < r < h̃(t),

ũ(t,0) = u(t + T ,2R), ũ
(
t, h̃(t)

) = 0, t > 0,

h̃′(t) = −μũr
(
h̃(t)

)
, t > 0,

ũ(0, r) = u(T , r + 2R), 0 < r < h̃(0).

(3.12)

By our choice of R , for r � 0,

α(r + 2R) � α∞
ε , β(r + 2R) � βε∞.
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Let u∗(t) be the unique solution of the problem

du∗

dt
= u∗(α∞

ε − βε∞u∗) for t > 0; u∗(0) = max
{
α∞

ε /βε∞,
∥∥ũ(0, ·)∥∥∞

}
. (3.13)

Then

u∗(t) � α∞
ε

βε∞
for all t � 0 and lim

t→∞ u∗(t) = α∞
ε

βε∞
.

Now we have

u∗(0) � ũ(0, r), ũ(t,0) � α∞
ε

βε∞
� u∗(t), ũ

(
t, h̃(t)

) = 0 � u∗(t),

and

u∗
t − d�̃u∗ = u∗(α∞

ε − βε∞u∗) � u∗[α(r + 2R) − β(r + 2R)u∗].
Hence we can apply the comparison principle to deduce

ũ(t, r) � u∗(t) for 0 < r < h̃(t), t > 0. (3.14)

As a consequence, there exists T̃ = T̃ε > 0 such that

ũ(t, r) � α∞
ε

βε∞
(1 − ε)−1, ∀t � T̃ , r ∈ [

0, h̃(t)
]
.

Let Uε := Uα∞
ε ,βε∞,kε denote the unique positive solution of (3.2) with a = α∞

ε , b = βε∞ and k =
kε := k0(μ,α∞

ε , βε∞). Since Uε(r) → α∞
ε

βε∞ as r → +∞, there exists R0 := R0(ε) > 2R such that

Uε(r) >
α∞

ε

βε∞
(1 − ε) for r � R0.

We now define

ξ(t) = (1 − ε)−2kεt + R0 + h̃(T̃ ) for t � 0,

w(t, r) = (1 − ε)−2Uε

(
ξ(t) − r

)
for t � 0, 0 � r � ξ(t).

Then

ξ ′(t) = (1 − ε)−2kε,

−μwr
(
t, ξ(t)

) = μ(1 − ε)−2U ′
ε(0) = (1 − ε)−2kε,

and so we have

ξ ′(t) = −μwr
(
t, ξ(t)

)
.

Clearly
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w
(
t, ξ(t)

) = 0.

Moreover, for 0 � r � h̃(T̃ ),

w(0, r) = (1 − ε)−2Uε

(
ξ(0) − r

)
� (1 − ε)−2Uε(R0) � α∞

ε

βε∞
(1 − ε)−1 � ũ(T̃ , r)

and w(0, r) > 0 for h̃(T̃ ) < r < ξ(0). It is also easily seen that for t > 0,

w(t,0) = (1 − ε)−2Uε

(
ξ(t)

)
� (1 − ε)−2Uε(R0) � α∞

ε

βε∞
(1 − ε)−1 � ũ(t + T̃ ,0).

Direct calculations show that, for t > 0 and 0 < r < ξ(t),

wt − d�̃w = (1 − ε)−2[U ′
εξ

′ − dU ′′
ε + d(N − 1)(r + 2R)−1U ′

ε

]
= (1 − ε)−2[(1 − ε)−2kεU ′

ε − dU ′′
ε + d(N − 1)(r + 2R)−1U ′

ε

]
� (1 − ε)−2(kεU ′

ε − dU ′′
ε

) (
due to U ′

ε � 0
)

= (1 − ε)−2(α∞
ε Uε − βε∞U 2

ε

)
= α∞

ε w − (1 − ε)2βε∞w2

� α∞
ε w − βε∞w2.

Hence we can use Lemma 3.2 to conclude that

ũ(t + T̃ , r) � w(t, r), h̃(t + T̃ ) � ξ(t) for t � 0, 0 � r � h̃(t + T̃ ).

It follows that

lim
t→+∞

h(t)

t
= lim

t→+∞
h̃(t)

t
� lim

t→+∞
ξ(t − T̃ )

t
= kε(1 − ε)−2.

Since ε > 0 can be arbitrarily small, and kε → k0(μ,α∞, β∞) as ε → 0, we deduce

lim
t→+∞

h(t)

t
� k0

(
μ,α∞, β∞

)
.

Next we show

lim
t→+∞

h(t)

t
� k0

(
μ,α∞, β∞)

by constructing a suitable lower solution. To this end, we denote

kε = k0
(
μ,αε∞, β∞

ε

)
and Vε = Uαε∞,β∞

ε ,kε
.

Then consider the auxiliary problem
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⎧⎪⎪⎨
⎪⎪⎩

vt − d�̃v = v
(
αε∞ − β∞

ε v
)
, t > 0, 0 < r < h̃(t),

v(t,0) = ũ(t,0), v
(
t, h̃(t)

) = 0, t > 0,

v(0, r) = ũ(0, r), r ∈ [
0, h̃(0)

]
,

(3.15)

where ũ and h̃ are defined as before. Since

lim
t→∞ ũ(t,0) → Û (2R) >

α
ε/2∞

β∞
ε/2

,

we can apply Lemma 3.4 to (3.15) to conclude that

lim
t→+∞

v(t, r) � αε∞
β∞

ε

locally uniformly for r ∈ [0,∞). (3.16)

Since

α(r + 2R) � αε∞, β(r + 2R) � β∞
ε ,

from the comparison principle we deduce

ũ(t, r) � v(t, r) for t > 0, r ∈ [
0, h̃(t)

]
,

and hence, in view of (3.16), we have

lim
t→+∞

ũ(t, r) � αε∞
β∞

ε

locally uniformly for r ∈ [0,∞). (3.17)

Define

η(t) = (1 − ε)2kεt + h̃(0) for t � 0,

and

w(t, r) = (1 − ε)2 Vε

(
η(t) − r

)
for t � 0, 0 � r � η(t).

Then

η′(t) = (1 − ε)2kε,

−μwr
(
t, η(t)

) = μ(1 − ε)2 V ′
ε(0) = (1 − ε)2kε,

and so we have

η′(t) = −μwr
(
t, η(t)

)
.

Clearly, w(t, η(t)) = 0. Since V ′
ε(r) > 0 for r > 0 and

lim
r→+∞ Vε(r) = αε∞

β∞ ,

ε
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we must have

Vε(r) <
αε∞
β∞

ε

for r > 0.

Therefore, due to (3.17) we can find some T̂ = T̂ (ε) > 0 such that

ũ(t + T̂ ,0) � w(t,0) for t � 0, (3.18)

and

ũ(T̂ , r) � w(0, r) for r ∈ [
0, η(0)

]
. (3.19)

Direct calculations yield

wt − d�̃w = (1 − ε)2 V ′
εη

′ − d(1 − ε)2
[

V ′′
ε − N − 1

r + 2R
V ′

ε

]

= (1 − ε)2
[
(1 − ε)2 V ′

εkε − dV ′′
ε + d(N − 1)

r + 2R
V ′

ε

]

= (1 − ε)2
[(

(1 − ε)2kε + d(N − 1)

r + 2R

)
V ′

ε − dV ′′
ε

]

� (1 − ε)2[kε V ′
ε − dV ′′

ε

] (
since V ′

ε � 0
)

� w
[
αε∞ − β∞

ε w
]

for t � 0, 0 � r � η(t),

where we have used the fact that for large R ,

(1 − ε)2kε + d(N − 1)

r + 2R
� kε.

Hence, we can use Lemma 3.3 to conclude that

ũ(t + T̂ , r) � w(t, r), h̃(t + T̂ ) � η(t) for t � 0, 0 � r � η(t).

It follows that

lim
t→+∞

h(t)

t
= lim

t→+∞
h̃(t)

t
� lim

t→+∞
η(t − T̂ )

t
= (1 − ε)2kε.

Since ε > 0 can be arbitrarily small, this implies

lim
t→+∞

h(t)

t
� k0

(
μ,α∞, β∞)

.

The proof of the theorem is now complete. �
The result below follows trivially from Theorem 3.6.
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Corollary 3.7. Assume that h∞ = +∞ and

α(r) → α∗, β(r) → β∗ as r → +∞, (3.20)

then

lim
t→+∞

h(t)

t
= k0(μ,α∗, β∗).

4. Proof of Theorem 2.1

In this section, we prove the existence and uniqueness of a global solution to (1.4). The proof
follows that of [10] with suitable modifications. Firstly we prove the local existence and uniqueness
result by the contraction mapping theorem, then we use suitable estimates to show that the solution
is defined for all t > 0.

Theorem 4.1. For any given u0 satisfying (1.6) and any constant ν ∈ (0,1), there is a T > 0 such that prob-
lem (1.4) admits a unique solution

(u,h) ∈ C (1+ν)/2,1+ν(DT ) × C1+ν/2([0, T ]);
moreover,

‖u‖C (1+ν)/2,1+ν (DT ) + ‖h‖C1+ν/2([0,T ]) � C, (4.1)

where DT = {(t, r) ∈ R
2: t ∈ [0, T ], r ∈ [0,h(t)]}, C and T only depend on h0 , ν and ‖u0‖C2([0,h0]) .

Proof. As in [10], we first follow [7] and straighten the free boundary. Let ζ(s) be a function in
C3[0,∞) satisfying

ζ(s) = 1 if |s − h0| < h0

8
, ζ(s) = 0 if |s − h0| > h0

2
,

∣∣ζ ′(s)
∣∣ <

5

h0
for all s.

Consider the transformation

(t, y) → (t, x) where x = y + ζ
(|y|)(h(t) − h0

)
y/|y|, y ∈ R

N ,

which induces the transformation

(t, s) → (t, r) with r = s + ζ(s)
(
h(t) − h0

)
, 0 � s < ∞.

For fixed t � 0, as long as

∣∣h(t) − h0
∣∣ � h0

8
,

the transformation x → y determined above is a diffeomorphism from R
N onto R

N , and the induced
transformation s → r is a diffeomorphism from [0,∞) onto [0,∞). Moreover, it changes the free
boundary |x| = h(t) to the fixed sphere |y| = h0. Now, direct calculations show that
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∂s

∂r
= 1

1 + ζ ′(s)
(
h(t) − h0

) :=
√

A
(
h(t), s

)
,

∂2s

∂r2
= − ζ ′′(s)(h(t) − h0)

[1 + ζ ′(s)(h(t) − h0)]3
:= B

(
h(t), s

)
,

− 1

h′(t)
∂s

∂t
= ζ(s)

1 + ζ ′(s)(h(t) − h0)
:= C

(
h(t), s

)
.

Let us denote

(N − 1)
√

A

s + ζ(s)(h(t) − h0)
:= D

(
h(t), s

)
,

α
(
s + ζ(s)

(
h(t) − h0

)) := α̃
(
h(t), s

)
,

β
(
s + ζ(s)

(
h(t) − h0

)) := β̃
(
h(t), s

)
.

If we set

u(t, r) = u
(
t, s + ζ(s)

(
h(t) − h0

)) = w(t, s),

then

ut = wt − h′(t)C
(
h(t), s

)
ws, ur =

√
A
(
h(t), s

)
ws,

urr = A
(
h(t), s

)
wss + B

(
h(t), s

)
ws

and the free boundary problem (1.4) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt − Adwss − (
Bd + h′C + Dd

)
ws = w(α̃ − β̃w), t > 0, 0 < s < h0,

w = 0, h′(t) = −μws, t > 0, s = h0,

ws(t,0) = 0, t > 0,

h(0) = h0, w(0, s) = u0(s), 0 � s � h0,

(4.2)

where A = A(h(t), s), B = B(h(t), s), C = C(h(t), s), D = D(h(t), s), α̃ = α̃(h(t), s) and β̃ = β̃(h(t), s).
Denote h̃0 = −μu′

0(h0), and for 0 < T � h0

8(1+h̃0)
, define �T = [0, T ] × [0,h0],

D1T = {
w ∈ C(�T ): w(0, s) = u0(s), ‖w − u0‖C(�T ) � 1

}
,

D2T = {
h ∈ C1([0, T ]): h(0) = h0, h′(0) = h̃0,

∥∥h′ − h̃0
∥∥

C([0,T ]) � 1
}
.

It is easily seen that D := D1T × D2T is a complete metric space with the metric

d
(
(w1,h1), (w2,h2)

) = ‖w1 − w2‖C(�T ) + ∥∥h′
1 − h′

2

∥∥
C([0,T ]).

Let us note that for h1,h2 ∈ D2T , due to h1(0) = h2(0) = h0,

‖h1 − h2‖C([0,T ]) � T
∥∥h′

1 − h′
2

∥∥ . (4.3)
C([0,T ])
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Next, we shall prove the existence and uniqueness result by using the contraction mapping theo-
rem. Firstly we observe that due to our choice of T , for any given (w,h) ∈ D1T × D2T , we have

∣∣h(t) − h0
∣∣ � T (1 + h̃0) � h0

8
.

Therefore the transformation (t, s) → (t, r) introduced at the beginning of the proof is well defined.
Moreover, for 0 � s � h0/2, we have ζ(s) ≡ 0 and hence for such s,

A ≡ 1, B ≡ C ≡ 0, D ≡ (N − 1)/s.

Therefore

−Adwss − (
Bd + h′C + Dd

)
ws = −d�w in the ball |y| � h0/2.

Thus although D = D(h(t), s) is singular at s = 0,

Adwss + (
Bd + h′C + Dd

)
ws

actually represents an elliptic operator acting on w = w(t, y) (= w(t, |y|)) over the ball |y| � h0,
whose coefficients are continuous in (t, y) when h ∈ D2T .

Applying standard L p theory and then the Sobolev imbedding theorem [19], we find that for any
(w,h) ∈ D, the following initial boundary value problem⎧⎪⎨

⎪⎩
wt − Adwss − (

Bd + h′C + Dd
)

ws = w(α̃ − β̃w), t > 0, 0 � s < h0,

ws(t,0) = 0, w(t,h0) = 0, t > 0,

w(0, s) = u0(s), 0 � s � h0

(4.4)

admits a unique solution w ∈ C (1+ν)/2,1+ν(�T ), and

‖w‖C (1+ν)/2,1+ν (�T ) � C1, (4.5)

where C1 is a constant dependent on h0, ν and ‖u0‖C2[0,h0] .
Setting

h(t) := h0 −
t∫

0

μws(τ ,h0)dτ , (4.6)

we have

h′(t) = −μws(t,h0), h(0) = h0, h′(0) = −μws(0,h0) = h̃0,

and hence h′ ∈ Cν/2([0, T ]) with ∥∥h′∥∥
Cν/2([0,T ]) � C2 := μC1. (4.7)

We now define F : D → C(�T ) × C1([0, T ]) by

F (w,h) = (w,h).

Clearly (w,h) ∈ D is a fixed point of F if and only if it solves (4.2).
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By (4.5) and (4.7), we have

∥∥h′ − h̃0
∥∥

C([0,T ]) �
∥∥h′∥∥

Cν/2([0,T ])T ν/2 � μC1T ν/2,

‖w − u0‖C(�T ) � ‖w − u0‖C (1+ν)/2,0(�T )T (1+ν)/2 � C1T (1+ν)/2.

Therefore if we take T � min{(μC1)
−2/ν, C−2/(1+ν)

1 }, then F maps D into itself.
Next we prove that F is a contraction mapping on D for T > 0 sufficiently small. Indeed, let

(wi,hi) ∈ D (i = 1,2) and denote (wi,hi) = F (wi,hi). Then it follows from (4.5) and (4.7) that

‖wi‖C (1+ν)/2,1+ν (�T ) � C1,
∥∥h′

i(t)
∥∥

Cν/2([0,T ]) � C2.

Setting W = w1 − w2, we find that W (t, s) satisfies

Wt − A(h2, s)dW ss − [
B(h2, s)d + h′

2C(h2, s) + D(h2, s)d
]
W s

= [
A(h1, s) − A(h2, s)

]
dw1,ss + [

B(h1, s) − B(h2, s) + D(h1, s) − D(h2, s)
]
dw1,s

+ [
h′

1C(h1, s) − h′
2C(h2, s)

]
w1,s + (w1 − w2)

(
α̃(h1, s) − β̃(h1, s)(w1 + w2)

)
+ w2

[(
α̃(h1, s) − α̃(h2, s)

) − (
β̃(h1, s) − β̃(h2, s)

)
w2

]
, t > 0, 0 � s < h0,

W s(t,0) = 0, W (t,h0) = 0, t > 0,

W (0, s) = 0, 0 � s � h0.

Using the L p estimates for parabolic equations and Sobolev’s imbedding theorem, we obtain

‖w1 − w2‖C (1+ν)/2,1+ν (�T ) � C3
(‖w1 − w2‖C(�T ) + ‖h1 − h2‖C1([0,T ])

)
, (4.8)

where C3 depends on C1, C2 and the functions A, B, C and D in the definition of the transformation
(t, s) → (t, r). Taking the difference of the equations for h1,h2 results in

∥∥h′
1 − h′

2

∥∥
Cν/2([0,T ]) � μ

(‖w1,s − w2,s‖Cν/2,0(�T )

)
. (4.9)

Combining (4.3), (4.8) and (4.9), and assuming T � 1, we obtain

‖w1 − w2‖C (1+ν)/2,1+ν (�T ) + ∥∥h′
1 − h′

2

∥∥
Cν/2([0,T ])

� C4
(‖w1 − w2‖C(�T ) + ∥∥h′

1 − h′
2

∥∥
C[0,T ]

)
,

with C4 depending on C3 and μ. Hence for

T := min

{
1,

(
1

2C4

)2/ν

, (μC1)
−2/ν, C−2/(1+ν)

1 ,
h0

8(1 + h̃0)

}
,

we have
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‖w1 − w2‖C(�T ) + ∥∥h′
1 − h′

2

∥∥
C([0,T ])

� T (1+ν)/2‖w1 − w2‖C (1+ν)/2,1+ν (�T ) + T ν/2
∥∥h′

1 − h′
2

∥∥
Cν/2([0,T ])

� C4T ν/2(‖w1 − w2‖C(�T ) + ∥∥h′
1 − h′

2

∥∥
C([0,T ])

)
� 1

2

(‖w1 − w2‖C(�T ) + ∥∥h′
1 − h′

2

∥∥
C([0,T ])

)
.

This shows that for this T , F is a contraction mapping on D. It now follows from the contraction
mapping theorem that F has a unique fixed point (w,h) in D. Moreover, by the Schauder esti-
mates, we have additional regularity for (w,h) as a solution of (4.2), namely, h ∈ C1+ν/2(0, T ] and
w ∈ C1+ν/2,2+ν((0, T ] × [0,h0]), and (4.5), (4.7) hold. In other words, (w(t, s),h(t)) is a unique local
classical solution of the problem (4.2). �

To show that the local solution obtained in Theorem 4.1 can be extended to all t > 0, we need the
following estimate.

Lemma 4.2. Let (u,h) be a solution to problem (1.4) defined for t ∈ (0, T0) for some T0 ∈ (0,+∞]. Then there
exist constants C1 and C2 independent of T0 such that

0 < u(t, r) � C1, 0 < h′(t) � C2 for 0 � r < h(t), t ∈ (0, T0).

Proof. Using the strong maximum principle to the equation of u we immediately obtain

u(t, r) > 0, ur
(
t,h(t)

)
< 0 for 0 < t < T0, 0 � r < h(t).

Hence h′(t) > 0 for t ∈ (0, T0).
Since (1.5) holds, it follows from the comparison principle that u(t, r) � u(t) for t ∈ (0, T0) and

r ∈ [0,h(t)], where

u(t) := κ2

κ1
e

κ2
κ1

t
(

e
κ2
κ1

t − 1 + κ2

κ1‖u0‖∞

)−1

,

which is the solution of the problem

du

dt
= u(κ2 − κ1u), t > 0; u(0) = ‖u0‖∞. (4.10)

Thus we have

u(t, r) � C1 := sup
t�0

u(t).

It remains to show that h′(t) � C2 for all t ∈ (0, T0) and some C2 independent of T0. To this end,
we define

Ω = ΩM := {
(t, r): 0 < t < T0, h(t) − M−1 < r < h(t)

}
and construct an auxiliary function

w(t, r) := C1
[
2M

(
h(t) − r

) − M2(h(t) − r
)2]

.

We will show that M can be chosen so that w(t, r) � u(t, r) holds over Ω .
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Direct calculations show that, for (t, r) ∈ Ω ,

wt = 2C1Mh′(t)
[
1 − M

(
h(t) − r

)]
� 0,

−wr = 2MC1
[
1 − M

(
h(t) − r

)]
� 0,

−wrr = 2C1M2, w
[
α(r) − β(r)w

]
� κ2C1.

It follows that

wt − d

(
wrr + N − 1

r
wr

)
� 2dC1M2 � κ2u in Ω,

if M2 � κ2
2d . On the other hand,

w
(
t,h(t) − M−1) = C1 � u

(
t,h(t) − M−1), w

(
t,h(t)

) = 0 = u
(
t,h(t)

)
.

Thus, if we can choose M such that u0(r) � w(0, r) for r ∈ [h0 − M−1,h0], then we can apply the
maximum principle to w − u over Ω to deduce that u(t, r) � w(t, r) for (t, r) ∈ Ω . It would then
follow that

ur
(
t,h(t)

)
� wr

(
t,h(t)

) = −2MC1, h′(t) = −μur
(
t,h(t)

)
� C2 := 2MC1μ.

To complete the proof, we only have to find some M independent of T0 such that u0(r) � w(0, r)
for r ∈ [h0 − M−1,h0]. We calculate

wr(0, r) = −2C1M
[
1 − M(h0 − r)

]
� −C1M for r ∈ [

h0 − (2M)−1,h0
]
.

Therefore upon choosing

M := max

{√
κ2

2d
,

4‖u0‖C1([0,h0])
3C1

}
,

we will have

wr(0, r) � u′
0(r) for r ∈ [

h0 − (2M)−1,h0
]
.

Since w(0,h0) = u0(h0) = 0, the above inequality implies

w(0, r) � u0(r) for r ∈ [
h0 − (2M)−1,h0

]
.

Moreover, for r ∈ [h0 − M−1,h0 − (2M)−1], we have

w(0, r) � 3

4
C1, u0(r) � ‖u0‖C1([0,h0])M−1 � 3

4
C1.

Therefore u0(r) � w(0, r) for r ∈ [h0 − M−1,h0]. This completes the proof. �
Theorem 4.3. The solution of problem (1.4) exists and is unique for all t ∈ (0,∞).
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Proof. Let [0, Tmax) be the maximal time interval in which the solution exists. By Theorem 4.1,
Tmax > 0. It remains to show that Tmax = ∞. Arguing indirectly, we assume that Tmax < ∞. By
Lemma 4.2, there exist C1 and C2 independent of Tmax such that for t ∈ [0, Tmax) and r ∈ [0,h(t)],

0 � u(t, r) � C1, h0 � h(t) � h0 + C2t, 0 � h′(t) � C2.

We now fix δ0 ∈ (0, Tmax) and T̃ > Tmax. By standard parabolic regularity, we can find C3 > 0 de-
pending only on δ0, T̃ , C1 and C2 such that ‖u(t, ·)‖C2([0,h(t)]) � C3 for t ∈ [δ0, Tmax). It then follows
from the proof of Theorem 4.1 that there exists a τ > 0 depending only on C3, C2 and C1 such that
the solution of problem (1.4) with initial time Tmax − τ/2 can be extended uniquely to the time
Tmax − τ/2 + τ . But this contradicts the assumption. The proof is complete. �
Remark 4.4. It follows from the uniqueness of the solution to (1.4) and some standard compactness
argument that the unique solution (u,h) depends continuously on u0 and the parameters appearing
in (1.4).
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