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ABSTRACT We calculate the forces of single-beam gradient radiation pressure laser traps, also called "optical tweezers," on

micron-sized dielectric spheres in the ray optics regime. This serves as a simple model system for describing laser trapping and
manipulation of living cells and organelles within cells. The gradient and scattering forces are defined for beams of complex shape
in the ray-optics limit. Forces are calculated over the entire cross-section of the sphere using TEM.0 and TEM* mode input intensity
profiles and spheres of varying index of refraction. Strong uniform traps are possible with force variations less than a factor of 2 over

the sphere cross-section. For a laser power of 10 mW and a relative index of refraction of 1.2 we compute trapping forces as high
as - 1.2 x 10-6 dynes in the weakest (backward) direction of the gradient trap. It is shown that good trapping requires high
convergence beams from a high numerical aperture objective. A comparison is given of traps made using bright field or differential
interference contrast optics and phase contrast optics.

INTRODUCTION

This paper gives a detailed description of the trapping of
micron-sized dielectric spheres by a so-called single-
beam gradient optical trap. Such dielectric spheres can

serve as first simple models of living cells in biological
trapping experiments and also as basic particles in
physical trapping experiments. Optical trapping of small
particles by the forces of laser radiation pressure has
been used for about 20 years in the physical sciences for
the manipulation and study of micron and submicron
dielectric particles and even individual atoms (1-7).
These techniques have also been extended more re-

cently to biological particles (8-18).
The basic forces of radiation pressure acting on

dielectric particles and atoms are known (1, 2, 19-21).
For dielectric spheres large compared with the wave-

length, one is in the geometric optics regime and can

thus use simple ray optics in the derivation of the
radiation pressure force from the scattering of incident
light momentum. This approach was used to calculate
the forces for the original trapping experiments on

micron-sized dielectric spheres (1, 22). These early traps
were either all optical two-beam traps (1) or single beam
levitation traps which required gravity or electrostatic
forces for their stability (23, 24). For particles in the
Rayleigh regime where the size is much less than the
wavelength the particle acts as a simple dipole. The
force on a dipole divides itself naturally into two
components: a so-called scattering force component
pointing in the direction of the incident light and a

gradient component pointing in the direction of the
intensity gradient of the light (19, 21).

The single-beam gradient trap, sometimes referred to
as "optical tweezers," was originally designed for Ray-
leigh particles (20). It consists of a single strongly
focused laser beam. Conceptually and practically it is
one of the simplest laser traps. Its stability in the
Rayleigh regime is the result of the dominance of the
gradient force pulling particles toward the high focus of
the beam over the scattering force trying to push
particles away from the focus in the direction of the
incident light. Subsequently it was found experimentally
that single-beam gradient traps could also trap and
manipulate micron-sized (25) and a variety of biological
particles, including living cells and organelles within
living cells (8, 10). Best results were obtained using
infrared trapping beams to reduced optical damage. The
trap in these biological applications was built into a

standard high resolution microscope in which one uses

the same high numerical aperture (NA) microscope
objective for both trapping and viewing. The microman-
ipulative abilities of single-beam gradient traps are

finding use in a variety of experiments in the biological
sciences. Experiments have been performed in the
trapping of viruses and bacteria (8); the manipulation of
yeast cells, blood cells, protozoa, and various algae and
plant cells (10); the measurement of the compliance of
bacterial flagella (11); internal cell surgery (13); manipu-
lation of chromosomes (12); trapping and force measure-
ment on sperm cells (14, 15); and recently, observations
on the force of motor molecules driving mitochondrion
and latex spheres along microtubules (16, 17). Optical
techniques have also been used for cell sorting (9).

Biophys. J. Biophysical Society
Volume 61 February 1992 569-582

0006-3495192102/569114 $2.00 569

5690006-3495/92/02/569/14 $2.00



Qualitative descriptions of the operation of the single-
beam gradient trap in the ray optics regime have already
been given (25, 26). In Fig. 1 taken from reference 26,
the action of the trap on a dielectric sphere is described
in terms of the total force due to a typical pair of rays a

and b of the converging beam, under the simplifying
assumption of zero surface reflection. In this approxima-
tion the forces Fa and Fb are entirely due to refraction
and are shown pointing in the direction of the momen-
tum change. One sees that for arbitrary displacements of
the sphere origin 0 from the focusf that the vector sum
of Fa and Fb gives a net restoring force F directed back to
the focus, and the trap is stable. In this paper we

quantify the above qualitative picture of the trap. We
show how to define the gradient and scttering force on a

sphere in a natural way for beams of arbitrary
shape. One can then describe trapping in the ray optics
regime in the same terms as in the Rayleigh regime.
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Results are given for the trapping forces over the entire
cross-section of the sphere. The forces are calculated for
input beams with various TEM. and TEM* mode
intensity profiles at the input aperture of a high numeri-
cal aperture trapping objective of NA = 1.25. The
results confirm the qualitative observation that good
trapping requires the input aperture to be well enough
filled by the incident beam to give rise to a trapping
beam with high convergence angle. One can design traps
in which the trapping forces vary at most by a factor of

1.8 over the cross-section of the sphere with trapping
forces as high as Q = 0.30 where the force F is given in
terms of the dimensionless factor Q in the expression
F = Q (n,P/c). P is the incident power and n1PIc is the
incident momentum per second in a medium of index of
refraction n,. There has been a previous calculation of
single-beam gradient trapping forces on spheres in the
geometrical optics limit by Wright et al. (27), over a
limited portion of the sphere, which gives much poorer

results. They find trapping forces of Q = 0.055 in the
above units which vary over the sphere cross-section by
more than an order of magnitude.

LIGHT FORCES IN THE RAY OPTICS
REGIME
In the ray optics or geometrical optics regime one decomposes the
total light beam into individual rays, each with appropriate intensity,
direction, and state of polarization, which propagate in straight lines in
media of uniform refractive index. Each ray has the characteristics of a
plane wave of zero wavelength which can change directions when it
reflects, refracts, and changes polarization at dielectric interfaces
according to the usual Fresnel formulas. In this regime diffractive
effects are neglected (see Chapter III of reference 28).
The simple ray optics model of the single-beam gradient trap used

here for calculating the trapping forces on a sphere of diameter > X is
illustrated in Fig. 2. The trap consists of an incident parallel beam of
arbitrary mode structure and polarization which enters a high NA
microscope objective and is focused ray-by-ray to a dimensionless focal
point f Fig. 2 shows the case wheref is located along the Z axis of the
sphere. The maximum convergence angle for rays at the edge of
the input aperture of a high NA objective lens such as the Leitz PL
APO 1.25W (E. Leitz, Inc., Wetzlar, Germany) or the Zeiss PLAN
NEOFLUAR 63/1.2W water immersion objectives (Carl Zeiss, Inc.,
Thornwood, NY), for example, is (4ma - 700. Computation of the total
force on the sphere consists of summing the contributions of each
beam ray entering the aperture at radius r with respect to the beam axis
and angle f3 with respect the Y axis. The effect of neglecting the finite
size of the actual beam focus, which can approach the limit of X/2n,
(see reference 29), is negligible for spheres much larger than X. The
point focus description of the convergent beam in which the ray
directions and momentum continue in straight lines through the focus
gives the correct incident polarization and momentum for each ray.
The rays then reflect and refract at the surface of the sphere giving rise
to the light forces.
The model of Wright et al. (27) tries to describe the single-beam

gradient trap in terms of both wave and ray optics. It uses the TEMOO
Gaussian mode beam propagation formula to describe the focused
trapping beam and takes the ray directions of the individual rays to be
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FIGURE 1 Qualitative view of the trapping of dielectric spheres. The
refraction of a typical pair of rays a and b of the trapping beam gives
forces F. and Fb whose vector sum F is always restoring for axial and
transverse displacements of the sphere from the trap focusf
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FIGURE 2 (A) Single beam gradient force trap in the ray optics model with beam focusflocated along the Z axis of the sphere. (B) Geometry of an
incident ray giving rise to gradient and scattering force contributions Fg and F,

perpendicular to the Gaussian beam phase fronts. Since the curvature
of the phase fronts vary considerably along the beam, the ray

directions also change, from values as high as 300 or more with respect
to the beam axis in the far-field, to 0° at the beam focus. This is
physically incorrect. It implies that rays can change their direction in a

uniform medium, which is contrary to geometrical optics. It also
implies that the momentum of the beam can change in a uniform
medium without interacting with a material object, which violates the
conservation of light momentum. The constancy of the light momen-
tum and ray direction for a Gaussian beam can be seen in another way.

If one resolves a Gaussian beam into an equivalent angular distribu-
tion of plane waves (see Section 11.4.2 of reference 28) one sees that
these plane waves can propagate with no momentum or direction
changes right through the focus. Another important point is that the
Gaussian beam propagation formula is strictly correct only for trans-
versely polarized beams in the limit of small far-field diffraction angles
0', where 0' = X/'nw. (w. being the focal spot radius). This formula
therefore provides a poor description of the high convergence beams
used in good traps. The proper wave description of a highly convergent
beam is much more complex than the Gaussian beam formula. It
involves strong axial electric field components at the focus (from the
edge rays) and requires use of the vector wave equation as opposed to
the scalar wave equation used for Gaussian beams (30).
Apart from the major differences near the focus, the model of

Wright et al. (27) should be fairly close to the ray optics model used
here in the far-field of the trapping beam. The principal distinction
between the two calculations, however, is the use by Wright et al. of
beams with relatively small convergence angle. They calculate forces
for beams with spot sizes w. = 0.5, 0.6, and 0.7 pLm, which implies
values of 0' of -29, 24, and 21°, respectively. Therefore, these are

beams having relatively small convergence angles compared with
convergence angles of 4mu 70° which are available from a high NA
objective.

Consider first the force due to a single ray of power P hitting a

dielectric sphere at an angle of incidence 0 with incident momentum

per second of n,Plc (see Fig. 3). The total force on the sphere is the
sum of contributions due to the reflected ray of power PR and the
infinite number of emergent refracted rays of successively decreasing
power PT2, PT2R, ... PT2RK.... The quantities R and T are the
Fresnel reflection and transmission coefficients of the surface at 0. The
net force acting through the origin 0 can be broken into F, and F,
components as given by Roosen and co-workers (3, 22) (see Appendix
I for a sketch of the derivation).

nip

Fz = Fs
n

|
+Rcos20

T2[cos(20 - 2r) + R cos 20]
1 + R2 + 2R cos 2r

Fy = Fg c

|sin 20 _-T[sin(20 - 2r) + R sin 20]
lJ? 1 + R2+2R cos 2r

(1)

(2)

where 0 and r are the angles of incidence and refraction. These
formulas sum over all scattered rays and are therefore exact. The
forces are polarization dependent since R and T are different for rays

polarized perpendicular or parallel to the plane of incidence.
In Eq. 1 we denote the Fz component pointing in the direction of the

incident ray as the scattering force component Fs for this single ray.

Similarly, in Eq. 2 we denote the Fy component pointing in the
direction perpendicular to the ray as the gradient force component Fg
for the ray. For beams of complex shape such as the highly convergent
beams used in the single-beam gradient trap, we define the scattering
and gradient forces of the beam as the vector sums of the scattering
and gradient force contributions of the individual rays of the beam.
Fig. 2 B depicts the direction of the scattering force component and
gradient force component of a single ray of the convergent beam
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FIGURE 3 Geometry for calculating the force due to the scattering of
a single incident ray of power P by a dielectric sphere, showing the
reflected ray PR and infinite set of refracted rays PT2RW. FIGURE 4 Values of the scattering force Q5 gradient force Qg. and

magnitude of the total force Qrag for a single ray hitting a dielectric
sphere of index of refraction n = 1.2 at an angle 0.

striking the sphere at angle 0. One can show that the gradient force as

defined above is conservative. This follows from the fact that Fg, the
gradient force for a ray, can be expressed solely as a function of p, the
radial distance from the ray to the particle. This implies that the
integral of the work done on a particle in going around an arbitrary
closed path can be expressed as an integral of Fg (p)dp which is clearly
zero. If the gradient force for a single ray is conservative, then the
gradient force for an arbitrary collection of rays is conservative. Thus
the conservative property of the gradient force as defined in the
geometric optics regime is the same as in the Rayleigh regime. The
work done by the scattering force, however, is always path dependent
and is not conservative in any regime. As will be seen, these new

definitions of gradient and scattering force for beams of more complex
shape allow us to describe the operation of the gradient trap in the
same manner in both the geometrical optics and Rayleigh regimes.
To get a feeling for the magnitudes of the forces, we calculate the

scattering force Fs, the gradient force Fg, and the absolute magnitude
of the total force Fmag = (FS + Fg as a function of the angle of
incidence 0 using Eqs. 1 and 2. We consider as a typical example the
case of a circularly polarized ray hitting a sphere of effective index of
refraction n = 1.2. The force for such a circularly polarized ray is the
average of the forces for rays polarized perpendicular and parallel to
the plane of incidence. The effective index of a particle is defined as

the index of the particle n2 divided by the index of the surrounding
medium n1; that is, n = n2 /nj. A polystyrene sphere in water has n =

1.6/1.33 _ 1.2. Fig. 4 shows the results for the forces Fs, Fg, and Fmag
versus 0 expressed in terms of the dimensionless factors Q, Qg, and
Qmag = (Q2 + QI)"12, where

nip
F = Q-. (3)

The quantity n,P/c is the incident momentum per second of a ray of
power P in a medium of index of refraction n1 (19, 31). Recall that the
maximum radiation pressure force derivable from a ray of momentum
per second n1P/c corresponds to Q = 2 for the case of a ray reflected
perpendicularly from a totally reflecting mirror. One sees that for n =

1.2 a maximum gradient force of Qgmaas high as 0.5 is generated for

rays at angles of 0 _ 700. Table I shows the effect of an index of
refraction n on the maximum value of gradient force Qgma occurring at
angle of incidence 0gi,,. The corresponding value of scattering force Q,
at Ogmais also listed. The fact that Q, continues to grow relative to Q.,,
as n increases indicates potential difficulties in achieving good gradient
traps at high n.

FORCE OF THE GRADIENT TRAP ON
SPHERES

Trap focus along Z axis
Consider the computation of the force of a gradient trap
on a sphere when the focus f of the trapping beam is
located along the Z axis at a distance S above the center
of the sphere at 0, as shown in Fig. 2. The total force on
the sphere, for an axially-symmetric plane-polarized
input trapping beam, is clearly independent of the
direction of polarization by symmetry considerations. It
can therefore be assumed for convenience that the input
beam is circularly polarized with half the power in each
of two orthogonally oriented polarization components.
We find the force for a ray entering the input aperture of
the microscope objective at an arbitrary radius r and
angle 13 and then integrate numerically over the distribu-
tion of input rays using an AT&T 1600 PLUS personal
computer. As seen in Fig. 2, the vertical plane ZW which
is rotated by 13 from the ZY plane contains both the
incident ray and the normal to the sphere nr. It is thus the
plane of incidence. We can compute the angle of

TABLE i For a single ray. Effect of index of refraction n on
maximum gradient force Q,. and scattering force Q.
occurring at angle of Incidence 0W,.n

n Qgmax Q, ogmax
1.1 -0.429 0.262 790
1.2 -0.506 0.341 720
1.4 -0.566 0.448 640
1.6 -0.570 0.535 600
1.8 -0.547 0.625 590
2.0 -0.510 0.698 590
2.5 -0.405 0.837 640
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incidence 0 from the geometric relation R sin 0 = S sin
4), where R is the radius of the sphere. We take R = 1
since the resultant forces in the geometric optics limit
are independent of R. Knowing 0 we can find Fg and FS
for the circularly polarized ray by first computing Fg and
FS for each of the two polarization components parallel
and perpendicular to the plane of incidence using Eqs. 1
and 2 and adding the results. It is obvious by symmetry
that the net force is axial. Thus for S above the origin 0
the contribution of each ray to the net force consists of a
negative Z component Fgz = -Fg sin and a positive Z
component Fsz = FS cos 4) as seen from Fig. 2 B. For S
below 0 the gradient force component changes sign and
the scattering force component remains positive. We
integrate out to a maximum radius rma for which 4) =

max = 700, the maximum convergence angle for a water
immersion objective of NA = 1.25, for example. Con-
sider first the case of a sphere of index of refraction n =

1.2 and an input beam which uniformly fills the input
aperture. Fig. 5 shows the magnitude of the antisymmet-
ric gradient force component, the symmetric scattering
force component, and the total force, expressed as Qg,
Qs, and Q, for values of S above and (-S) below the
center of the sphere. The sphere outline is shown in Fig.
5 for reference. It is seen that the trapping forces are

largely confined within the spherical particle. The stable
equilibrium point SE of the trap is located just above the

center of the sphere at S _ 0.06, where the backward
gradient force just balances the weak forward scattering
force. Away from the equilibrium point the gradient
force dominates over the scattering force and Qt reaches
its maximum value very close to the sphere edges at S _

1.01 and (-S) _ 1.02. The large values of net restoring
force near the sphere edges are due to the significant
fraction of all incident rays which have both large values
of 0, near the optimum value of 700, and large conver-

gence angle 4). This assures a large backward gradient
force contribution from the component Fg sin and also
a much-reduced scattering force contribution from the
component FS cos 4).

Trap along Y axis
We next examine the trapping forces for the case where
the focus f of the trapping beam is located transversely
along the -Y axis of the sphere as shown in Fig. 6. The
details of the force computation are discussed in Appen-
dix II. Fig. 7 plots the gradient force, scattering force,
and total force in terms of Qg, Q., and Q, as a function of
the distance S' of the trap focus from the origin along
the -Y axis for the same conditions as in III A. For this
case the gradient force has only a -Y component. The
scattering force is orthogonal to it along the +Z axis.
The total force again maximizes at a value Q, - 0.31
near the sphere edge at S' 0.98 and makes a small
angle = arctan FgIFs _ 18.50 with respect to the Y
axis. The Y force is, of course, symmetric about the
center of the sphere at 0.

BEAM RAY

(B)

FIGURE 6 (A) Trap geometry with the beam focus f located trans-
versely along the -Y axis at a distance S' from the origin. (B)
Geometry of the plane of incidence showing the directions of the
gradient and scattering forces F. and F, for the input ray.

Single-Beam Gradient Laser Trap 573

FIGURE 5 Values of the scattering force, gradient force, and total
force Q, Q., and Q, exerted on a sphere of index of refraction n = 1.2
by a trap with a uniformly filled input aperture which is focused along
the Z axis at positions +s above and -s below the center of the sphere.
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FIGURE 7 Plot of the gradient force, scattering force, and total force
Qg, Q, and Q, as a function of the distance S' of trap focus from the
origin along the -Y axis for a circularly polarized trapping beam
uniformly filling the aperture and a sphere of index of refraction n =
1.2.

General case: arbitrary trap location
Consider finally the most general case where the focusf
is situated arbitrarily in the vertical plane through the Z
axis at the distance S' from the sphere origin 0 in the
direction of the -Y axis and a distance S" in the
direction of the -Z axis as shown in Fig. 8. Appendix III
summarizes the method of force computation for this
case.

Fig. 10 shows the magnitude and direction of the
gradient force Qg, the scattering force Q., and the total
force Qt as functions of the position of the focus f over
the left half of the YZ plane, and by mirror image
symmetry about the Y axis, over the entire cross-section
of the sphere. This is again calculated for a circularly
polarized beam uniformly filling the aperture and for
n = 1.2. Although the force vectors are drawn at the
point of focus f, it must be understood that the actual
forces always act through the center of the sphere. This
is true for all rays and therefore also for the full beam. It
is an indication that no radiation pressure torques are

possible on a sphere from the linear momentum of light.
We see in Fig. 10A that the gradient force which is
exactly radial along the Z and Y axes is also very closely
radial (within an average of - 2 over the rest of the
sphere. This stems from the closely radially uniform
distribution of the incident light in the upper hemi-
sphere. The considerably smaller scattering force is
shown in Fig. 10 B (note the change in scale). It is strictly

x

LY

p

FIGURE 8 (A) Trap geometry with the beam focus located at a
distance S' from the origin in the -Y direction and a distance S" in
the -Z direction. (B) Geometry of the plane of incidence POV
showing the direction of gradient and scattering forces Fg and F, for the
ray. Geometry of triangle POB in the XY plane for finding 1' and d.

axial only along the Z and Y axes and remains predomi-
nantly axial elsewhere except for the regions farthest
from the Z and Y axes. It is the dominance of the
gradient force over the scattering force that accounts for
the overall radial character of the total force in Fig.
10 C. The rapid changes in direction of the force that
occur when the focus is well outside the sphere are
mostly due to the rapid changes in effective beam
direction as parts of the input beam start to miss the
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EFFECT OF MODE PROFILES AND INDEX
OF REFRACTION ON TRAPPING FORCES

To achieve a uniformly filled aperture in practice re-
quires an input TEM. mode Gaussian beam with very
large spot size, which is wasteful of laser power. We
therefore consider the behavior of the trap for other
cases of TEMoo mode input beam profiles with smaller
spot sizes, as well as TEMK '"do-nut" mode beam
profiles which preferentially concentrate input light
intensity at large input angles +.

cfsg Cosa

FIGURE 9 Another view of Fig. 8A containing the angle p. between
the plane of incidence POV' and the vertical plane WW'P for
resolving force components along the coordinate axis.

sphere. We note that the magnitude of the total force Q,
maximizes very close to the edge of the sphere as we

proceed radially outward in all directions, as does the
gradient and scattering forces. The value of maximum
restoring forces varies smoothly around the edge of the
sphere from a minimum of Qt = 0.28 in the axially
backward direction to a maximum of Qt = 0.49 in the
forward direction. Thus, for these conditions the maxi-
mum trapping force achieved varies quite moderately
over the sphere by a factor of 0.49/0.28 = 1.78 and
conforms closely to the edges of the sphere.
The line EE' marked on Fig. 10 C represents the locus

of points for which the Z component of the force is zero;
i.e., the net force is purely horizontal. If one starts
initially at point E, the equilibrium point of the trap with
no externally applied forces, and then applies a +Y-
directed Stokes force by flowing liquid past the sphere to
the right, for example, the equilibrium position will shift
to a new equilibrium point along EE' where the horizon-
tal light force just balances the viscous force. With
increasing viscous force the focus finally moves to E', the
point of maximum transverse force, after which the
sphere escapes the trap. Notice that there is a net z

displacement of the sphere as the equilibrium point
moves from E to E'. We have observed this effect in
experiments with micron-sized polystyrene spheres. Sato
et al. (18) have recently reported also seeing this
displacement.

TEMOO mode profile
Table II compares the performance of traps with n = 1.2
having different TEMNI mode intensity profiles of the
form I(r) = I. exp (-2r2/wO at the input aperture of the
microscope objective. The quantity a is the ratio of the
TEM. mode beam radius w0 to the full lens aperture rm,,.
A is the fraction of total beam power that enters the lens
aperture. A decreases as a increases. In the limit of a

uniform input intensity distribution A = 0 and a = oo.

For wo < rma we define the convergence angle of the
input beam as 9' where tan 9' = w /le. e is the distance
from the lens to the focus f as shown in Fig. 2 B. For
wo > rm, the convergence angle is set by the full lens
aperture and we use O' = 4~max where tan (max = rmax/l.
For a NA = 1.25 water immersion objective 4tmax = 700.
The quality of the trap can be characterized by the
maximum strength of the restoring forces as one pro-

ceeds radially outward for the sphere origin 0 in three
representative directions taken along the Z and Y axes.

We thus list Qimax' the value of the maximum restoring
force along the -Z axis, and Sma, the radial distance
from the origin at which it occurs. Similarly listed are

Q2max occurring at Sn. along the -Y axis and Q3max

occurring at (-S)max along the +Z axis (see Figs. 2, 5,
and 6 for a reminder on the definitions of S, -S, and S').
SE in Table II gives the location of the equilibrium point
of the trap along the -Z axis as noted in Fig. 5.
One sees from Table II that the weakest of the three

representative maximum restoring forces is Q,max occur-

ring in the -Z direction. Furthermore, of all the traps
the a = oX trap with a uniformly filled aperture has the
largest Q,max force and is therefore the strongest of all
the TEMoo mode traps. One can also define the "escape
force" of a given trap as the lowest force that can pull
the particle free of the trap in any direction. In this
context the a = Xc trap has the largest magnitude of
escape force of Q,max = 0.276. One also sees that the a =

Xo trap is the most uniform trap since it has the smallest
fractional variation in the extreme values of the restor-
ing forces Q,ma and Q3ma. If, however, we reduce a to 1.7
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FIGURE 10 A, B, and C show the magnitude and direction of gradient,
scattering, and total force vectors Qg, Q., and Q, as a function of
position of the focus over the YZ plane, for a circularly polarized
trapping beam uniformly filling the aperture and a sphere of n = 1.2.
Qg is the vector sum of Qg and Q,. EE' in C indicates the line along
which Q, is purely horizontal.
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TABLE 2 Performance of TEM. mode tapes with n = 1.2 having different Intensity profiles at the Input of the microscope objective

a A [Q10'mW Sm. [Q2max S [Q3maxv ( S)max] SE o

00 0 -0.276 1.01 0.313 0.98 0.490 1.05 0.06 700
1.7 0.5 -0.259 1.01 0.326 0.98 0.464 1.05 0.08 700
1.0 0.87 -0.225 1.02 0.349 0.98 0.412 1.05 0.10 700
0.727 0.98 -0.184 1.03 0.383 0.98 0.350 1.06 0.13 630
0.364 1.0 -0.077 1.15 0.498 0.98 0.214 1.3 0.32 450
0.202 1.0 -0.019 1.4 0.604 0.98 0.147 1.9 0.80 290

or even 1.0, where the fraction of input power entering
the aperture is reasonably high (- 0.50 or 0.87), one can

still get performance close to that of the uniformly filled
aperture. Trap performance, however, rapidly degrades
for cases of underfilled input aperture and decreasing
beam convergence angle. For example, in the trap with
a = 0.202 and O' = 290 the value of Q,a has dropped
more than an order of magnitude to Q,max = -0.019. The
maximum restoring forces Qimax and Q2ma occur well
outside the sphere and the equilibrium position has
moved away from the origin to SE = 0.8. This trap with
0' _ 290 roughly corresponds to the best of the traps
described by Wright et al. (27) (for the case of w0 = 0.5
,Lm). They find for w. = 0.5 pum that the trap has an

equilibrium position outside of the sphere and a maxi-
mum trapping force equivalent to Qlmax = -0.055. Any
more direct comparision of our results with those of
Wright et al. is not possible since they use an approxi-
mate force calculation which overestimates the forces
somewhat. They do not calculate forces for the beam
focus inside the sphere and there are other artifacts
associated with their use of Gaussian beam phase fronts
to give the incident ray directions near the beam focus.

TEM * "do-nut" mode profile
Table III compares the performance of several traps
based on the TEM* mode, the so-called "do-nut" mode,
which has an intensity distribution of the form I(r) = I.
(rlwo )2 exp (-2r21w9 )2 . The quantity a is now the ratio

of w', the spot size of the do-nut mode, to the full lens
aperture rmx.. All other items in the table are the same as

in Table II. For a = 0.76 87% of the total beam power

enters the input aperture rma and one obtains perfor-
mance that is almost identical to that of the trap with
uniformly filled aperture as listed in Table II. For larger
values of a the absolute magnitude of Q,max increases, the
magnitude of Q2max decreases, and the fraction of power
entering the aperture decreases. Optimal trapping, cor-

responding to the highest value of escape force, is
achieved at values of a _ 1.0 where the magnitudes
Q1max - Q2ma - 0.30. This performance is somewhat
better than achieved with TEM.J mode traps.

It is informative to compare the performance of
do-nut mode traps with that of a so-called "ring trap"
having all its power concentrated in a ring 95-100% of
the full beam aperture, for which - 4)ma = 700. When
the ring trap is focused at S _ 1.0 essentially all of the
rays hit the sphere at an angle of incidence very close to
0 = 720, the angle that makes Qg a maximum for n =

1.2 (see Table I). Thus the resulting backward total force
of Q,max = 0.366 at S = 0.99, as listed in Table III, closely
represents the highest possible backward force on a

sphere of n = 1.2. The ring trap, however, has a reduced
force Q2max = 0.254 at S'. = 0.95 in the -Y direction
since many rays at this point are far from optimal. If we
imagine adding an axial beam to the ring beam then we
optimally increase the gradient contribution to the force
in the -Y direction near S' = 1.0 and decrease the

TABLE 3 Performance of TEM*, mode traps with n = 1.2 having different intensity profiles at the Input of the microscope objective

a A [QMmax Sma [Q2max .1max [Q3mmo' ( S)ma] SE

TEM*, do-nut mode traps
1.21 0.40 -0.310 1.0 0.290 0.98 0.544 1.05 0.06
1.0 0.59 -0.300 1.01 0.296 0.98 0.531 1.05 0.06
0.938 0.66 -0.296 1.01 0.298 0.98 0.525 1.05 0.07
0.756 0.87 -0.275 1.01 0.311 0.98 0.494 1.06 0.10

Ring beam with 4 = 700
-0.366 0.99 0.254 0.95 0.601 1.03

Ring beam plus axial beam
-0.31 0.99 0.31 0.95 0.51 1.03

Comparison data on a Ring Beam having 4 = 70° and a Ring Beam plus an Axial Beam containing 18% of the power.
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overall force in the -Z direction. With 18% of the
power in the axial beam one gets Qmax = Q2. 0.31.
This performance is now close to that of the optimal
do-nut mode trap. It is possible to design gradient traps
that approximate the performance of a ring trap using a

finite number of individual beams (for example, four,
three or two beams) located symmetrically about the
circumference of the ring and converging to a common

focal point at angles of 4 _ 700. Recent reports (32, 33)
at the CLEO-'91 conference presented observations on

a trap with two individual beams converging to a focus
with 4) _ 65 and also on a single beam gradient trap
using the TEM* mode.
Knowledge of the forces produced by ring beams

allows one to compare the forces generated by bright
field microscope objectives, as have thus far been consid-
ered, with the forces from phase contrast objectives of
the same NA. For example, assume a phase contrast
objective having an 80% absorbing phase ring located
between radii of 0.35 and 0.55 of the full input lens
aperture. For the case of an input beam uniformly filling
the aperture with n = 1.2, one finds that the bright field
escape force of Q1,,, = 0.276 (see Table II) increases by
-4% to Qlmax = 0.287 in going to the phase contrast
objective. With a TEM. mode Gaussian beam input
having A = 0.87 and n = 1.2, the bright field escape
force magnitude of Q,max = 0.225 increases by 2% to

Q1max = 0.230 for a phase contrast objective. The reason
for these slight improvements is that the force contribu-
tion of rays at the ring corresponds to Qlmax_ 0.204,
which is less than the average force for bright field. Thus
any removal of power at the ring radius improves the
overall force per unit transmitted power. Differential
interference contrast optics can make use of the full

input lens aperture and thus gives equivalent trapping
forces to bright field optics.

Index of refraction effects
Consider, finally, the role of the effective index of
refraction of the particle n = n1 /n2 on the forces of a

single-beam gradient trap. In Table IV we vary n for two
types of trap, one with a uniformly filled input aperture,
and the other having a do-nut input beam with a = 1.0,
for which the fraction of total power feeding the input
aperture is 59%. For the case of the uniformly filled
aperture we get good performance over the range n =

1.05 to n _ 1.5, which covers the regime of interest for
most biological samples. At higher index Q,max falls to a

value of -0.097 at n = 2. This poorer performance is due
to the increasing scattering force relative to the maxi-
mum gradient force as n increases (see Table I). Also
the angle of incidence for maximum gradient force falls
for higher n. At n = 2 (which corresponds roughly to a

particle of index 2.7 in water of index 1.33), the do-nut

mode trap is clearly better than the uniform beam trap.

CONCLUDING REMARKS

It has been shown how to define the gradient and
scattering forces acting on dielectric spheres in the ray
optics regime for beams of complex shape. One can then
describe the operation of single beam gradient force
traps for spheres of diameter »> in terms of the
dominance of an essentially radial gradient force over
the predominantly axial scattering force. This is analo-
gous to the previous description of the operation of this

TABLE 4 Effect of index of refraction n on the performance of a trap with a uniformly filled aperture (a = x) and a do-nut trap with a = 1.0

[Qlmax Sma] [Q2maxv S max] [Q3maxv ( S)max] SE

Trap with uniformly filled aperture
1.05 -0.171 1.06 0.137 1.00 0.219 1.06 0.02
1.1 -0.231 1.05 0.221 0.99 0.347 1.06 0.04
1.2 -0.276 1.01 0.313 0.98 0.490 1.05 0.06
1.3 -0.288 0.96 0.368 0.97 0.573 1.04 0.11
1.4 -0.282 0.93 0.403 0.96 0.628 1.02 0.15
1.6 -0.237 0.89 0.443 0.94 0.693 1.00 0.25
1.8 -0.171 0.88 0.461 0.94 0.723 0.99 0.37
2.0 -0.097 0.88 0.469 0.94 0.733 0.99 0.53

TEM* , do-nut mode trap with a = 1.0
1.05 -0.185 1.06 0.134 1.00 0.238 1.06 0.02
1.1 -0.250 1.05 0.208 0.99 0.379 1.06 0.03
1.2 -0.300 1.01 0.296 0.98 0.531 1.05 0.06
1.4 -0.309 0.93 0.382 0.95 0.667 1.02 0.13
1.8 -0.204 0.88 0.434 0.94 0.748 0.99 0.32
2.0 -0.132 0.88 0.439 0.94 0.752 0.99 0.42
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trap in the Rayleigh regime, where the diameter <<X.
Quite strong uniform traps are possible for n = 1.2 using
the TEMO, do-nut mode in which the trapping forces
vary over the sphere cross-section from a Q value of
-0.30 in the -Z direction to 0.53 in the +Z direction.
The magnitude of trapping force of 0.30 in the weakest
trapping direction gives the escape force which a spheri-
cally shaped motile living organism, for example, must
exert in order to escape the trap. For a laser power of 10
mW the minimum trapping force or escape force of Q =

0.30 is equivalent to 1.2 x 106 dynes. This implies that a

motile organism 10 pum in diameter which is capable of
propelling itself through water at a speed of 128 ,um/s
will be just able to escape the trap in its weakest
direction along the -Z axis. The only possible drawback
to using the do-nut mode in practice is the difficulty of
generating that mode in the laser. With the simpler
TEM, mode beams one can achieve traps with Q's as

high as 0.23, for example, with 87% of the laser power

entering the aperture of the microscope objective.
The calculation confirms the importance of using

beams with large convergence angles 0' as high as 70°

for achieving strong traps, especially with particles
having lower indices of refraction typical of biological
samples. At small convergence angles, less than -300,
the scattering force dominates over the gradient force
and single beam trapping is either marginal or not
possible. One can, however, make a two-beam gradient
force trap using smaller convergence angles based on

two confocal, oppositely directed beams of equal power

in which each ray of the converging beam is exactly
matched by an oppositely directed ray. Then the scatter-
ing forces cancel and the gradient forces add, giving
quite a good trap. Gradient traps of this type have been
previously observed in experiments on alternating beam
traps (34). The advantage of lower beam convergence is
the ability to use longer working distances.

This work using ray optics extends the quantitative
description of the single beam gradient trap for spheres
to the size regime where the diameter is > X. In this
regime the force is independent of particle radius r. In
the Rayleigh regime the force varies as r3. At present
there is no quantitative calculation for the intermediate
size regime where the diameter is X, in which we

expect force variations between r° and r3. This is a more

difficult scattering problem and involves an extension of
Mie theory (35) or vector methods (36) to the case of
highly convergent beams. Experimentally, however, this
intermediate regime presents no problems. One can

often directly calibrate the magnitude of the trapping
force using Stokes dragging forces and thus successfully
perform experiments with biological particles of size _X

(16).
One can get a good idea of the range of validity of the

trapping forces as computed in the ray optics regime
from a comparison of the scattering of a plane wave by a

large dielectric sphere in the ray optics regime with the
exact scattering, including all diffraction effects, as given
by Mie theory. It suffices to consider plane waves since
complex beams can be decomposed into a sum of plane
waves. It was shown by van de Hulst in Chapter 12 of his
book (35) that ray optics gives a reasonable approxima-
tion to the exact angular intensity distribution of Mie
theory (except in a few special directions) for sphere size
parameters 2rrr/X = 10 or 20. The special directions are

the forward direction, where a large diffraction peak
appears which contributes nothing to the radiation
pressure, and the so-called glory and rainbow directions,
where ray optics never works. Since these directions
contribute only slightly to the total force, we expect ray

optics to give fair results down to diameters of approxi-
mately six wavelengths or 5 p,m for a 1.06-,um laser
beam in water. The validity of the approximation should
improve rapidly at larger sphere diameters. A similar
result was also derived by van de Hulst (35) using
Fresnel zones to estimate diffractive effects.
One of the advantages of a reliable theoretical value

for the trapping force is that it can serve as a reference
for comparison with experiment. If discrepancies appear
in such a comparison one can then look for the presence

of other forces. For traps using infrared beams there
could be significant thermal (radiometric) force contribu-
tions due to absorptive heating of the particle or

surrounding medium whose magnitude could then be
inferred. Detailed knowledge of the variation of trap-
ping force with position within the sphere is also proving
useful in measurements of the force of swimming sperm

(15).

Receivedforpublication 19 June 1991 and infinalform 16August
1991.

APPENDIX I

Force of a ray on a dielectric sphere
A ray of power P hits a sphere at an angle 0 where it partially reflects
and partially refracts, giving rise to a series of scattered rays of power
PR, PT2, PT2R, ..., PT21r .... As seen in Fig. 3, these scattered rays
make angles relative to the incident forward ray direction of V + 20, a,
a + ,1, .. . , a + no ... ., respectively. The total force in the Z direction
is the net change in momentum per second in the Z direction due to
the scattered rays. Thus:

F. n1P

n,PR
_[ - os(,r + 20) + : l

-T2R cos(aL + no)] (Al)
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where n1PIc is the incident momentum per second in the Z direction.
Similarly for the Y direction, where the incident momentum per
second is zero, one has:

Fy = 0

[n1PR sin(rr + 20) nlpT2R' sin(a + (A2)
LC n=0 c

As pointed out by van de Hulst in Chapter 12 of reference 35 and by
Roosen (22), one can sum over the rays scattered by a sphere by
considering the total force in the complex plane, F,,, = Fz + iFy. Thus:

niP n1P
Ftot =-[1 + R cos 20] + i-R sin 20

C C

--T2 , Rne (a+nP). (A3)
C n-O

The sum over n is a simple geometric series which can be summed to
give:

nip
Ftot =-[1 + R cos 20]

+ i-R sin 20 -- e[Te (A4)

If one rationalizes the complex denominator and takes the real and
imaginary parts ofF,, one gets the force expressions Al and A2 for Fz
and Fy using the geometric relations a = 20 - 2r and = ir - 2r,
where and r are the angles of incidence and refraction of the ray.

APPENDIX 11

Force on a sphere for trap focus
along Y axis
We treat the case of the beam focus located along the -Y axis at a
distance S' from the origin 0 (see Fig. 6). We first calculate the angle
of incidence 0 for an arbitrary ray entering the input lens aperture
vertically at a radius r and azimuthal angle 1 in the first quadrant. On
leaving the lens the ray stays in the vertical plane AWW' f and heads in
the direction towards f, striking the sphere at V. The forward
projection of the ray makes an angle a with respect to the horizontal
(X, Y) plane. The plane of incidence, containing both the input ray
and the normal to the sphere OV, is the so-called fy plane fOV which
meets the horizontal and vertical planes at f. Knowing a and 1, we find
y from the geometrical relation cos -y = cos a cos 1. Referring to the y
plane we can now find the angle of incidence 9 from R sin 0 = S' sin y
puttingR = 1.

In contrast to the focus along the Z axis, the net force now depends
on the choice of input polarization. For the case of an incident beam
polarized perpendicular to the Y axis, for example, one first resolves
the polarized electric field E into components E cos 1 and E sin 13
perpendicular and parallel to the vertical plane containing the ray.
Each of these components can be further resolved into the so-called p
and s components parallel and perpendicular to the plane of incidence
in terms of these angle I between the vertical plane and the plane of
incidence. By geometry, cos p. = tan a/tan 'y. This resolution yields
fractions of the input power in the p and s components given by:

fp = (cos1 sin ,u - sin1 cosp)2 (A5)

fr = (cos 13 cos , + sin sin L)2. (A6)

If the incident polarization is parallel to the Y axis, then fp and f,

reverse. Knowing 0,fp, andf, one computes the gradient and scattering
force components for p and s separately using Eqs. A5 and A6 and
adds the results.
The net gradient and scattering force contribution of the ray thus

computed must now be resolved into components along the coordinate
axes (see Fig. 6 B). However, comparing the force contributions of the
quartet of rays made up of the ray in the first quadrant and its mirror
image rays in the other quadrants we see that the magnitudes of the
forces are identical for each of the rays of the quartet. Furthermore,
the scattering and gradient forces of the quartet are directly symmetri-
cally about the Z and Y axes, respectively. This symmetry implies that
the entire beam can only give rise to a net Z scattering force coming
from the integral of the F, cos + component and a net Y gradient force
coming from the F. sin component. In practice we need only
integrate these components over the first quadrant and multiply the
results by 4 to get the net force. The differences in force that result
from the choice of input polarization perpendicular or parallel to the
Y axis are not large. For the conditions of Fig. 7 the maximum force
difference is - 14% near S' - 1.0. We have therefore made calcula-
tions using a circularly polarized input beam with fp = f = 1/2, which
yields values of net force that are close to the average of the forces for
the two orthogonally polarized beams.

APPENDIX III

Force on a sphere for an arbitrarily
located trap focus
We now treat the case where the trapping beam is focused arbitrarily
in the XY plane at a pointf located at a distance S' from the origin in
the -Y direction and a distance S" in the -Z direction (see Fig. 8).
To calculate the force for a given ray we again need to find the angle of
incidence 0 and the fraction of the ray's power incident on the sphere
in the s and p polarizations. Consider a ray of the incident beam
entering the input aperture of the lens vertically at a radius r and
azimuthal angle 1B in the first quadrant. The ray on leaving the lens
stays in the vertical plane AWW'B and heads toward f, hitting the
sphere at V. The extension of the incident ray to f and beyond
intersects the XY plane at point P at an angle a. The plane of
incidence for this ray is the so-called y' plane POV which contains
both the incident ray and the normal to the sphere OV. Referring to
the planar figure in Fig. 8B one can find the angle 1' by simple
geometry in terms of S', S ", and the known angles a and 1 from the
relation

S' sin
ta S ' cos 13 + "Itan aet

We get y' from cos -y' = cos a cos 13'. Referring to the -y' plane in Fig.
8 B we get the angle of incidence for the ray from R sin 0 = d sin -y',
putting R = 1. The distance d is deduced from the geometric relation:

S" cos 13'
d = + S'cos(P - ').

tan a
(A8)

As in Appendix II, we compute fp and fs, the fraction of the ray's
power in the p and s polarizations, in terms of the angle p between the
vertical plane W'VP and the plane of incidence POV. We use Eqs. A5
and A6 for the case of a ray polarized perpendicular to the Y axis and
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the same expressions withfp andf, reversed for a ray polarized parallel
to the Y axis. To find p. we use cos ,u = tan a/tan y'. As in Appendix II
we can put fp = f, = 1/2 and get the force for a circularly polarized ray,
which is the average of the force for the cases of two orthogonally
polarized rays.
The geometry for resolving the net gradient and scattering force

contribution of each ray of the beam into components along the axes is
now more complex. The scattering force F, is directed parallel to the
incident ray in the VP direction of Fig. 8. It has components F, sin a in
the +Z direction and F, cos a pointing in the BP direction in the XY
plane. Fs cos a is then resolved with the help of Fig. 8 B into F, cos a
cos 0 in the -Y direction and F, cos a sin I in the -X direction. The
gradient force Fg points in the direction OV' perpendicular to the
incident ray direction VP in the plane of incidence OPV. This is shown
in Fig. 8 and also Fig. 9, which gives yet another view of the geometry.
In Fig. 9 we consider the plane V'OC, which is taken perpendicular to
the -y' plane POV and the vertical plane WW'P. This defines the angle
OV'C as p., the angle between the planes, and also makes the angles
OCV', OCP, and CV'P right angles. As an aid to visualization one can
construct a true three-dimensional model out of cardboard of the
geometric figure for the general case as shown in Figs. 8 and 9. Such a
model will make it easy to verify that the above stated angles are
indeed right angles, and to see other details of the geometry. We can
now resolve Fg into components along the X, Y, and Z axes with the
help of right triangles OV'C and CV'P as shown in Fig. 9 B. In
summary, the net contribution of a ray in the first quadrant to the force
is:

F(Z) = F, sin a + Fg cos p cos a (A9)

F(Y) = -F, cos a cos P
+ Fg cos p sin a cos + Fg sin , sinI3 (A10)

F(X) = -F, cos a sin 1B

+ Fg cos p sin a sin -Fg sinp cos. (All)

The force equations A9-A1l are seen to have the correct signs since
F, and Fg are, respectively, positive and negative as calculated from
Eqs. 1 and 2.
For the general case under consideration we lose all symmetry

between first and second quadrant forces and we must extend the force
integrals into the second quadrant. All the above formulas which were
derived for rays of the first quadrant are equally correct in the second
quadrant using the appropriate values of the angles 13, 1', y', and pu.
For example, in the second quadrant P' can be obtuse. This gives
obtuse y' and obtuse pL. Obtuse p. implies that the -y' plane has rotated
its position beyond the perpendicular to the vertical plane AWW'. In
this orientation the gradient force direction tips below the XY plane
and reverses its Z component as indicated by the sign change in the Fg
cos p. cos a term.
There are, however, some symmetry relations in the force contribu-

tions of rays of the input beam which still apply. For example, there is
symmetry about the Y axis; i.e., rays of the third and fourth quadrants
give the same contribution to the Z and Y forces as rays of the first and
second quadrants, whereas their X contributions exactly cancel. To
find the net force we need only integrate the Y and Z components of
first and second quadrants and double the result.

If we make S" negative in all formulas, we obtain the correct
magnitudes and directions of the forces for the case of the focus below
the XY plane. Although we find different total force values for S"
positive and S" negative, i.e., symmetrical beam focus points above
and below the XY plane, there still are symmetry relations that apply
to the scattering and gradient forces separately. Thus we find that the

Z components of the scattering force are the same above and below
but the Y component reverse. For the gradient force the Z compo-
nents reverse above and below and the Y components are the same.
This is seen to be true in Fig. 10. It is also consistent with Fig. 5
showing the forces along the Z axis. This type of symmetry behavior
arises from the fact that the angle of incidence for rays entering the
first quadrant from above the XY plane (S " positive) is the same as for
symmetrical rays entering in the second quadrant below the XY plane
(S" negative). Likewise the angles of incidence are the same for the
second quadrant above and the first quadrant below. These results
permit one to directly deduce the force below the XY plane from the
values computed above the XY plane. The results derived here for the
focus placed at an arbitrary point within the YZ plane are perfectly
general since one can always choose to calculate the force in the
cross-sectional plane through the Z axis that contains the focusf.
As a check on the calculations one can show that the results putting

S " = 0 in the general case are identical with those from the simpler Y
axis integrals derived in Appendix II. Also in the limitS' -> 0 one gets
the same results as are given by the simpler Z axis integral discussed
above.
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