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Abstract 

Paszkowski, S., Evaluation of a C-table, Journal of Computational and Applied Mathematics 44 (1992) 
219-233. 

A structure of the Pad6 table of power series is fully determined by the so-called C-table. Each element of it is 
a determinant composed of the series coefficients. Froissart and Gilewicz have proved an identity permitting 
to evaluate the whole C-table of arbitrary power series. The paper contains a new, simpler form of this identity 
and its new, purely algebraic proof. Details of algorithm based, in part, on the identity are given. An identity 
analogous to the Sylvester one is proved for determinants in question. 
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1. Introduction 

For a (formal) power series 

F(x) = c a& 
k=O 

the C-table can be defined. It is composed of the numbers C,(l/m), I, m = 0, 1,. . . , where 1 
and m indicate rows and columns of the table, respectively, such that 

C&/O) := 1, 

al-m+1 al-m+2 ... a1 

a/-m+2 al-m+3 ..* al+, 

C&/m) := 

ai a/+1 ... ai+,-1 

, m > 0, 

(1) 
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where uk := 0 for k < 0. In particular, 

C&/l) = a,, C,(O/m) = (- l)m(m-1)‘2a;;. 

We will abbreviate C,(l/m) to C(l/m) when no confusion can arise. 
If a()= *** =aj_, = 0, aj # 0, G(x) :=x-‘F(x), then 

C&/m) = 0, 0 < I <j, C,(//m) = C,(I -j/m), 12 j. 

(2) 

It will therefore be sufficient to consider only the case a, # 0. 
The C-table is closely related to the Pad& table of the series F and has at least two 

applications. 
(i) Positions of zero entries in the C-table determine a block structure of the corresponding 

Pad6 table. Indeed, the Pad6 table contains a square block such that for some integers A, p 2 0 
and for an II natural or infinite, 

[Ml = [A//J] 7 1~A,rn~p,l+m~h+p+n-1, 

[l/m] does not exist, A<l~A+n-l,~L~m~+n-ll,l+m>A+~+n-l, 

iff the C-table contains the square block @A, ,u, n> composed of the numbers 

C(l/m), Z=A,A+l,..., A+n-1, m=p,,+l,..., p+n-1, (3) 
such that the numbers C(A/p + j), C(A + j/,u), j = 0, 1,. . . , n - 1, and (if n < ~1 the numbers 
C(A + n/p + j), C(A + j/p + n), j = 0, 1,. . . ,n, adjacent to it are different from 0 and the 
remaining numbers (3) vanish [l, Theorems 1.4.2 and 1.4.31. 

(ii) The determinants C(l/m) allow to estimate a local accuracy of Pad6 approximants: for 
any block defined above, 

C(A + n//.~ + 1) 
F(x)-[A/~.~](x)=rx”+“+“+ a**, wherer= C(A+n_l,~) = 

C(A + l//_~ + n) 

C(A/p + n - 1) 

(cf. [l, proof of Theorem 1.1.11). 
The determinants C(l/m) satisfy the Sylvester identity 

C(Z - l/m)C(I + l/m) - C(l/m - l)C(l/m + 1) = c(z/m)2. (4) 
If C(I/m) # 0 for any 1, m, then formulae (l), (21, (4) permit to evaluate the whole C-table, 
namely, in succession, 

C(O/O), 

C(l/O), C(O/l), 

C(W), C(k- l/l),...,C(O/k), 

(ascending algorithm). Another possibility consists in the use of (l), the second formula of (2), 
(4) and 

C(l/m) = - 5 (- I)j”+j(j-l)/2a~-lajC(l,m _ j). 

j=l 
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Then the antidiagonals of the C-table are evaluated in the opposite direction: 

C(W), q/k - I>, . . . ,qw), 

(descending algorithm; cf. [3]). However, in some cases none of these algorithms suffices to 
evaluate the whole C-table and extra formulae are needed (e.g., if C(3/4) = C(5/2) = 0, then 
C(5/4) must be calculated by such a formula). They were given by Gilewicz [2] (as results 
obtained by him together with Froissart). The main goal of this paper is to give a new, simpler 
form (12) of the Froissart-Gilewicz formula [2, p.374, (SS)], which permits to calculate C(l/m) 
when C(I/m - 2) = 0 and its new, purely algebraic proof. In addition, an identity (26) similar to 
(4) is proved. A particular case of (12) results also from (26). 

2. Froissart-Gilewicz identity 

From now on, we consider a block @A, j_~, n> such that 1 < IZ < ~0, Using the ascending 
algorithm we need extra formulae allowing to evaluate the entries C(A + j/p + n), if II > 2, and 
C(A +j/, +n + 1) for j= 1, 2,..., II - 1. They are given in [2] where considerations were 
phrased in terms of the Toeplitz determinants rather than of the Hankel ones: 

a1 a,_, **a al-m+1 

aI+1 
CL := . 4’ 

. . . 
al-m+2 

. . 

al+,-1 al+??-2 **. a1 

Obviously, the unique difference between Cf, and Ccl/m) concerns their signs: 

cf, = (- l),(m-1)‘2C(l/m). 

Let us introduce, for a fixed k = 1, 2,, . . , n - 1, the following notations: 

(5) 

N := C(A/p + k), 

N’ := C(A - 1/P + k), 

W:= C(A + k/p), 

W’ := C(A + k/p - l), 

N’:=C(h/P+kkl), 

W ‘:= C(A + k f l/p), 

S:=C(A+n/p+n-k), S*:=C(A+n/p++-kkl), 

S’ := C(A + y1+ l/p + II -k), 

(6) 

E:=C(A+n-k/p+& E’:=C(A+n-kfl/p++), 

E’:=C(A+n-k/p++++). 

The symbols N, N ‘, . . . , E’ denote the corresponding determinants Cfn. The entries 
N, N+ , . . . , E’ surround the square block of zeros in the manner shown in Fig. 1. In particular, 
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Fig. 1. 

IV’, W-, N-, N’ lie on the same antidiagonal (S’, S -, E -, E’ too), whereas N ‘, N+, Ef, E’ 
lie on the same diagonal (IV’, I+‘+, S’, S’ too). 

The Sylve~ter~fo_rm$a for Cf, implies easily the existence of constants (ratios of geometric 
sequences) N, W, S, E such that 

N = gkC” 
CL’ 

w= $y-A 
PL’ 

s = S^kcA+n 
l*+n, 

E =ikch+n 
cL+n 

[2, p.3711. Gilewicz proved that 

&L (-l)n-lG 

[2, p.372, (83)]. Since 

it follows from (5) that 

-= 

’ 

NS=WE. 

(8) 

(9) 

(10) 

A generalized ascending algorithm uses this identity (when y1 > 2) for evaluating E. 
Besides (4) and (10) another identity is needed, namely one for evaluating the element E’ 

for any k = 1, 2,. . . , II - 1. The identity in question was found by Froissart and Gilewicz [2, 
p.374, (851, (SS’)]. In our notations, 

h 

dT((-liT kiEr I i 
h 

+(-1) 7 =; (-ly$ + (-l)*Y). 

It may be considerably simplified as in the following theorem. 



S. Paszkowski / Eualuation of a C-table 223 

Theorem 1. If the C-table contains a block %?(A, p, n) with 1 < n < ~0, then fork = 1, 2,. . . , n - 1, 
in the notation of (61, 

N’ N+ E’ 
w- 0 S- =o, 
W’ w+ S’ 

that is, 

(11) 

Zf p = 0, then (11) and (12) remain true for W’ 

E’ = N’S_+ N+S’. 

:= 0 and, in particular, 

(12) 

(13) 

Identities (11) and (12) contain eight entries of the C-table, lying on its two diagonals and 
two antidiagonals. It is remarkable that these entries are arranged in (11) as in the C-table, up 
to a rotation of 45”; the central zero corresponds here in a sense to the square of zeros in this 
table. One should remark that all the denominators W-, W+, S- in (12) are, by definition, 
different from 0. 

Proof. Formulas (7) imply that i = N/N-, i = E/E- and so on; then 
A,. 

g((-l)$ + (-1)x;) = i(l)+ + (-1)i;). 

In view of (8) and (71, 

and the left-hand side of (14) equals 

Applying (9) to N-, . . . , Ep rather than to N,. . . , E we obtain 

W-E-= (_l)‘k~i)(n-i)N-S~, 

and (14) takes the form 

(14) 

(15) 

This identity simplifies still more after replacing the determinants Cf, by C(l/m). Of course, 
it suffices to modify only the signs of all the terms in (15). In particular, W+/N+= ( - l)(TW+/N+, 
where 

0-e -&u(jL-l)+& + k + l)(j_~ + k) = 32~ + k)(k + 1). 
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The symbol = denotes here “has the same parity as”. Analogously, we have to precede each 
other expression by (- 1)” where u corresponding to it is shown on the right: 

N’ 
- . 
w- . 

;(,u + k)(p + k - 1) - $_L(/A - 1) = +(2/~ + k - l)k, 

W+ N’ 
N’ w-: 1+~(2~+k)(k+1)-~(2~+k-l)k=P+k+l, 

(-l)$: kn+$u+n+l)(p++)-+(p++-k+l)(p+n-k) 

= ;(2p -k + l)k, 

~(-l)k$ ;(2,u + k)(k + 1) - 3(2p + k - 1)k = /_L + k, 

(-l)$: 

(-l)$: k+~(~-l)(~-2)-~&u-l)-k-~+1. 

Consequently, 

!?J$+;+;. 

Thus, it is possible to evaluate E’ by (12) which implies easily (11). 
If a, # 0, uA+r = *.* =a,+._, = 0, uh+n # 0 for some A, it, then the C-table contains the 

block $?(A, 0, n). Hence the entry W’ does not exist, but, as we can verify, identities (ll), (12) 
remain true. It suffices to put there W’ = 0 and, according to (11, W-= W+= 1. Then (12) 
simplifies to (13). El 

3. General ascending algorithm 

Creating a C-table we evaluate its successive antidiagonals. On the jth one we find 
successively the entries 

C(j/O>, C(j - l/l), * a. 7 q/j - q, C(Oh>. 

The first, second and last ones equal 1, aj_1 and (- l)j(i-1)‘2~&, respectively. Moreover, for 
j > 3 and m = 2,. . . , j - 1, the entries C(I/m) with I:= j - m must be calculated. 

If C(I/m - 2) # 0, then C(I/m) is evaluated by the Sylvester formula: 

C(l/m) = 
C(Z - l/m - l)C(Z + l/m - 1) - C(Z/m - 1)2 

C(I/m - 2) 

Otherwise one should distinguish several cases. 



S. Paszkowski / Evaluation of a C-table 225 

(i) If C(l/m - 1) # 0, then a square 9 of zeros, containing Ccl/m - 2), is placed to the 
left of C(I/m). Thus, the above Sylvester formula is not applicable. Using the known entries of 
the C-table, the square Y must be localized. To this end, starting from C(I - l/m - 3) and 
moving along the diagonal to the left we find the first nonzero entry C(p/q). It belongs to the 
row immediately preceding 9. In (12) we have 

N+=qP/q+q, N’=C(p-l/q+_). 

Next, starting from C(p + 2/q) and moving along the antidiagonal to the left we find the first 
nonzero entry C(t/u>. It belongs to the column immediately preceding 9. We have 

IV+= C(t/u), IV’ = C(t - l/u - l), w-= C(t -2/u). 

Since C(l/m - 2) belongs to the last column of 9, the values of m, p, t, u determine the 
location of remaining entries in (12): 

S-=C(m+p-u-l/m+p-t+l), S’= C(Vz +p -u/m +p -t). 

Of course, all the above entries are needed only if u > 0 when the general formula (12) is 
applied. Otherwise the simplified formula (13) is used. 

(ii) If C( L/m - 1) = 0 and C(I - l/m) = 0, then C(Z/m> belongs to Y. 
(iii) If C(l/m - 1) = 0 and C(I - l/m) # 0, then either 

(iii.1) C(l/m) belongs to 9, or 
(iii.2) C(l/m) is placed immediately on the right of 9. 
The first of the next examples corresponds to case (iii.1) and the other ones to (iii.2): 

####f ###### ###### 

#O 0 0 ? #OOOO # #OOOO? 

zo 0 0 #OOOO? #O 0 0 0 

zo 0 zo 0 0 0 zo 0 0 

#O zo 0 0 #O 0 

# ### ## 

(the signs ?, # denote any Ccl/m) and a nonzero entry, respectively). 
The two subcases are distinguished as follows: 
(1) Starting from C(1+ l/m - 1) and moving along the antidiagonal to the left we find the 

first nonzero entry C(p/q). Of course, p + q = I+ m. 

(2) If C(p - l/q) Z 0 (as in the first example above), then (iii.11 holds and C(I/m) = 0. 
(3) If C(P - l/q) = 0 ( as in the second and third examples), then (iii.2) holds. Starting from 

C(p - l/q - 1) and moving along the diagonal to the left, we find the first nonzero element 
C( t/u>. We evaluate C(l/m) by identity (91, where E = C(Z/m), S = C( p/q), W = C( t/u) and 
N=C(l-p+t/m-p+t). 

Example 2. Let 

F(x) := 

The determinants 

1+2X+X3-x4+X5-X6-X7+X8+x9-X1o-X11 

+ 2x14 - 8xi5 + 13x16 + . . * . 

Ccl/m) of Table 1 depend on these coefficients only. 
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Table 1 
Determinants C(l/m) 

1 m=O m=l m=2 m=3 m=4 m=S m=6 m=l . . . 

0 1 1 -1 -1 1 1 -1 -1 . . . 

1 1 2 -4 -9 21 49 - 114 -263 ... 
2 1 0 2 3 0 7 -109 -85 . . . 

3 1 1 -1 -1 1 1 -99 -427 ... 
4 1 -1 0 0 2 -14 -86 -94 . . . 

5 1 1 0 0 4 24 -88 -208 ... 
6 1 -1 -2 4 8 - 16 -32 152 .” 
7 1 -1 -2 0 0 0 16 8 . . 

8 1 1 -2 0 0 0 -8 36 ... 
9 1 1 -2 0 0 0 4 96 ... 

10 1 -1 -2 2 2 -2 -2 160 
11 1 -1 -1 1 5 -25 -79 
12 1 0 0 -2 0 - 11.5 
13 1 0 0 4 46 
14 1 2 -4 -8 
15 1 -8 -38 
16 1 13 
17 1 

If we apply the ascending algorithm, then C(2/3) is the first entry noncalculable by the 
Sylvester formula. As C(2/1) = 0, C(2/2) # 0, case (i) holds. One can verify that p = 1, q = 0, 
t = 3, u = 0. Since u = 0, it suffices to use the entries 

N+= C(1/2) = -4, N’ = C(O/l) = 1, 

S-= C(3/2) = - 1, S’ = C(4/1) = - 1, 

which occur in the simplified formula (13): 

C(2/3) = 1 . ( - 1) + ( - 4)( - 1) = 3. 

The general formula (12) is needed, e.g., to evaluate C(5/5) because C(5/3) = 0, C(4/3) Z 0. 

In this case, 

p=3, q= 1, N+= C(3/3) = - 1, N’ = C(2/2) = 2, 

t =5, u = 1, IV+= C(5/1) = 1, IV’ = C(4/0) = 1, w-= C(3/1) = 1, 

S-= C(6/4) = 8, S’ = C(7/3) = 0, 

c(5,5)=8[;+$(;-;)]=24. 

For 1 = 7, m = 5, case (iii.1) holds because C(7/3) = 0, C(7/4) = 0, C(6/5) # 0, p = 10, 
q = 2, C(9/2) # 0. Hence C(7/5) = 0. 

Finally, if I= m = 4, then the case (iii.2) holds as C(4/2) = 0, C(4/3) = 0, C(3/4) # 0, p = 6, 
q = 2, C(5/2) = 0. S’ mce t = 5, u = 1, we use identity (9) with S = C(6/2) = - 2, W = C(5/1) = 1, 
N = C(3/3) = - 1. Hence C(4/4) = (- l)( - 2)/l = 2. 
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4. Algebraic proof of the Froissart-Gilewicz identity 

To prove their main identity [2, p.374, (8511 Fro&art and Gilewicz change the series 
coefficients uk continuously in such a manner that a block %‘(A + 1, p + 1, it - 2) be trans- 
formed into ‘%?(A, p, n). Our proof of the equivalent Theorem 1 is purely algebraic. We 
suppose here a block %?(A, p, n) being such that 1 < n < ~0. Then in particular C(A/p) f 0 and 
we can define the quantities 

ah-p+1 aA-p+2 ..* a,+1 

1 : 

ai’= C(A/p) a, ’ 
> j=O, 1 )... . 

aA+1 **. aA+p 

(16) 

‘j-p 
ajppL+l ‘*. 

aj 

In the simplest case, i.e., when p = 0, they are identical with the ai’s. 

Lemma 3. 

aj = 0, j=A+l,A+2 ,..., A+p+n-1. 

Proof. According to the Jacobi formula for a Pad& approximant [A/p] = PAp/Qhp [l, Section 
1.11 with the denominator normed so that Q,,(O) = C(A/pu), we have 

Q,,( x)F( x) = C( A/p) c Zjx’. 
j=O 

Due to the existence of %?(A, p, n> the approximant is such that 

Q,,(x)F(x) -f’,,(x) = O(X*+~+~), 
and Lemma 3 is true. ‘Z 

Definition (16) implies the existence of numbers PO, pi,. . . , p,, such that for every j, 
II 

iij = C /3iaj_i. (17) 
i=O 

In particular, 

Po= 1, P,=(-1) 
pC(A + U-4 

c(w-4 
(18) 

(obviously, the denominator Q,, 
[l, Section 1.1, (1811). C 

normed so that Qh,(O> = 1 equals PO + pix + * . . +p,xp; cf. 
onsequently, in each determinant C(l/m) for m > p we can, without 

affecting its value, replace the elements aj of its rows, from the (,u + 1)st to the mth one, by 
the numbers Zj. Then, due to Lemma 3, some elements vanish and evaluation of certain 
determinants becomes easier. 

Lemma 4. For k = 1, 2,. . . , n - 1 and in the notation of (61, 

N+=(-1) (IL+k+2)+ .‘. +(r+2~,-~+lc(A,p), 

S-=(-l) (&+l+/L+n-k+l)+ ‘.’ +(~+fl+p+ll)-n-_k-] 
%+w+nW-. 

(19) 

(20) 
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Proof. 
one in 

After the mentioned transformation the rows from the 
the determinant N+:= C(A/p + k -I- 1) are equal to 

Z,_k *** a, 

0 

(p + 1)st to the (p + k + 1)st 

Indeed, in these rows the numbers iii for A - k <j G A + p + k occur. As, however, A + I_L + k 
G A + p + n - 1, we have Zj = 0 for j > 1. Expanding the transformed determinant successively 
by the (p + k + l)st, (p + k)th, . . . , (p + 1)st rows we obtain (19). 

Changing the II - k + 1 last rows of the determinant S-z= C(A + n/p + 12 - k + 1) with the 
aid of (17), we transform them into 

0 : : 

ah+/.L+n *** a h+p+2n-k 

Indeed, in these rows the numbers Zj for A + k =G A + p + 2n - k occur. As, however, A + k > A, 
we have Zj = 0 for j < A + p + IZ - 1. Expanding the transformed determinant by the last rows 
we obtain (20). 0 

Let us introduce now other auxiliary quantities: 

D kp := 

a p-p+1 ap-CL+2 *‘* ap+n-k 

aP ap+1 .** ap+p.+n-k-l 
- 

ah+k+2 a 
- 

A+k+3 ‘** aA+pi?l+l 

k=l,2 ,..., n-l, 
’ p=A,A+l,..., A+k+l. (21) 

This determinant of degree p + II - k is composed of two parts. The upper part counts p rows 
and contains (if ,U > 0) the coefficients aj of the power series F, whereas the lower one 
contains the auxiliary coefficients Zj defined by (16). By virtue of Lemma 3 some items in the 
lower part vanish and it is of the form 

a hip+n aAfp+?l+l 

0 : : 
- 
aA+p+Tl 

- . . . 
aAip+2n-k 

Lemma 5. For k = 1, 2,. . . , n - 1 and in the notation of (61, 

DkA=(Sf_F)c(F’, 

where for p = 0 one should assume that W’ = 0. 

(22) 
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Proof. For p = 0 it suffices to prove that Dkh = S’. This is true because in this case 

- 
aA+k+2 .” a h+n+l 

DkA = : 7 

a 
- 

A+n+l ... aA+2n-k 

and definition (16) simplifies into the form Zj := aj. 

Let p # 0 now. We apply the formula 

aj=iij- taiaj_i, 

i=l 

(23) 

resulting from (16), (IT), to the pth row of Dkp. If h <p G h + k, then this row contains the 
numbersajsuchthatp~j~p+~++-~-l,thush<j~h+~+~-1.ByvirtueofLemma 
3 we then have Zj = 0. Therefore this row is the sum of the row -ppap_y, 

-Ppap-p+17.. . 7 -PPap+n-k-l and of a linear combination of the former rows: 

Dkp = -& 

a p-p+1 ap-p+2 **. ap+n-k 

ap-1 ap ..* ap+F+n-k-2 

a 
P-P 

a p-p+1 ... a p+n-k-l 

- - 

ah+k+2 aA+k+3 ..’ aA+@+n+l 

- - - 
ah+n+l ah+n+2 .” ah+p+2n-k 

= 
C(A + u-4 D 

C(M4 
k,pp1, p=h+l,h+2 )...) h+k. 

In a similar manner D,,, +k+ 1 can be transformed. However, it should be taken into account 
that after applying (23) the last element of the pth row of the determinant contains the term 
a,,,,, probably different from 0. We bear in mind also a form of the lower part 
determinant given before this lemma: 

C(A + l/P) D aAik aAik+l ‘.. 

D k,A+k+l = 
ww-4 

k,A+k + 

aA+p+n-l 

- 

ah+&&+2 

0 

a A.tp+n -.. aA+p+2n-k 

of the 

k,A+k + (- ‘> 
(P+P+n-k)+ ... +(p+jd--n-k-1Wr 

aA+~+n ’ 
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Using this result, (24) and (20) we obtain 

Dk,*+k+l = [ ‘&I$) i*+lDkA + ;kV. 
On the other hand, replacing in the definition of Dk,A+k+l all the Zj by the sums (171, we 
obtain S’ := C(A + y1+ l/p + y1 - k). Finally, the identity of (7) implies the existence of a 
constant (Y # 0 such that 

C(h + l/P) = aC(MJ), IV+:= C(A + k + 1/E.L) = &+‘C(A/p). 

Consequently, 

We are now able to give a new, purely algebraic (without taking limits) proof of Theorem 1. 

Proof of Theorem 1. Consider the determinant E’ := C(h + IZ - k/p + n + 1). Transforming its 
rows from the (p + 1)st to the (p + y1 + 1)st one by formula (17) (as in Lemma 4) and bearing 
in mind Lemma 3, we obtain 

All the elements of the (p + k + 1)st row vanish except the first (a,> and the last (ZA+CL+n) 
ones. We expand E’ by this row and take into account a special form of resulting determinants: 

aA-k-l ah-k 
. . . 

a 
- 

. . . 
A-k aA 

aA+p+2n-k 

aA-p+l aA-p+2 
. . . 

aA+n-k 

E’= (-1) (,u+k+2)+ .‘. +&+2)-k+l 
aA 

aA aA+1 
. . . 

a A+/_&+n a A+p+n+l 

0 
- 
a,+,+, 

- . . . 
aA+l.L+2npk 

+(-1) 
(p+k+l+p+n+l)+ ..’ +(y+k+l+p+k+l)-_n-k+l 

aA+g+tl 
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‘A-p-k ah-p-k+1 
. . . 

ah-1 

‘h-k 
. . . a h+p-2 

aA-k 

_ 
. . . 

aA 

0 

a A-l ah 

The first determinant here is equal to Dk, (cf. (21), (22)) and its cofactor simplifies due to (19). 
The second one, after returning from Zj to aj in its lower part, gives C(h - l/p + k), i.e., N’, 
and its cofactor simplifies due to (20): 

AT+ 
E’ = 

CWP) 
DkAf; -Iv’. 

Hence, by virtue of Lemma 5, 

E+,~-~)++ 

Of course, this is equivalent to (12) and therefore to (11). 0 

5. A generalization of the Sylvester identity 

The Sylvester identity (4) can be expressed in a determinant form: 

C(I - l/m) C(l/m + 1) 

C(l/m - 1) C(I + l/m) 
= C(l/m>*. (25) 

It is natural to try to find another form for a more general determinant of degree n + 1 > 1: 

D(& m, n> 

C(I -n/m) C(&n+l/m+l) a.. C(l/m + n) 

C(Z-n+l/m-1) C(I-n +2/m) **. C@+l/m+n-1) 
:= 

C(l/m - n) C(I+l/m-n+l) 0.. C( I + n/m) 

In view of the definition of C(l/m) it seems that D(l, m, n) depends on all the coefficients aj 
such that I- m - II - 1 <<j G I + m + it - 1. Let us remark, however, that ~~_~_,,+r occurs only 
in the first row of D(1, m, n) and has as cofactors the numbers C(I - y1 + l/m - l), C(1 - n + 
2/m), . . . , C(l + l/m + 12 - 11, i.e., the elements of the second row. Consequently, D(Z, m, n> 
does not depend on al_m_n+l. Nor depends it on u~+~+~_~ (occurring only in the last column 
of D(l, m, n)). We thus may hope that D(l, m, n> expresses only in terms of C(h//~)‘s such 
that A - p 2 1 - m - n + 1, A + p G I+ m + n - 1. This is the case for n = 1; cf. (25). We will 
prove an analogous identity for n = 2. 
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Theorem 6. For 1, m = 1, 2,. . . , 

D(I, m, 2) = C(Z/m)[C(Z - l/m)C(Z + l/m) + C(Z/m - l)C(Z/m + l)]. (26) 

Proof. Let us assume for the moment that C(Z/m) # 0. We multiply the first row of D(Z, m, 2) 
by C(Z/m) and subtract from it the second one multiplied by C(Z - l/m + 1). We multiply the 
third row by C(Z/m) and subtract from it the second one multiplied by C(Z + l/m - 1): 

d11 0 d 

C(Z/m)*D(Z, m, 2) = C(Z - l/m - 1) C(Z/m) C(Z + l;m + 1) , 

d 31 0 d 33 

where 

d,, := C(Z - 2/m)C(Z/m) - C(Z - l/m - l)C(Z - l/m + l), 

d,, := C(Z/m)C(Z/m + 2) - C(Z - l/m + l)C(Z + l/m + l), 

d,, := C(Z/m - 2)C(Z/m) - C(Z - l/m - l)C(Z + l/m - l), 

d,, := C(Z/m)C(Z + 2/m) - C(Z + l/m - l)C(Z + l/m + 1). 

Hence 

C(Z/m)‘D(Z, m, 2) 

= C(Z/m)[C(Z - l/m)‘C(Z + l/m)* - C(Z/m - l)‘C(Z/m + l)*] 

= C(Z/m)3[C(Z - l/m)C(Z + l/m) + C(Z/m - l)C(Z/m + l)], 

and Theorem 6 is true provided that C(Z/m) z 0. But every GA/p) is a polynomial in the uk’s, 
i.e., a continuous function of them; then the same identity remains true for C(Z/m) = 0. q 

In particular, if C(Z/m> = 0, then D(Z, m, 2) = 0. It is a particular case of (11) for h = I, 
p=m, n=2, k=l). 

The determinant D(I, m, 3) was recently re-expressed in [4]: 

D(Z, m, 3) 

= C(Z/m) 

X {C(Z - l/m - l)[C(Z - l/m + l)C(Z + 2/m) + C(Z + l/m - l)C(Z/m + 2)] 

+C(Z + l/m + l)[C(Z - l/m + l)C(Z/m - 2) 

+C(Z + l/m - l)C(Z - 2/m)]} 

+ [C(Z - l/m)C(Z + l/m) + C(Z/m - l)C(Z/m + l)] 

X [C(Z - 2/m)C(Z + 2/m) - C(Z/m - 2)C(Z/m + 2)]. 

It is rather difficult to predict a general expression of D(Z, m, n> for any it. 
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