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Abstract

We propose a new system of integral equations for the exterior time harmonic Maxwell’s equation. This
system is derived 3rst from elementary manipulations of classical equations then by the minimization of
a quadratic functional associated to incoming and outgoing electromagnetic waves. We analyze the inf–sup
condition and various penalized problems related to this system. Then we prove that an iterative algorithm
for the solution of the system of integral equations is convergent. Other numerical issues are also discussed.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We propose and study a new system of integral equations for solving obstacle scattering by
time-harmonic electromagnetic waves, with a particular emphasis on impedance boundary conditions:
see [2,4,1] for some recent works about scattering with impedance boundary conditions. We think
that the method presented in this work could have some advantages from the computational point
of view when compared to more classical integral equations like electric 3eld integral equation
(EFIE) or magnetic or combined 3eld integral equation (MFIE,CFIE), [9,20]. For instance, the
particular algebraic structure of our system allows us to obtain convergence theorems for iterative
algorithms (we give a proof for one of them in this paper), which is known to be di>cult to get
with classical integral equations. This di>culty is not only theoretical but also practical since it is
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known that the lack of coercivity of classical integral equations can result in poor convergence rates
for iterative methods, at least for general geometries and in general situations, [21,23,19]. In this
work, we show that it is possible to solve scattering problems by means of a system of integral
equations with a positive real spectrum. This kind of system has been derived in [12,13], in the
2-D acoustic, in [11] for Maxwell’s equations and in [27,26] for Maxwell’s equations coupled with
a domain decomposition strategy in a bounded domain. However, the approach presented here is
expected to be less complicated as it uses more general arguments than in those original papers. The
idea of the method is to construct a positive quadratic functional whose minimum is the outgoing
electromagnetic wave satisfying a given boundary condition. This functional is de3ned on a set
of outgoing and incoming electromagnetic waves. We show that this set can be parameterized by
means of electric and magnetic currents plus a kernel of an electromagnetic Herglotz wave pair, [9],
these three parameters satisfying a set of linear constraints. The new system of integral equations
is obtained by writing down the optimality conditions of the associated Lagrangian. It can also be
obtained by some direct manipulations of classical integral operators for electromagnetism.

One interesting feature of the new system of equations, comparing to the classical ones, is that
the space of solutions is L2. A penalization procedure may be used to get more coercivity on
the multiplier, even if the inf–sup condition is already true for the nonpenalized formulation. This
coercive framework might appear as unusual when compared with the standard theory of integral
operators for electromagnetism. However, the proof of well-posedness of the weak formulation that
we give is based on some well known fundamental properties of the exterior Calderon projectors for
Maxwell’s equations. Let us mention that in previous work [12] most of the properties of the coercive
formulation were derived from the analysis of special functions related to Helmholtz equations and
not via Calderon projectors.

The outline of the paper is the following. First, we derive the new system by simple manipulations
of classical integral operators for electromagnetism. Then, we introduce the space W of incoming
and outgoing solutions of Maxwell’s equations, on which we de3ne a suitable quadratic functional
depending on a boundary data. We prove that the minimum of this functional is reached at a point that
coincides with the outgoing solution of Maxwell’s equation satisfying a boundary condition linked
to the data boundary. Using a parameterization of W by means of currents, we show that the system
has an interpretation as a minimization problem with constraints. Introducing a Lagrange multiplier
and the associated Lagrangian, the optimality conditions allow us to recover the system previously
obtained. Then, we 3rst discuss well-posedness of the system. Second, we introduce a penalization
to get more tractable problems from the numerical point of view. We also prove well-posedness
of the penalized system. Finally, we propose an iterative algorithm to solve the system and prove
its convergence. We end up with a discussion on some numerical issues. In order to give a better
understanding of the new system, we analytically determine, in Appendix C, the spectrum of our
integral operator in the special case of a spherical scatterer.

2. A �rst derivation of the integral equation system

Let D− ⊂ R3 be a bounded domain with regular boundary � (at least of class C2), and let n(x)
be the unit normal vector to � directed into D+ ⊂ R3, the exterior domain of D−. The problem we
address is the determination of the outgoing electromagnetic 3eld scattered by �. Let k ¿ 0 be the
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wavenumber and Z0 the vacuum impedance. The 3eld is a solution to (1), (2) where

∇∧ E+ − ikZ0H+ = 0 in D+;

∇∧ H+ + ikZ−1
0 E+ = 0 in D+ (1)

is the Maxwell system and

lim
|x|→∞

|x|
(
Z0H+ ∧ x

|x| − E+

)
= 0 (2)

is the Silver–MIuller radiation condition at in3nity. System (1)–(2) must be supplemented by a
boundary condition on �. Let us assume for now that the boundary condition is an absorbing
boundary condition

n(x) ∧ (E+
=�(x) ∧ n(x)) + Z0(H+

=�(x) ∧ n(x)) = Gin: (3)

Other boundary conditions will be considered in Section 5. It is well known (e.g. Theorem 6.6 in
[9]) that the determination of the solution (E+; H+) amounts to the knowledge of the equivalent
currents

J = n ∧ H+
=�; M = −n ∧ E+

=�; (4)

through the relations

E+(x) = iZ0T̃ J (x) + K̃M (x);

H+(x) =−K̃J (x) + iZ−1
0 T̃M (x); (5)

where T̃ and K̃ are the classical potential operators de3ned by

T̃ J (x) =
1
k
∇x ∧

(
∇x ∧

∫
�
G(x; y)J (y) d�(y)

)
;

K̃J (x) =−∇x ∧
∫
�
G(x; y)J (y) d�(y); (6)

or, in another form,

T̃ J (x) = k
∫
�

(
G(x; y)J (y) +

1
k2 ∇xG(x; y)∇t · J (y)

)
d�(y);

K̃J (x) =
∫
�
∇yG(x; y) ∧ J (y) d�(y): (7)

Here ∇t ·J (y) denotes the surface divergence of J . The kernel G(x; y) is the radiating Green function
for the 3-D Helmholtz equation

G(x; y) =
expik|x−y|

4�|x − y| : (8)
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The same de3nitions apply to T̃M and K̃M . When x in D+ approaches the boundary �, it is
well-known that the potentials T̃ J (x) and T̃M (x) possess continuous tangential traces on � while
the tangential components of K̃J (x) and K̃M (x) have a jump across the boundary. In particular, we
have

n(x) ∧ (E+
=�(x) ∧ n(x)) = iZ0TJ (x) + KM (x) + 1

2n(x) ∧M (x);

n(x) ∧ (H+
=�(x) ∧ n(x)) = −KJ (x) + iZ−1

0 TM − 1
2n(x) ∧ J (x); (9)

where T and K are de3ned by

TJ (x) = lim
y→x

n(x) ∧ (T̃ J (y)) ∧ n(x));

KJ (x) =
(∫

�
n(x) ∧ (∇yG(x; y) ∧ J (y)) d�(y)

)
∧ n(x): (10)

Using expressions (4) that relate 3elds and currents, we obtain

0 = iZ0(TJ )(x) + (KM)(x) − 1
2n(x) ∧M (x);

0 = (KJ )(x) − 1
2n(x) ∧ J (x) − iZ−1

0 (TM)(x); (11)

or, in a matrix form,

Su = 0; (12)

where

S=

[
T K − 1

2n∧
K − 1

2n∧ T

]
; (13)

and

u =

[
J1

M1

]
=



√

iZ0J√
iZ0

−1
M


 : (14)

Eq. (12) is a compatibility condition and gives profound insights into electromagnetic behavior. It
expresses the fact that not all pairs of tangential 3elds on � are composed of tangential traces of
radiating electromagnetic 3eld. To be such a trace, it is necessary (and su>cient, actually) that the
pair lies in the kernel of the integral operator S.

All previous calculations are completely standard. To go further, we introduce the decomposition
in real and imaginary part of the Green function G(x; y),

G(x; y) =
cos(k|x − y|)

4�|x − y| + i
sin(k|x − y|)

4�|x − y| = Gr(x; y) + iGi(x; y): (15)

We obtain a similar decomposition for S in real and imaginary parts

S= T+ iR; (16)
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with

T=

[
Tr Kr − 1

2n∧
Kr − 1

2n∧ Tr

]
; R =

[
Ti Ki

Ki Ti

]
: (17)

At this point, we introduce the new unknown

v = iu =

[
iJ1

iM1

]
=

[
J2

M2

]
=


 i

√
iZ0J

i
√

iZ0
−1

M


 ; (18)

allowing us to read Su = Tu + iRu = 0 as

− Tu − Rv = 0; (19)

or, in an equivalent way,

Tv − Ru = 0: (20)

The operators Tr and Kr are symmetric, while n(x)∧ is antisymmetric. If T∗ is the adjoint of T,
and

L =

[
0 −n(x)∧

−n(x)∧ 0

]
; (21)

we have

T− T∗ = L: (22)

The operators Ti and Ki are symmetric and regularizing (Gi(x; y) is a smooth symmetric kernel); so,
R is as a symmetric and regularizing operator. Now, we derive the following decomposition of R.
If d̂ is a given direction on the unit sphere S2 and if (J (x); M (x)) are two given tangential 3elds
on �, we de3ne the far 3eld operators a∞ and A∞ by

a∞J (d̂) =
k

4�

∫
�
d̂ ∧ (J (x) ∧ d̂)e−ikx·d̂ d�(x); (23)

A∞ :

[
J (x)

M (x)

]
→ A∞

[
J

M

]
(d̂) = a∞J (d̂) − id̂ ∧ a∞M (d̂): (24)

Using the integral identity

sin k|�|
|�| =

k
4�

∫
S2

e−ik�·d̂ d�(d̂); �∈R3; (25)

we prove in Appendix A the following factorization:

R = (A∞)∗A∞; (26)
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i.e., (
R

[
J

M

]
;

[
J ′

M ′

])
TL2(�)×TL2(�)

=

(
A∞

[
J

M

]
;A∞

[
J ′

M ′

])
TL2(S2)

:

Here TL2(�) (resp. TL2(S2)) denotes the set of tangential 3elds on � (resp. on S2),

TL2(�) = {’∈L2(�)3; ’:n = 0)}:
A similar de3nition applies to TL2(S2).

Eq. (26) shows that R is a symmetric positive operator. It allows us to rewrite (19) as

− Tu − (A∞)∗A∞v = 0: (27)

Eq. (27) will be the 3rst equation of our system of integral equations.
So far, we have not used the boundary condition on �. As mentioned before, we assume that the

electromagnetic 3eld satis3es an absorbing boundary condition of the type

n(x) ∧ (E+
=�(x) ∧ n(x)) + Z0(H+

=�(x) ∧ n(x)) = Gin; (28)

where Gin is some incoming 3eld (source term) on �. From (4) and (14), we have the two equivalent
relations

J1(x) − in(x) ∧M1(x) =−i
1√
iZ0

Gin(x);

−in(x) ∧ J1(x) + M1(x) =−n(x) ∧ 1√
iZ0

Gin(x): (29)

De3ning

g=




−i 1√
iZ0

Gin(x)

−n(x) ∧ 1√
iZ0

Gin(x)


 (30)

and using De3nitions (14) and (18) for u and v, we get

u −
[

0 n(x)∧
n(x)∧ 0

]
v = g; (31)

or, using (22),

u + Lv = u + Tv − T∗v = g: (32)

We use (20) to obtain

u + Ru − T∗v = g: (33)
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We join (33), with the factorization (26) of R, to Eq. (27) to obtain the 3nal system

u + (A∞)∗A∞u − T∗v = g;

−Tu − (A∞)∗A∞v = 0: (34)

This will constitute the main integral system we shall discuss in this work. System (34) diOers
from the other classical integral equations by involving only real operators and being symmetric.
Furthermore, it can be seen as the optimality conditions of a saddle point problem. Let us assume
for example that T is a continuous operator on TL2(�)2. If we de3ne the spaces

U = TL2(�) × TL2(�); Z = TL2(S2); (35)

and the Lagrangian

L(u∗; �∗; v∗) = 1
2‖u∗‖2

U + 1
2‖A∞u∗‖2

Z + 1
2‖�∗‖2

Z

+ Re¡Tu∗ − i(A∞)∗�∗; v∗ ¿U − Re¡ g; u∗ ¿U ; (36)

where (u∗; v∗)∈ u and �∈Z , then, the optimality conditions of the saddle point problem

L(u; v; �) = min
u∗ ;�∗

max
v∗

L(u∗; �∗; v∗); (37)

are nothing but

u + (A∞)∗A∞u − T∗v = g;

� + iA∞v = 0;

−Tu − i(A∞)∗� = 0: (38)

In other words, (u; v) is a solution of (34) and

� = iA∞v: (39)

3. A second derivation of the system of equations

The particular structure of system (34) gives some hints that it might be possible to derive it
through the minimization of some quadratic functional: actually, this system was 3rst obtain through
this procedure. This section is devoted to the association of (32) with the corresponding positive
quadratic functional.

3.1. De=nition of incoming and outgoing electromagnetic =elds

The idea is to consider a space of incoming and outgoing electromagnetic 3elds on D+. We
assume D+ to be a domain of class C2.
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De�nition 1. We de3ne W, the space of the 3elds (E;H) on D+ such that

• (E;H) is in (L2
loc(D

+))3 × (L2
loc(D

+))3

• (E;H) satis3es to Maxwell’s equations

∇∧ E − ikZ0H = 0 in D+

∇∧ H + ikZ−1
0 E = 0 in D+: (40)

• The tangential traces of (E;H) exist in TL2(�), i.e. the electromagnetic 3eld possess tangential
traces on � of square integrable modulus.

• (E;H) has the asymptotic behavior at in3nity.

lim
R→∞

1
R

∫
D+

R

(|E|2(x) + Z0|H |2(x)) dx¡∞; (41)

where

D+
R = {|x|6R; x∈D+}:

Note that every solution (E;H) of Maxwell’s equations in D+ is regular (it has analytic Cartesian
components) at points far enough from the boundary �.

All these properties are usual, except the behavior at in3nity. It is given in the following lemma.

Lemma 1. Let (E;H) be in W, then there exists two =elds aout∞ (E;H) and ain∞(E;H) in Z =TL2(S2)
such that, if we de=ne

E∞(x) =
eik|x|

|x| aout
∞ (E;H ; x̂) +

e−ik|x|

|x| ain
∞(E;H ; x̂);

Z0H (x) =
eik|x|

|x| (x̂ ∧ aout
∞ (E;H ; x̂)) − e−ik|x|

|x| (x̂ ∧ ain
∞(E;H ; x̂)) (42)

where x̂ = x=|x|, then

lim
R→∞

1
R

∫
R6|x|62R

|E(x) − E∞(x)|2 dx = 0; (43)

lim
R→∞

1
R

∫
R6|x|62R

|H (x) − H∞(x)|2 dx = 0: (44)

The proof of this lemma is postponed to Section 3.4 (see Lemma 4). The 3eld aout∞ (E;H ; x̂) can be
seen as the far 3eld for the outgoing part of the electromagnetic 3eld: ain∞(E;H ; x̂) corresponds to
the far 3eld for the incoming part of the electromagnetic 3eld.
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3.2. De=nition of the quadratic functional; minimization

We de3ne for (E;H) in W,

Gin
� ≡ Gin

� (E;H) = n(x) ∧ (E=� ∧ n(x)) + Z0H=� ∧ n(x);

Gout
� ≡ Gout

� (E;H) = −n(x) ∧ (E=� ∧ n(x)) + Z0H=� ∧ n(x); (45)

and consider a given tangential 3eld Gin in TL2(�), which will play, as previously, the role of
the right hand side of the (absorbing) boundary condition on �: Gin is therefore a data. We then
introduce the following functional:

I(E;H) = 1
4‖Gin

� (E;H)‖2 + 1
4‖Gout

� (E;H)‖2

+ ‖aout
∞ (E;H)‖2

Z + ‖ain
∞(E;H)‖2

Z − Re(Gin
� (E;H); Gin); (46)

where (:; :) and ‖:‖ denote, respectively, the inner product and the corresponding norm in TL2(�).

Theorem 1. The minimum of I(E;H) for (E;H) in W is reached by the solution of the following
problem

∇∧ E+ − ikZ0H+ = 0 in D+;

∇∧ H+ + ikZ−1
0 E+ = 0 in D+;

n(x) ∧ (E+
=�(x) ∧ n(x)) + Z0(H+

=�(x) ∧ n(x)) = Gin on �;

ain
∞(E+; H+) = 0 at in=nity: (47)

This result means in particular that it is possible to relax both the radiation condition at in3nity
and the boundary condition in the formulation of the problem, and to recover them through the
minimization process. Note that the condition at in3nity is treated exactly the same as the boundary
condition on �. We will show later that minimizing the functional I amounts to solve system (33)
derived in the 3rst section.

The key point of the proof lies on the following isometry lemma, which is exactly equivalent to
the unitarity of the scattering matrix in scattering theory [22].

Lemma 2 (Isometry lemma). Let (E;H) be some electromagnetic =eld in W. Then, the following
equality holds:

1
4‖Gin

� (E;H)‖2 + ‖ain
∞(E;H)‖2

Z = 1
4‖Gout

� (E;H)‖2 + ‖aout
∞ (E;H)‖2

Z : (48)

Proof. We introduce the truncated domain

D+
r = {x∈D+; |x|¡r};



166 F. Collino, B. Despres / Journal of Computational and Applied Mathematics 150 (2003) 157–192

where r is a large positive number. The boundary of D+
r splits into two parts: � (the interior

boundary) and S2
r (the exterior spherical boundary):

9D+
r = � ∪ S2

r :

The outward normal is denoted by %(x); %(x) = −n(x) on � and %(x) = x̂ = x=|x| on the spherical
part of the boundary S2

r .
Maxwell’s equations (40) imply that

0 =
∫
D+

r

((∇∧ E − ikZ0H) · PH − (∇∧ H + ikZ−1
0 E) · E) dx:

Using the usual Stokes formula∫
D

(∇∧ U · V −∇ ∧ V · U ) dx =
∫
9D

(% ∧ (U=9D ∧ %)) · (V=9D ∧ %) d�; (49)

one obtains∫
9D+

r

((% ∧ (E ∧ %)) · PH ∧ %) d� = ik
∫
D+

r

(Z0|H |2 − Z−1
0 |E|2) dx:

Therefore we get taking the real part

Re
∫
9D+

r

(% ∧ (E ∧ %)) · ( PH ∧ %) d� = Re
∫
�∪S2

r

(% ∧ (E ∧ %)) · ( PH ∧ %) d� = 0;

which is equivalent to∫
�∪S2

r

| − (% ∧ (E ∧ %)) + Z0(H ∧ %)|2 d� =
∫
�∪S2

r

| + (% ∧ (E ∧ %)) + Z0(H ∧ %)|2 d�:

We then take the mean value of this equality for r between R and 2R and let R goes to in3nity.
With the help of Lemma 1 and

∫ 2R
R dr

∫
S2
r

d� =
∫
R6|x|62|R| dx, we get

lim
R→∞

1
R

∫ 2R

R

∫
�∪S2

r

| − (% ∧ (E ∧ %)) + Z0(H ∧ %)|2 d� dr

=
∫
�
| − (n(x) ∧ (E=� ∧ n(x))) − Z0(H (x) ∧ n(x)|2 d�(x)

+ lim
R→∞

1
R

∫ 2R

R
dr
∫
S2

r2 d�(d̂)
∣∣∣∣−eikr

r
aout
∞ (E;H ; d̂) − e−ikr

r
ain
∞(E;H ; d̂)

+
eikr

r
((d̂ ∧ aout

∞ (E;H ; d̂)) ∧ d̂) − e−ikr

r
((d̂ ∧ ain

∞(E;H ; d̂)) ∧ d̂)
∣∣∣∣
2

=
∫
�
|Gin

� (x)|2 d�(x) + 4
∫
S2
|ain

∞( ˆE;H ;d))|2 d�(d̂):
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We get in a same way,

lim
R→∞

1
R

∫ 2R

R

∫
9D+

r

| + (% ∧ (E ∧ %)) + Z0(H ∧ %)|2 d� dr

=
∫
�
|Gout

� (x)|2 d�(x) + 4
∫
S2
|aout

∞ ( ˆE;H ;d))|2 d�(d̂): (50)

This ends the proof of Lemma 1.

Proof (Theorem 1): Once the isometry lemma has been obtained, the minimization of I(E;H) be-
comes obvious. Indeed, De3nition (46) and Eq. (48) gives

I(E;H) = 1
2‖Gin

� (E;H)‖2 + 2‖ain
∞(E;H)‖2

Z − Re(Gin
� (E;H); Gin)

= 1
2‖Gin

� (E;H) − Gin‖2 + 2‖ain
∞(E;H)‖2

Z − 1
2‖Gin‖2: (51)

It is then clear that the minimum is − 1
2‖Gin‖2 and is reached exactly for the electromagnetic 3eld

such that both the condition at in3nity and the boundary condition are satis3ed:

ain
∞(E;H) = 0; Gin

� (E;H) = Gin: (52)

Now, all the remaining di>culty is to choose an appropriate—and useful for practical computations—
parameterization of space W of incoming and outgoing electromagnetic 3elds to derive the expres-
sions of the related quantities Gin

� ; Gout
� ; ain∞ and aout∞ .

3.3. Representation of the W-electromagnetic =elds

Let (E;H) be in W and consider (Ẽ; H̃) the extension by zero of (E;H) to D−. It is classical to
show that (Ẽ; H̃) satis3es in the sense of distributions on R3

k2Ẽ + R̃Ẽ = −ikZ0

(
J)� +

1
k2 ∇̃∇̃ · (J)�)

)
+ ∇̃ ∧ (M)�);

k2H̃ + R̃H̃ = − ik
Z0

(
M)� +

1
k2 ∇̃∇̃ · (M)�)

))
− ∇̃ ∧ (J)�);

∇̃ · Ẽ =
Z0

ik
∇̃ · (J)�); ∇̃ · H̃ = +

1
Z0ik

∇̃ · (M)�); (53)

where )� is the Dirac measure supported by � and

J = n ∧ H=�; M = −n ∧ E=�: (54)

The general solution of system (53) can be written in the form

Ẽ(x) = iZ0T̃ rJ (x) + K̃ rM (x) + EHer(x);

H̃ (x) = −K̃J (x) + iZ−1
0 T̃ rM (x) + HHer(x); (55)
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where T̃ r ; K̃ r are de3ned in the same manner as T̃ ; K̃ given in (6) and (7) except that G(x; y) is
replaced with Re G(x; y), and where (EHer(x); HHer(x)) is an entire solution to Maxwell’s equations

k2EHer + R̃EHer = 0; k2HHer + R̃HHer = 0;

∇̃ · EHer = 0; ∇̃ · HHer = 0: (56)

Note that the choice of the kernel Re G(x; y) for the particular solution of system (53) is completely
arbitrary at this stage, but it is convenient for our purpose. Since (E;H) is in W, the pair (Ẽ; H̃)
satis3es the growth property (41) and it is easy to show that the potentials in the right hand side of
(55) also satisfy the same growth property (see (65)). We therefore deduce that (EHer ; HHer) satis3es
(41). Now, we use Theorem 6.30 of [9] that asserts that every entire solution to the Maxwell system
satisfying the growth property (41) is an Herglotz pair with kernel �: it means that there exists some
tangential 3eld � in L2(S2) such that

EHer(x) =
ik
√

iZ0

4�

∫
S2

�(d̂)eikd̂x d�(d̂);

HHer(x) =
ik

4�
√

iZ0

∫
S2

(id̂ ∧ �(d̂))eikd̂x d�(d̂): (57)

Once again, the normalization constant ik
√

iZ0=4� is here just for convenience.
Thus, a possible parameterization of incoming and outgoing 3elds might be (u; �) with

u =

[
J1

M1

]
=



√

iZ0 J (x)√
iZ0

−1
M (x)


 (58)

and with �, the kernel of the Herglotz pair (EHer ; H her) in (57). Reciprocally, to every (u; �) in U×Z
we can associate an electromagnetic 3eld (E;H) in W through (55), (57), (58). But it remains to
verify that the associated 3elds Ẽ and H̃ vanish in D−, the open complement to D+. To prove that
(Ẽ; H̃) vanishes in D−, it is enough to ensure that both tangential interior traces on � are zero.
Using once again the jump conditions for the potentials, we get

0 = n(x) ∧ (Ẽ−
=�(x) ∧ n(x))

= iZ0(TrJ )(x) + (KrM)(x) − 1
2n(x) ∧M (x) + ieHer(x); (59)

0 = n(x) ∧ (H+
=�(x) ∧ n(x))

=−(KrJ )(x) + iZ−1
0 (TrM)(x) + 1

2n(x) ∧ J (x) + ihHer(x); (60)

with

eHer(x) = n(x) ∧
(
k
√

iZ0

4�

∫
S2

�(d̂)eikd̂x d�(d̂) ∧ n(x)
)

;

hHer(x) = n(x) ∧
(

k
4�

√
iZ0

∫
S2

(id̂ ∧ �(d̂))eikd̂x d�(d̂) ∧ n(x)
)

: (61)
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Let us normalize (59) by
√

iZ0
−1 and (60) by −√

iZ0. A look at De3nitions (17) and (24), after
transposition, gives us immediately

Tu + i(A∞)∗� = 0: (62)

Eq. (62) de3nes a closed linear sub-manifold M of U × Z in which lies the pair (u; �).

Lemma 3. Let M be the closed linear sub-manifold of U × Z de=ned by

M = {(U; �)∈U × Z; Tu + i(A∞)∗� = 0}:
If m = (u; �) is in M, (55)–(57) de=ne a unique electromagnetic =eld (E;H) in W with

u =




√
iZ0(n(x) ∧ H=�)√

iZ0
−1

(−n(x) ∧ E=�)


 : (63)

Reciprocally, every electromagnetic =eld (E;H) in W can be written in the form (55)–(57) via
(58) and therefore can be associated to an element of M.

The following paragraph is devoted to the interpretation of the Herglotz kernel � in terms of the
asymptotic behavior of the associated electromagnetic 3eld.

3.4. Asymptotic behavior of electromagnetic pairs in W

We study the behavior of the 3elds (Ẽ; H̃), as given in (55) when x goes to in3nity. For the
potential, the calculations are classical (see [9, p. 157]). From,

∇x ∧ G(x; y)a(y) =
eik|x|

4�|x|
(

+ikx̂ ∧ a(y)e−ikx̂y + O
(‖a‖Z

|x|
))

;

∇x ∧ (∇x ∧ G(x; y)a(y)) =
k2eik|x|

4�|x|
(
x̂ ∧ (a(y) ∧ x̂)e−ikx̂y + O

(‖a‖Z
|x|

))
; (64)

as |x| goes to in3nity, uniformly for all y in �, we get

E(x) − EHer(x)√
iZ0

=
1
2
A∞(J1; M1; x̂)

eik|x|

|x|

+
1
2
A∞(J1; M1;−x̂)

e−ik|x|

|x| + O
(

1
|x|2
)

;

(H (x) − HHer(x))
√

iZ0 =
1
2

(−ix̂ ∧ A∞(J1; M1; x̂))
eik|x|

|x|

+
1
2

(+ix̂ ∧ A∞(J1; M1;−x̂))
e−ik|x|

|x| + O
(

1
|x|2
)

: (65)
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For regular Herglotz kernel, the asymptotic behavior of the Herglotz wave can be obtained thanks
to the stationary phase Theorem; if �0 is C1, we have

F(�0; x) =
∫
S2

�0(d̂)eikd̂x d�(d̂) = Fasym(�0; x) + O
(

1
|x|2
)

; (66)

Fasym(�0; x) =
2�
i

(
�0(x̂)

eik|x|

k|x| − �0(−x̂)
e−ik|x|

k|x|

)
:

We use a well known result about the asymptotic behavior of Herglotz waves [17] to prove that
this result can be extended in a weaker sense when � is only L2; more precisely, we have

∀�0 ∈Z; lim
R→∞

1
R

∫
R6|x|62R

|F(�0; x) − Fasym(�0; x)|2 dx = 0: (67)

We do not know if some stronger convergence occurs, nevertheless, (67) is enough to our purpose
(indeed, it was enough to get the isometry lemma).

From (67), we deduce

lim
R→∞

1
R

∫
R6|x|62R

EHer(x)√
iZ0

−
(

1
2
�(x̂)

eik|x|

k|x| −
1
2
�(−x̂)

e−ik|x|

k|x|

)
= 0

lim
R→∞

1
R

∫
R6|x|62R

HHer(x)
√

iZ0 + ix̂ ∧
(

1
2
�(x̂)

eik|x|

k|x| +
1
2
�(−x̂)

e−ik|x|

k|x|

)
= 0:

Finally, gathering this result with asymptotics (65) provides

Lemma 4. Let (u; �) in M be the associated element to (E;H) in W introduced in Lemma 3 and
let ain(E;H) and aout(E;H) be de=ned in L2(S2) by

aout
∞ (E;H ; x̂) =

√
iZ0

2
(A∞(u; x̂) + �(x̂));

ain
∞(E;H ; x̂) =

√
iZ0

2
(A∞(u;−x̂) − �(−x̂)); (68)

then, the asymptotics (43), (44) hold.

3.5. Reformulation of the minimization problem

Once the parameterization has been constructed, it only remains to rewrite the functional I(E;H).
At 3rst, we have

1
4
‖Gin

� (E;H)‖2 +
1
4
‖Gout

� (E;H)‖2 =
1
2
‖E ∧ n‖2 +

Z2
0

2
‖H ∧ n‖2

=
Z0

2
(‖J1‖2 + ‖M1‖2) =

Z0

2
‖u‖2

u; (69)

(Gin
� (E;H); Gin) = Z0

∫
�

(J1 − in ∧M1) · Gin

i
√

iZ0
d� = Z0(u; g)U; (70)
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where g is de3ned in (30). Second, Lemma 4 gives

‖aout
∞ (E;H)‖2

Z + ‖ain
∞(E;H)‖2

Z =
Z0

2
‖�‖2

Z +
Z0

2
‖A∞(J1; M1)‖2

Z ; (71)

and the functional is, 3nally,

I(E;H) = Z0J (u; �);

J (u; �) = 1
2 ‖u‖2

u + 1
2 ‖�‖2

Z + 1
2 ‖A∞u‖2

Z − Re(u; g)U: (72)

We can now reformulate Theorem 1 as

Theorem 2. Let Gin be given in L2(�). De=ne g as in (30). The minimum of the functional J (u; �)
given in (72), over all the pairs (u; �)∈M, i.e. satisfying

Tu + i(A∞)∗� = 0; (73)

is reached at

u =




√
iZ0n ∧ H+

=�

−
√

iZ0
−1

n ∧ E+
=�


 ; � =

aout∞ (E+; H+)√
iZ0

; (74)

where (E+; H+) is the radiating (outgoing) solution of the Maxwell system (47).

3.6. Optimality conditions

We de3ne the Hilbert space

V = {v∈ u; such that T∗v∈ u}; (75)

equipped with the following norm:

‖v‖V = ‖v‖U + ‖T∗v‖U: (76)

If V′ is the dual space of V, constraint (73) can be viewed as an equality in V′

∀v∈V; (u;T∗v)U + i(�; (A∞)v)Z = 0: (77)

At this point it is classical to dualize the constraint, introducing the Lagrangian

L(u; �; v) = J (u; �) − Re((u;T∗v)U − i(�; (A∞)v)Z); (78)

where W is the space for the multiplier, i.e. the quotient Hilbert space

W =
V

Ker T∗ (79)

equipped with the norm

‖v‖W = inf
v0∈Ker T∗

‖v − v0‖V = ‖T∗v‖U + inf
v0∈Ker T∗

‖v − v0‖U:
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It is well known (cf. [5]) that if the Lagrangian admits a saddle point, then its 3rst argument is the
minimum argument of J in M

L(u; �; v) = inf
(u∗ ;�∗)∈U×Z

sup
v∗∈W

L(u∗; �∗; v∗) = min
(u∗ ;�∗)∈M

J (u∗; �∗); (80)

Furthermore, since J is quadratic, such a saddle point exists if and only if DuL(u; �; v) = 0;
D�L(u; �; v) = 0; DvL(u; �; v) = 0, i.e.

u + (A∞)∗A∞u − T∗v = g;

� + iA∞v = 0;

−Tu − i(A∞)∗� = 0: (81)

Discarding �, system (34) is then recovered. We have already proved in the 3rst derivation that v=iu
is a solution. It is possible to recover this property directly. Since ain∞(E;H) = 0 at the optimum,
Eq. (68) implies that A∞u = � = −iA∞v and therefore v = iu up to an element in KerA∞. It is
shown in Appendix B that KerA∞ = Ker T∗ and consequently we obtain v = iu in W.

Thus, we have given another derivation of the mixed integral system. The interesting feature of
this second derivation is that the saddle point problem is explained and is related to the isometry
lemma. The additional unknown, whose introduction might seem strange in the 3rst Section 1 can
now be interpreted as the Lagrange multiplier of our constrained minimization problem.

4. Variational formulation and well-posedness. The penalized systems

Variational formulation is useful for minimization problems. It provides a good framework for
the study of uniqueness and existence, and also for discretization and convergence of the discrete
solution. A possible variational formulation of our problem is the following.

u∈Vu; v∈Vv;

(u; ũ) + (A∞u;A∞ũ) − (T∗v; ũ) = (g; ũ); ∀ũ∈Vu;

(u;T∗ṽ) + (A∞v;A∞ṽ) = 0; ∀ṽ∈Vv; (82)

where it remains to de3ne the functional spaces Vu and Vv. Due to the L2 coerciveness of the
formulation it is clear that an interesting choice for Vu is

Vu =U = TL2(�) × TL2(�):

But, it may seem at 3rst sight impossible to de3ne an associated space Vv such that the inf–sup
condition of Babuska–Brezzi holds, [5],

max
(u;T∗v)
‖u‖L2

¿ k‖v‖Wv ; k ¿ 0 with Wv =
Vv

Ker T∗ ; (83)

just because standard functional spaces in which T is continuous are known to be based on

H−1=2(div; �) and H−1=2(curl; �):



F. Collino, B. Despres / Journal of Computational and Applied Mathematics 150 (2003) 157–192 173

Nevertheless it is at least possible to provide an abstract framework in which the inf–sup condition
holds. Let us take Vu =U; Vv = V, de3ned in (75) and W de3ned in (79).

System (34) is well-posed as soon as the inf–sup condition

sup
u∈U

(u;T∗v)U
‖u‖U ¿C‖v‖W (84)

holds for some positive constant C ¿ 0. This inequality can be derived as follows. Picking u=T∗v
in (84), we 3nd

sup
u∈U

(u;T∗v)U
‖u‖U ¿ ‖T∗v‖U: (85)

Let v∈V. In Appendix B it is proved that −LT with L de3ned in (21), is a projector (it is a
Calderon Projector):

TLT= −T: (86)

Let v1 = −L∗T∗v. We have that T∗(v − v1) = T∗v + T∗L∗T∗v = 0. So v0 = v − v1 ∈Ker T∗ hence

inf v0∈Ker T∗ ‖v − v0‖U6 ‖v1‖U = ‖L∗T∗v‖U = ‖T∗v‖U; (87)

where we have used the isometric property L∗L = I . So we have

sup
u∈U

(u;T∗v)U
‖u‖U ¿

1
2
‖T∗v‖U +

1
2

inf
v0∈Ker T∗

‖v − v0‖U =
1
2
‖v‖W: (88)

Thus it gives

Lemma 5. The inf–sup condition (84) in space U × V is true with C = 1
2 .

Since both the continuity T∗ :V→ U and the bound ‖Rv‖U6C ′‖v‖W for some C ′ ¿ 0 hold (see
inequality (B.13) in Appendix B), we have, following [5]

Theorem 3. The variational system (82) is well posed, that is, for every g∈ u′ = u there exists a
unique (u; v)∈ u ×W such that

(u; ũ) + (A∞u;A∞ũ) − (T∗v; ũ) = (g; ũ); ∀ũ∈U;

(u;T∗ṽ) + (A∞v;A∞ṽ) = 0; ∀ṽ∈V: (89)

However when discretization is considered a di>culty arises with the use of spaces (U;V) =
(Vu; Vv). The reason is that we want to avoid the construction of some discrete space compatible
with the L2 based space (U;V). We would like to take a classical integral code based on the duality
H−1=2(div; �) and H−1=2(curl; �) and use the iterative algorithms described later in order to solve
our new discrete integral system. Then the question of the convergence of the discrete solution
to the exact one arises. All our eOorts to prove the convergence using this strategy failed. The
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reason seems to be that the classical discretization of integral operators is based on H−1=2(div; �)
and H−1=2(curl; �), and not on (U;V), [6]. Moreover, numerical results in 2-D for the Helmholtz
equation, [3], show that this problem may be a real one; there are cases where the discrete solution
obtained through the strategy described above does not converge to the exact solution, even in some
very simple and regular cases. Of course this conclusion has to be re-evaluated if the discretization
of the integral operators are compatible with (U;V). It is our purpose now to modify the system
and to present what we will call the penalized problem, with a much stronger coercivity.

Let . be some positive penalization parameter (for instance . = 1). Recalling that v = iu, we
modify system (26) to obtain the penalized system

(1 + .)u + (A∞)∗A∞u − T∗v + i.v = g;

+Tu − i.u + .v + (A∞)∗A∞v = 0; (90)

which is a system of the form

A.

[
u

v

]
=

[
g

0

]
: (91)

The associated variational system is for a given pair (g; gv)∈ (U′;V′) = (U;V′), 3nd (u; v)∈U×V
such that ∀(ũ; ṽ)∈U × V

(1 + .)(u; ũ) + (A∞u;A∞ũ) − (T∗v; ũ) + i.(v; ũ) = (g; ũ);

(u;T∗ṽ) − i.(u; ṽ) + (A∞v;A∞ṽ) + .(v; ṽ) = 〈gv; ṽ〉V;V′ : (92)

Simple calculations show that

Re

(
A.

[
u

v

]
;

[
u

v

])
U×U

= ‖u‖2
U + .‖u + iv‖2

U + ‖A∞v‖2
Z + ‖A∞u‖2

Z

¿C.(‖u‖2
U + ‖v‖2

U); (93)

with

C. = . +
1
2
−
√

.2 +
1
4
¿min

(
.
2
;
1
3

)

and the system is now coercive in the u variable and in the v variable, even if the norm ‖v‖2
U in

(93) is not the norm in V required to have a true coercivity property.

Theorem 4. The variational system (92) has a unique solution (u; v) in U×V. For g in U, Eq. (90)
has a unique solution in U × V.

Proof. Uniqueness of the solution is obvious. Existence is obtained by using the arguments used
to prove existence for saddle points problems; we transform the operator A. into A.; 0 by adding
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the term 0TT∗v to the second equation in (90). The modi3ed system is

(1 + .)u0 + (A∞)∗A∞u0 − T∗v0 + i.v0 = g

+Tu0 − i.u0 + .v0 + (A∞)∗A∞v0 + 0TT∗v0 = gv;

⇔ A.; 0

[
u0

v0

]
=

[
g

gv

]
: (94)

Note that the operator A.; 0 is coercive due to

Re(A.; 0[u; v]t ; [u; v]t)¿C.(‖u‖2
U + ‖v‖2

U) + 0‖T∗v‖2
U)

¿C.;0(‖u‖2
U + ‖v‖2

V): (95)

Here (:; :)t denotes vector transpose. Since continuity is obvious, the Lax-Milgram Theorem gives
existence and uniqueness of the solution (u0; v0). Now, the inequality of coercivity and the continuity
of A.; 0 provide the estimate

‖u0‖2
U + ‖v0‖2

U6
1
C.

‖A.; 0‖ ‖(g; gv)‖U×V′‖(u0; v0)‖U×V: (96)

Using a triangular inequality in 3rst equation of system (94), gives

‖T∗v0‖U6 ‖g‖U + (1 + . + ‖(A∞)∗A∞‖)‖u0‖U + .‖v0‖U: (97)

It is not di>cult to check that ‖A.; 0‖ is bounded by ‖A.‖ + 0. We deduce from (96)–(97) that
there is a constant C (which is function of . and is independent of 0) such that

‖u0‖U6C‖(g; gv)‖U×V′ ‖v0‖V6C‖(g; gv)‖U×V′ :

Consequently, it is possible to extract a sub-sequence converging weakly in U × V. Writing down
the variational formulation of the 0-problem, and passing to the limit, we obtain a solution of
problem (92).

Remark. Another type of penalization consists in modifying system (26) according to

(1 − .)u + (A∞)∗A∞u − (T∗v + i.v) = g;

(Tu − i.u) + .v + (A∞)∗A∞v = 0; (98)

where . is now some positive number less than 1 (let . = 1
2 ). The interest of (98) is that it

corresponds to a saddle point for the Lagrangian

L.(u; �; v) = (1 − .) 1
2‖u‖2

U − . 1
2 ‖v‖2

U − Re(g; u)U

+ 1
2 ‖�‖2

Z + 1
2 ‖A∞u‖2

Z − Re((u;T∗v + i.v)U − i(�; (A∞)v)Z): (99)

This problem is a penalized saddle point problem.
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5. System for general impedance boundary conditions

We turn now our attention to the case of a general boundary condition. We assume that the
electro-magnetic 3eld satis3es some impedance boundary condition of the type

n(x) ∧ (E+
=�(x) ∧ n(x)) + Z0Zr(H+

=�(x) ∧ n(x)) = F; (100)

where Zr is some impedance operator that we assume symmetric with a positive real part, i.e.

(ReZrJ; J )¿ 0; ∀J ∈D(Zr): (101)

We associate to Zr its reTection coe>cient operator

R = (Id−Zr)(Id + Zr)−1; (102)

which, thanks to (101), satis3es

‖R‖L(TL2(�))6 1: (103)

We 3rst rewrite the boundary condition in terms of R. We have

Gin = −RGout + (Id + R)F; (104)

where Gin is de3ned in (28) while

Gout = n(x) ∧ (E+
=�(x) ∧ n(x)) − Z0(H+

=�(x) ∧ n(x)): (105)

Setting

F0 =
1√
iZ0

(Id + R)F; f =

[ −iF0

−n(x) ∧ F0

]
; (106)

and using de3nition (30) for g with (104) for Gin in system (34), we have

u + (A∞)∗A∞u − T∗v = f −NRu;

−Tu − (A∞)∗A∞v = 0; (107)

where

NRu =NR

[
J1(x)

M1(x)

]
=


 −iR Gout(x)√

iZ0

−n(x) ∧R Gout(x)√
iZ0


 ; (108)

or

NRu =

[ −iR(n ∧M1 − iJ1)

−n ∧R(n ∧M1 − iJ1)

]
: (109)
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Let . some positive parameter (for instance . = 1), remembering that v= iu, we 3nally modify the
system to obtain the 3nal system

(1 + .)u + (A∞)∗A∞u − T∗v +NRu + i.v = f

Tu − i.u + .v + (A∞)∗A∞v = 0: (110)

The associated weak formulation is

u∈U; v∈V; and ∀ũ∈U;∀ ṽ∈V;
(1 + .)(u; ũ) + (A∞u;A∞ũ) − (T∗v; ũ) + i.(v; ũ) − (NRu; ũ) = (f ; ũ);

(u;T∗ṽ) − i.(u; ṽ) + (A∞v;A∞ṽ) + .(v; ṽ) = 0: (111)

The interest of this new formulation for general boundary conditions lies on the following lemma

Lemma 6. Let R∈L(TL2(�)) be a general reBexion operator bounded in the space of tangent
square integrable functions. Let NR ∈L(U) be the surface operator de=ned by (108). Then

∀u∈U; |(NRu; u)U|6 ‖R‖L(TL2(�))‖u‖2
U: (112)

Proof. For simplicity we assume that R is nonzero. We have

(NRu; u)U = (−iR(n ∧M1 − iJ1); J1)L2 + (−n ∧R(n ∧M1 − iJ1); M1)L2

= (‖R‖1=2n ∧M1 + iJ1; ‖R‖−1=2R(n ∧M1 − iJ1))L2 ;

and, by Cauchy–Schwartz inequality

|(NRu; u)U|6 1
2 ‖R‖ ‖n ∧M1 + iJ1‖2

L2 + 1
2 ‖R‖−1‖R(n ∧M1 − iJ1)‖2

L2 :

Then we use the boundedness of R and we expand the squares to get

|(NRu; u)U|6 ‖R‖
2

(‖n ∧M1 + iJ1‖2
L2 + ‖n ∧M1 − iJ1‖2

L2)

= ‖R‖ ‖u‖2
U:

This estimate proves that the additional term NRu is small compared to the other terms of the
system. As a result

Theorem 5. Let us assume that the reBexion operator is strictly bounded by one in L2: ‖R‖L(TL2(�))
¡ 1. Then for .=0, the variational formulation (111) is well posed in U×W. That is for every f ∈U
there exists a unique (u; v)∈U×W weak solution of (110). For .¿ 0 the variational formulation
of (110) is well posed in U×V. That is for every f ∈U there exists a unique (u; v)∈U×V weak
solution of (110).
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Under the weaker assumption ‖R‖L(TL2(�)) = 1, then an a priori estimate implies uniqueness of
the solution in U ×W for . = 0 and in U × V for .¿ 0.

Proof. Let us consider A.;R, the operator associated to (110) de3ned in the same manner as in
(94). A simple calculation shows that

Re(A.;R[u; v]t ; [u; v]t)¿ ‖u‖2
U − Re(NRu; u)U + .‖u + iv‖2

U + ‖A∞u‖2
Z + ‖A∞v‖2

Z

and so, by virtue of (112)

Re(A.;R[u; v]t ; [u; v]t)¿ (1 − ‖R‖)‖u‖2
U + .‖u + iv‖2

U + ‖A∞u‖2
Z + ‖A∞v‖2

Z :

Uniqueness: If f=0, we have .(u+iv)=0 and A∞u=A∞v=0. Using the identity KerA∞=Ker T∗
(see Appendix B), we get T∗u= 0 and T∗v= 0 and so v= 0 in W. Furthermore the second equation
of (110) gives Tu = 0 and so Lu = Tu − T∗u = 0 then u = 0. If . �= 0, we also have v = −iu = 0
in u.
Existence: We assume ‖R‖¡ 1. We proceed as in the proof of Theorem 4. We transform A.;R

into A.;R; 0 by adding the perturbation 0TT∗v in the left hand side of the second equation of (110).
If . �= 0, the proof follows exactly the same steps of the proof of Theorem 4. We assume . = 0.
Let (u0; v0) be the solution of the perturbated problem. The coercivity property and the triangular
inequality provide

(1 − ‖R‖)‖u0‖26 ‖f‖ ‖u0‖ ⇒ ‖u0‖6 ‖f‖
1 − ‖R‖

‖T∗v0‖6 (1 + ‖R‖ + ‖A∗
∞A∞‖) ‖u0‖ + ‖f‖:

Using the inf–sup condition (84) with C = 1
2 (see Lemma 5), we get

1
2
‖v0‖W6 sup

u∈U
(u;T∗v0)U

‖u‖U = ‖T∗v0‖

6 (1 + ‖R‖ + ‖A∗
∞A∞‖)

‖f‖
1 − ‖R‖ + ‖f‖:

Finally, (u0; v0) is bounded in U ×W; we conclude as in the proof of Theorem 4.

6. An iterative algorithm and its convergence

To solve (110), the iterative algorithm we propose in this section is a relaxed Jacobi method.
Of course, this Jacobi algorithm is not necessarily the best one to solve in practice our integral
equation system. But what we intend to do is to show that the new structure of the system can be
exploited to get convergence results for iterative algorithms, which are di>cult to obtain with the
other classical formulations.
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Let 1¿r¿ 0 be some relaxation parameter. The algorithm reads

• computation of F0 as given in (106) in function of the data F then computation of the second
term f in (106)

• initialization: u0 = v0 = 0
• loop over p
◦ solve

(1 + .)ũp + (A∞)∗A∞ũp − T∗ṽp = f −NRup−1 − i.vp−1;

−Tũp − .ṽp − (A∞)∗A∞ṽp = −i.up−1: (113)

◦ relax

up = (1 − r)up−1 + rũp;

vp = (1 − r)vp−1 + rṽp: (114)

We assume F to be in TL2(�), so that f is in U. Here we assume that solving the discrete counterpart
of (113) is easy due to the strong coercivity of the operator on the left hand side. For example
discrete conjugate gradient might be used for this calculation. In Appendix C, the condition number
of the system is studied in the special case of a sphere. It is shown to be moderate even for large
spheres. Concerning the convergence, we have the following result where we assume that the solution
(u; v) exists and is in U × V even for ‖R‖ = 1.

Theorem 6. If ‖R‖¡ 1 then (up; vp) converges strongly to (u; v) in U × V. Using the weaker
assumption ‖R‖= 1 if a solution of (111) exists then (up; vp) converges weakly to (u; v) in U×V.

For simplicity, we will give a proof only valid in the case of a constant R. Let us consider the
algorithm for the error. It is initialized by (u0; v0)=−(u; v) while the associated induction consists in
systems (113)–(114) with f replaced by 0. We begin by multiplying the 3rst (resp. second) equation
of (113) by ũp (resp. by ṽp) then we subtract the real part of the two results. Both terms involving
−T∗ũp and Tũp cancel each other and we get

(1 + .)‖ũp‖2
U + .‖ṽp‖2

U + ‖A∞ũp‖2
Z + ‖A∞ṽp‖2

Z

= − Re(i.vp−1; ũp)U + Re(i.up−1; ṽp)U − Re(NRup−1; ũp)U; (115)

where we recall that Z = TL2(S2). The remaining part of the proof is just technical. First, the term
multiplied by . reads

‖ũp‖2
U + ‖ṽp‖2

U + Re(ivp−1; ũp)U + Re(−iup−1; ṽp)U

= 1
2 ‖ũp‖2

U + 1
2 ‖ṽp‖2

U − 1
2 ‖up−1‖2

U − 1
2‖vp−1‖2

U

+ 1
2 ‖iup−1 − ṽp‖2

U + 1
2 ‖ivp−1 + ũp‖2

U: (116)
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Then, denoting ũp as (J̃ p
1 ; M̃

p
1 ); up−1 as (Jp−1

1 ; Mp−1
1 ), and using

Fp = iJ̃ p
1 + n ∧ M̃p

1 + R(iJp−1
1 − n ∧Mp−1

1 );

we derive from de3nition (109)

‖ũp‖2
U + (NRup−1; ũp)U =

1
2
‖iJ̃ p

1 − n ∧ M̃p
1 ‖2 +

1
2
‖iJ̃ p

1 + n ∧ M̃p
1 ‖2

+ Re(R(iJp−1
1 − n ∧Mp−1

1 ); (iJ̃ p
1 + n ∧ M̃p

1 )

=
1
2
‖iJ̃ p

1 − n ∧ M̃p
1 ‖2 +

1
2
‖Fp‖2 − 1

2
‖R(iJp−1

1 − n ∧Mp−1
1 )‖2

6
1
2
‖iJ̃ p

1 − n ∧ M̃p
1 ‖2 +

1
2
‖Fp‖2

− ‖R‖2

2
‖(iJp−1

1 − n ∧Mp−1
1 )‖2: (117)

(we have used here the assumption that R is constant). Let us de3ne the following norm on X =
U ×U:

‖v‖2
X = ‖(u; v)‖2

X =
.
2
‖u‖2

U +
.
2
‖v‖2

U +
1
2
‖iJ1 − n ∧M1‖2; (118)

with u = (J1; M1). With the help of estimates (116) and (117) we have

‖ṽp‖2
X = ‖(ũp; ṽp)‖2

X6 ‖(up−1; vp−1)‖2
X −Vp = ‖vp−1‖2

X −Vp

with

Vp = |A∞ũp|2Z + |A∞ṽp|2Z +
1
2
‖Fp‖2

U +
.
2
‖iup−1 − ṽp‖2

U

+
.
2
‖ivp−1 + ũp‖2

U +
1
2

(1 − ‖R‖2)‖iJp−1
1 − n ∧Mp−1

1 ‖2: (119)

Finally, using once more time the identity

2Re(ṽp; vp−1)X = ‖ṽp‖2
V + ‖vp−1‖2

X − ‖ṽp − vp−1‖2
X; (120)

we get for vp = (1 − r)vp−1 + rṽp

‖vp‖2
X = (1 − r)2‖vp−1‖2

X + r2‖ṽp‖2
X + (1 − r)r(‖vp−1‖2

X + ‖ṽp‖2
X − ‖ṽp − vp−1‖2

X)

6 ‖vp−1‖2
V − rVp − r(1 − r)‖ṽp − vp−1‖2

X; (121)

performing a summation of all those inequalities over p provides

‖vq‖2
X +

q∑
p=0

r(1 − r)‖ṽp − vp−1‖2
X +

q∑
p=0

(1 − r)Vq6 ‖u‖2
U + ‖v‖2

U: (122)
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This estimate implies that ‖vp‖2
X is bounded and that the two series are convergent and so

‖A∞ũp‖2
Z + ‖A∞ṽp‖2

Z → 0; p → ∞: (123)

Furthermore, if ‖R‖¡ 1, we have that ap = iJp
1 − n ∧ Mp

1 approaches 0 as p tends to in3nity. It
is now not di>cult to check that the only convergence of the ap’s implies that up and vp goes to
zero as p goes to in3nity.

If ‖R‖ = 1, the convergence does not hold any longer in the strong sense. However, it is clear
that since the sequence is bounded in V, we can extract a subsequence that converges weakly. Since
the only solution of A.;R(u; v)′ = 0 is 0, the limit point can only be 0. Thus, the only accumulation
point is 0 and the whole sequence converges weakly.

Remark. We have readily obtained the strong convergence when the reTection coe>cient is strictly
less than 1, but there is no reason for the error to be a geometric decreasing function of the
iterations. Indeed, all what we have obtained is that a series is convergent and consequently its
generic term must go to 0. However if . = 0 and ‖R‖¡ 1 then (118) and (119) imply that
‖iJ̃ p

1 − n∧ M̃p
1 ‖26 ‖R‖2‖iJp−1

1 − n∧Mp−1
1 ‖2, which in turn implies a geometric convergence to 0.

7. Discussion of numerical issues

We would like to discuss the use of this method in practical computations, and split the discussion
between the method by itself and the method coupled with other problems or other algorithms.

7.1. The method by itself

At 3rst sight, the major drawback of this new integral system when compared to a classical one is
that the number of unknowns has been multiplied by a factor 4. Nevertheless, this can be tempered
by the fact that the matrix of the system can be easily split into four independent blocks (real and
imaginary part are uncoupled and so are the unknowns ((Jk +Mk); k=1; 2) and ((Jk−Mk); k=1; 2)).
Thus, multiplication by the matrix of the new system is simply four time more expensive than for
a classical system.

Another property is that the new system might appear to be well-suited for impedance conditions
rather than for perfect conductors. Actually, the reTection coe>cient is 1 for a perfect conductor and
strong coercivity properties does not hold any longer in this case. Nevertheless, the positivity of the
system remains valid even in this case. Furthermore, the numerical experiments of [3], concerning
the new system in the 2-D case, shows that the method can either be used for the computation of
the scattering of electromagnetic waves by perfect conductors.

However, our new system presents some advantages. The most important is obviously that we
have now a system with a structure that allows us to use many standard algorithms for solving
them (with convergence theorems). We proposed one in the previous section but many others could
be contemplated. A second property is that the system appears to be generic for all boundary
conditions: all we have to do when a new boundary condition is considered is to implement a
solver for the reTection coe>cient operator (i.e. a way to obtain fo in Rfi = fo or equivalently
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fi + Zrfi = fo − Zrfo, with ‖fi‖6 ‖fo‖). For instance, it is possible to handle problems with
complicated boundary conditions, involving surface-to-surface diOerential operators as those coming
from scattering by backed obstacles, [24] (see [3] for an example).

7.2. Coupled algorithms and coupled problems

Due to the strong coercivity properties of our integral systems, they are well suited for the coupling
with interior problems treated for example with domain decomposition algorithms [14,15,26,8].

A very promising method for the numerical calculation of time-harmonic obstacle scattering solu-
tions is the multipole method, see [16,25,10] among others. Multipoles methods is a way to speed
up the matrix vector product for linear systems coming from integral equations. For those who are
familiar with these methods, it is well known that the usual integral equations require at least 2
scalar (i.e. with scalar far and near 3elds) multipole computations, and even more when impedance
problems are considered. For our system, 4 multipole computations are enough to compute Tu;T∗v
and 4 other multipole computations (with a very simple translation function) provide (A∞)∗(A∞)u
and (A∞)∗(A∞)v. Furthermore the near interaction matrix required by the method for T is now real
and so is halved in storage with respect to the classical ones. It is reasonable to think that coupling
multipole methods and our integral system should give a good compromise in terms of an accurate,
fast, robust and reliable algorithm.
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Appendix A. Decomposition of the regular part of operator S

We start from

sin(k|x − y|)
4�|x − y| =

k
4�2

∫
S2

eik(x−y)·d̂ d�(d̂); (A.1)

where S2 is the unit sphere. If J and J ′ are two tangential 3elds de3ned on �, we begin with
(TiJ; J ′). We have

(TiJ; J ′) = k
∫
�

∫
�

(
sin(k|x − y|)

4�|x − y| J (y) · J ′(x)

− 1
k2 ∇t

y · J (y)∇t
x · J ′(x)

)
d�(y) d�(d̂): (A.2)

Using (A.1) and interchanging the integrals, we get

(TiJ; J ′) =
k2

4�2

∫
S2

(ÃJ (d̂) · ÃJ ′(d̂) − AJ (d̂)AJ ′(d̂)) d�(d̂); (A.3)
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with

ÃJ (d̂) =
∫
�
J (x)e−ikx·d̂ d�(x); AJ (d̂) =

1
ik

∫
�
∇t

x · J (x)e−ikx·d̂ d�(x): (A.4)

Using an integration by parts provides

AJ (d̂) =
1
ik

∫
�
J (x) · ∇t

xe
ikx·d̂ d�(x) =

∫
�
J (x)eikx·d̂ d�(x) · d̂: (A.5)

Thus (A.2) reads

(TiJ; J ′) =
k2

4�2

∫
S2

ÃJ (d̂) · ÃJ ′
(d̂) − ((ÃJ (d̂) · d̂)d̂) · ((ÃJ

′
(d̂) · d̂)d̂) d�(d̂): (A.6)

Now, we consider the splitting

ÃJ (d̂) = d̂ ∧ (ÃJ (d̂) ∧ d̂) + (ÃJ (d̂) · d̂)d̂; (A.7)

and the similar expression for (ÃJ
′
)(d̂). Remarking that the two vectors in the above decomposition

are orthogonal, we have

(TiJ; J ′) =
k2

4�2

∫
S2

(d̂ ∧ (ÃJ (d̂) ∧ d̂)) · (d̂ ∧ (ÃJ
′
(d̂) ∧ d̂)) d�(d̂); (A.8)

or (see (23))

(TiJ; J ′) =
∫
S2

a∞J (d̂) · a∞J ′(d̂) d�(d̂): (A.9)

We can either get a similar expression for (TiM;M ′), but we modify it into

(TiM;M ′) =
∫
S2

(−id̂ ∧ a∞M (d̂)) · (−id̂ ∧ a∞M ′(d̂)) d�(d̂): (A.10)

Now we turn to (KiM; J ′), from the de3nition of Ki we have

(KiM; J ′) =
∫
�

∫
�

(
∇t

y
sin(k|x − y|)

4�|x − y| ∧M (y)
)
· J ′(x) d�(y) d�(d̂); (A.11)

or

(KiM; J ′) =
k

(4�)2

∫
S2

(∫
�
∇t

ye−ikyd̂ ∧M (y) d�(y) ·
∫
�
J ′(x)e−ikxd̂ d�(d̂)

)
d�(d̂)

=
k2

(4�)2

∫
S2

(
−id̂ ∧

∫
�
M (y)e−ikyd̂ d�(y) ·

∫
�
J ′(x)e−ikxd̂ d�(d̂)

)
d�(d̂):
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Using once again the decomposition

J ′ = d̂ ∧ (J ′(d̂) ∧ d̂) + (J ′(d̂) · d̂)d̂; (A.12)

we get

(KiM; J ′) =
∫
S2

(−id̂ ∧ a∞M (d̂)) · (a∞J ′(d̂)) d�(d̂): (A.13)

Similar calculations show that

(KiJ;M ′) =
∫
S2

(a∞J (d̂)) · (−id̂ ∧ a∞M ′(d̂)) d�(d̂); (A.14)

and 3nally

(TiJ + KiM; J ′) + (KiJ + TiM;M ′)

=
∫
S2

(a∞J (d̂) − id̂ ∧ a∞M (d̂)) · (a∞J ′(d̂) − id̂ ∧ a∞M ′(d̂) d�(d̂): (A.15)

Appendix B. Calderon projectors

Our aim in this section is to make the link between the operators we have de3ned in Section 2
with the Calderon projectors, [6, p. 87], [7, p. 93].

Let (Ĵ 1; M̂ 1) a pair of tangential 3elds given on �, (not necessarily corresponding to the tangential
traces of an exterior electro-magnetic 3eld). We can associate to (Ĵ 1; M̂ 1) the two 3elds in 6+:

E+(x)√
iZ0

= T̃ Ĵ 1(x) + K̃M̂ 1(x);

−
√

iZ0H+(x) = K̃ Ĵ 1(x) + T̃ M̂ 1(x); (B.1)

where T̃ J; K̃M are given in (7). If x approaches a point of �, the jump conditions provide

n(x) ∧
(

1√
iZ0

E+
=�(x) ∧ n(x)

)
= T Ĵ 1(x) + KM̂ 1(x) + 1

2 n(x) ∧ M̂ 1(x); (B.2)

n(x) ∧ (−
√

iZ0H+
=�(x) ∧ n(x)) = TM̂ 1(x) + KĴ 1(x) + 1

2 n(x) ∧ Ĵ 1(x): (B.3)

Now, we can proceed exactly as in Section 2: from the exterior traces, we construct the 3elds
(J1; M1) and u by (14) and we have

Su = S

[
J1

M1

]
= 0: (B.4)
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But, it is easy to see that (B.3)–(B.2) reads (see De3nitions (21) and (17))

− L

[
J1

M1

]
= (S− L)

[
Ĵ 1

M̂ 1

]
: (B.5)

Multiplying by SL and using both −L2 = Id and (B.4) we get

0 = S

[
J1

M1

]
= (SLS+ S)

[
Ĵ 1

M̂ 1

]
: (B.6)

In other words,

− LS= (−LS)2; (B.7)

appears as a projector: it is one of the Calderon projector. With our decomposition in real and
imaginary part S= T+ iR, we get

TLT− RLR = −T;
TLR + RLT= −R: (B.8)

So far, all these calculations corresponds to Green function (8). We can proceed exactly in the same
manner with

G(x; y) =
exp−ik|x−y|

4�|x − y| (B.9)

the only modi3cation being the radiation condition at in3nity. The 1=(4�|x − y|) singularity of the
kernel remaining unchanged, equality (B.7) holds also for S̃= T− iR. It expands into

TLT+ RLR = −T;
TLR + RLT= −R: (B.10)

By comparison we get

TLT= −T and RLR = 0 (B.11)

and −LT is found to be also a projector. It remains to prove that

RLT∗ = R: (B.12)

This is a consequence of the fact that free 3elds are in the kernel of “exterior” integral operators
[9]. To see that, let us consider a free 3eld (i.e. a 3eld with continuous traces on �) in the form
Rv for some arbitrary smooth v. Let (J;M) = LRv. By integration by parts we get the equivalent
of (5)

0 = iZ0(T̃ J )(x̂) + (K̃M)(x̂);

0 =−(K̃J )(x̂) + iZ−1
0 (T̃M)(x̂);
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for x̂ in D+. If x approaches a point of �, using (9), (17) and (21)–(22), we get that

(T+ L + iR)LRv = 0:

It means that TLR−R=0 which implies by transposition the sought equality (B.12). A consequence
is the continuity bound

‖Rv‖U6 ‖R‖L(U)‖T∗v‖U: (B.13)

Another consequence is that the kernel of T∗ is imbedded in the kernel of A∞. Indeed, it can be
proved that A∞ has a dense range in Z (see [9] for a proof about operators of the same kind) and
so (A∞)∗ is injective. Since R is (A∞)∗A∞, equation (B.12) implies

A∞LT∗ = A∞; (B.14)

and T∗u=0 implies A∞u=0. The converse also holds. Let u be such that A∞u=0. To u=(J1; M1),
we associate the outgoing electromagnetic 3eld in 6+(E+; H+) de3ned in (B.1). It is classical to
show that this electromagnetic 3eld is such that if

(iZ0)−1=2E∞(x) =
exp ik|x|

|x| A∞(u; x̂); (iZ0)+1=2H∞(x)

=
exp ik|x|

|x| ; x̂ ∧ A∞(u; x̂);

we have

lim
|x|→∞

1
R

∫
|x|=R

Z0|E+(x) − E∞(x)|2 + |H+(x) − H∞(x)|2 d� = 0:

Thus, A∞u = 0 means that the associated outgoing electromagnetic 3eld is associated to a null
far 3eld. From both Rellich Lemma and the unique continuation principle, [9], we conclude that
(E+; H+) vanishes in 6+, and, in particular the tangential trace on � vanish. Using the jump con-
ditions, following the same way as in Section 2, we readily obtain that T∗u+ iRu= 0, what implies
T∗u = 0 since Ru = (A∞)∗A∞u = 0.

Appendix C. An example: the case of the sphere

We specialize our study to the special case of a spherical scatterer where all the calculations can
be done analytically. We de3ne

Ỹ m
n (r̂) = P|m|

n (cos 9)eim’; n¿ 0; |m|6 n;

dn;m =
1

4�
(n− |m|)!(2n + 1)
(n + |m|)!n(n + 1)

; (C.1)
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u(+)
nm (r̂) = d1=2

n;m∇t Ỹ m
n (r̂);

u(−)
nm (r̂) = d1=2

n;mr̂ ∧∇t Ỹ m
n (r̂); (C.2)

where (9; ’) are the usual spherical coordinates and ∇t is (1=a)9̂(9=99) + (1=a sin 9)’̂(9=9’). Any
tangential 3eld on a sphere of radius a may be decomposed into

J (r̂) =
∞∑
n=1

+n∑
m=−n

∑
0=±

J (0)
mn u

(0)
nm(r̂): (C.3)

The u(0)
nm’s form a complete set of orthonormal functions in the space of the square integrable complex

3elds on the sphere. We have

‖J (r̂)‖2
TL2(S2

a ) =
∞∑
n=1

+n∑
m=−n

∑
0=±

|J (0)
mn |2: (C.4)

In [18], Hsiao and Kleinman used this decomposition to study two potentials denoted here by THS

and KHS and which are related to ours by the relationships

T = Tr + iTi = ir̂ ∧ THS;

K = Kr + iKi = −r̂ ∧ KHS: (C.5)

It is shown in this paper that if jn and yn are the spherical Bessel functions and

Jn = kajn(ka); J ′
n = (kajn(ka))′;

Yn = kayn(ka); Y ′
n = (kayn(ka))′; (C.6)

then, (see (78), (79), (85), (86) of [19])

(THKu0
nm)(r̂) = T 0

nu
−0
nm(r̂);

(KHKu0
nm)(r̂) = K0

nu
0
nm; (C.7)

with

T+
n = −J ′

n(J
′
n + iY ′

n); T−
n = Jn(Jn + iYn);

K+
n = − 1

2 − iJn(J ′
n + iY ′

n); K−
n = − 1

2 + iJ ′
n(Jn + iYn): (C.8)

(note: let us remark that formulae (C.8) diOers from those given in Hsiao et al.’s paper by a change
of sign. The reason is that there is an error of sign in formulas (68) and (69) of this paper: −ik
and −ik2 must be changed into ik and ik2. But, except this point all the remaining calculations are
valid hence the only change of sign in the result).

From this and after some algebraic manipulations we easily deduce for T

(Tru+
nm(r̂) = −J ′

nY
′
nu

+
nm(r̂); (Tiu+

nm)(r̂) = (J ′
n)

2 u+
nm(r̂);

(Tru−nm)(r̂) = −JnYnu−nm(r̂) (Tiu−nm)(r̂) = J 2
n u

−
nm(r̂); (C.9)
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while for K(
Kr + 0

r̂
2
∧
)

u0
nm(r̂) = −J ′

nYnu−0
nm(r̂); (Kiu0

nm)(r̂) = J ′
nJnu

−0
nm(r̂);

(
Kr − 0

r̂
2
∧
)

u0
nm(r̂) = −JnY ′

n u−0
nm(r̂): (C.10)

Our aim is to apply this harmonic analysis for the Jacobi algorithm described in Section 6. At each
step of the induction, the solution of the linear system (113) is required. It reads[

(1 + .) + Ti Ki

Ki (1 + .) + Ti

][
J1

M1

]
−
[

Tr Kr + r̂
2

Kr + r̂
2 Tr

][
J2

M2

]
=

[
G1

H1

]
; (C.11)

and

−
[

Tr Kr − r̂
2

Kr − r̂
2 Tr

][
J1

M1

]
−
[
. + Ti Ki

Ki . + Ti

][
J2

M2

]
=

[
G2

H2

]
: (C.12)

This system can be split into two blocks

M±
[
J1 ±M1

J2 ±M2

]
=

[
G1 ± H1

G2 ± H2

]
; (C.13)

with

M± =

[
(1 + .) + Ti ± Ki −Tr ∓ (Kr + r̂

2 )

−Tr ∓ (Kr − r̂
2 ) −. − (Ti ± Ki)

]
: (C.14)

Using the decomposition with the basis functions, we have a block structure for M±, each block
being 4 × 4 (caution, the sign ± does not have the same meaning as the one in (C.2))

M± = ⊕
n;m;|m|6n

(M)±mn (C.15)

with

M±
mn =




1 + . + (J ′
n)

2; ±JnJ ′
n; J ′

nY
′
n; ±JnY ′

n

±JnJ ′
n; 1 + . + J 2

n ; ±J ′
nYn JnYn

J ′
nY

′
n; ±J ′

nYn −. − (J ′
n)

2 ∓JnJ ′
n

±JnY ′
n; JnYn ∓JnJ ′

n −. − J 2
n


 : (C.16)

Remark that M±
mn is independent of m as we can expect since the problem is invariant under

any rotation. Furthermore, it is in-lighting to interpret each system through a decomposition into
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Fig. 1. The 4 eigenvalues of the matrix M±
mn as function of n for ka = 20�.

four 2 × 2 blocks

M±
mn =

[
(1 + .)Id + (A±

nm)∗(A±
nm) (B±

nm)∗(A±
nm)

(A±
nm)∗(B±

nm) −.Id− (A±
nm)∗(A±

nm)

]
; (C.17)

with

(A±
nm) =

[
J ′
n

±Jn

]
; (B±

nm) =

[
Y ′
n

±Yn

]
: (C.18)

From the Wronskian for Bessel functions: JnY ′
n − J ′

nYn = 1, it is readily seen that

T±
nm − (T±

nm)∗ = (A±
nm)∗(B±

nm) − (B±
nm)∗(A±

nm) = =±
nm;

=±
nm =

[
0 ∓1

±1 0

]
; (=±

nm)2 = Id: (C.19)

For each small independent system, the algebraic structure of the original saddle point problem is
recovered.

In Figs. 1 and 2 are depicted the 4 real eigenvalues of (M)+
nm (or those of (M)−nm as they coincide)

as function of n. Coe>cient . was chosen equal to 1. Fig. 1 corresponds to a sphere of moderate
size with respect to the wavelength (ka = 20�).

In Fig. 2, ka equals 200� and the sphere is large with a radius of 100 wavelengths. Note that the
spectrum is real, as expected, and the range of the eigenvalues does not change so much between
the two experiments.

Extensive calculations with Matlab has shown that the maximum modulus of the eigenvalues in
the area n6 ka+10 log(ka+�) is a low increasing function of the frequency. This area corresponds
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Fig. 2. The 4 eigenvalues of the matrix M±
mn as function of n for ka = 200�.
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Fig. 3. Spectrum of the iteration matrix for the Jacobi algorithm applied to a sphere (ka = 200�). Coe>cient . is 1,
relaxation parameter is r = 0:7 and reTexion coe>cient is R = 0 (model problem).

to the excited modes for incident plane waves. For larger n, the asymptotic behavior of Bessel
functions enables us to obtain −n; −.; 1 + . and +n as asymptotic eigenvalues. The fact that the
L2 spectrum is not bounded is of course to be related to the use of the functional framework U×U
instead of U ×W in our analysis, see Section 4.

Fig. 3 shows the spectrum of the matrix associated to the error of the Jacobi Algorithm for the
large sphere. This spectrum is composed of the set of all the eigenvalues of the iteration matrices
(Id is the 2 × 2 identity matrix)

E±
mn = (1 − r)

[
Id; 0

0; Id

]
− ir.(M±

mn)
−1

[
0; Id

Id; 0

]
: (C.20)
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Fig. 4. Spectrum of the coercive matrix for the model problem. Case of the sphere with ka = 200�. Coe>cient . is 1.

In that example, the reTexion coe>cient is equal to zero (model problem) and the relaxation pa-
rameter is 0.7. All the eigenvalues are found located inside a circle of radius 0.782 and geometrical
convergence occurs.

Other algorithms than Jacobi can be used to solve the problem. They can be constructed from our
linear system in its coercive version. Fig. 4 shows the spectrum for the coercive matrix (90), let

A.±
mn

=

[
(1 + .)Id + (A±

nm)∗(A±
nm) (B±

nm)∗(A±
nm) + i.

−(A±
nm)∗(B±

nm) − i. +.Id + (A±
nm)∗(A±

nm)

]
; (C.21)

Parameters .; R and ka are unchanged with respect to the previous examples: .=1; R=0; ka=200�.
The coercivity property can be checked on the 3gure since all eigenvalues are located to the right
of a line Rz = c with c ≈ 0:41.

References

[1] T. Abboud, T. Sayah, Potentiels retardXes pour les Equations de Maxwell avec condition d’impXedance gXenXeralisXee,
Technical Report R.I. 387, Ecole Polytechnique, France, 2000.

[2] X. Antoine, H. Barucq, A. Bendali, Bayliss–Turkel-like radiation conditions on surfaces of arbitrary shapes, J. Math.
Anal. Appl. 229 (2000) 184–211.

[3] N. Bartoli, F. Collino, Integral equations via saddle point problems for the 2-D electromagnetic problems, M2AN.
Mathematical Modelling and Numerical Analysis 34 (5) (2000) 1023–1050.

[4] A. Bendali, Boundary element solution of scattering problems relative to a generalized impedance boundary condition,
Proceedings of the Boca Raton Cerfacs Conference, London, New York, 1999.

[5] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, No. 15, Springer Series in Computational
Mathematics, Springer, Berlin, 1991.

[6] M. Cessenat, Mathematical Methods in Electromagnetism, No. 41, Series on Advances in Mathematics for Applied
Sciences, World-Scienti3c, Singapore, 1996.

[7] G. Chen, J. Zhou, Boundary Element Methods, Academic Press, New York, 1992.



192 F. Collino, B. Despres / Journal of Computational and Applied Mathematics 150 (2003) 157–192

[8] F. Collino, S. Ghanemi, P. Joly, Domain decomposition method for the Helmholtz equation: a general presentation,
Comput. Methods Appl. Mech. Eng. 184 (2–4) (2000) 171–211.

[9] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, in: Applied Mathematical Sciences, Vol.
93, Springer, Berlin, 1992.

[10] E. Darve, The fast multipole method: numerical implementation, J. Comput. Phys. 160 (1) (2000) 195–240.
[11] B. DesprXes, Fonctionnelle quadratique et Xequations intXegrales pour les Xequations de Maxwell en domaine extXerieur,

Comptes Rendus de l’AcadXemie des Sciences, Paris, SXerie I 323 (1996) 547–552.
[12] B. DesprXes, Fonctionnelle quadratique et XEquations Integrales pour les probl\emes d’onde harmonique en domaine

extXerieur, M2AN. Mathematical Modelling and Numerical Analysis 31 (1997) 679–732.
[13] B. DesprXes, Quadratic Functional and Integral Equations for Harmonic Wave Equations, in Mathematical and

Numerical Aspects of Wave Propagation (Golden, CO, 1998), SIAM, Philadelphia, 1998, pp. 56–64.
[14] B. DesprXes, P. Joly, J.E. Roberts, A domain decomposition method for the harmonic Maxwell’s equations, in:

Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra, North-Holland,
Amsterdam, 1990.

[15] B. DesprXes, B. Stupfel, A domain decomposition for the solution of large electromagnetic scattering problem, J.
Electromagn. Waves Appl. 13 (11) (1999) 1553–1568.

[16] M. Epton, B. Dembart, Multipole translation theory for the three-dimensional Laplace and Helmholtz equations,
SIAM J. Sci. Comput. 16 (1995) 865–897.

[17] P. Hartman, C. Wilcox, On solutions of the Helmholtz equations in exterior domains, Math. Z. 75 (1961) 228–255.
[18] G.C. Hsiao, R.F. Kleinman, Mathematical foundations for error estimations in numerical solutions of integral

equations in electromagnetism, IEEE Trans. Antennas Propag. 45 (3) (1997) 316–328.
[19] R.E. Kleinman, P.M. Van den Berg, Iterative Methods for Solving Integral Equations, Elsevier, Amsterdam, 1988.
[20] J.C. NXedelec, Cours de l’Xecole d’XetXe d’analyse numXerique, Technical Report, CEA-EDF-IRIA, 1977.
[21] M.D. Pocock, S.P. Walker, The complex bi-conjugate gradient solver applied to large electromagnetic scattering

problems, computational costs, and costs scaling, IEEE Trans. Antennas Propag. 45 (1) (1997) 140–146.
[22] M. Reed, M. Simon, Scattering Theory, Academic Press, New York, 1979.
[23] T.K. Sarkar, Application of conjugate gradient method to electromagnetics and signal analysis, in: From Reaction

Concept to Conjugate Gradient: Have we Made any Progress?, Elsevier, Amsterdam, 1988.
[24] T.B.A. Senior, J.L. Volakis, Approximate Boundary Conditions in Electromagnetism, No. 41, in: IEEE

Electromagnetism Waves Series, The Institution of Electric Engineers, London, 1995.
[25] J. Song, C.C. Lu, W.C. Chew, Multilevel Fast Multipole Algorithm for Electromagnetic Scattering by Large Complex

Objects, IEEE Trans. Antennas Propag. 45 (1997) 1488–1493.
[26] B. Stupfel, A hybrid 3nite element method and integral equation domain decomposition method for the solution of

the 3-D scattering problem, J. Comput. Phys. 172 (2) (2001) 451–471.
[27] B. Stupfel, B. Despres, A domain decomposition method for the solution of large electromagnetic scattering problems,

J. Electromagn. Waves Appl. 13 (1999) 1553–1568.


	Integral equations via saddle point problems for time-harmonic Maxwell's equations
	Introduction
	A first derivation of the integral equation system
	A second derivation of the system of equations
	Definition of incoming and outgoing electromagnetic fields
	Definition of the quadratic functional; minimization
	Representation of the W-electromagnetic fields
	Asymptotic behavior of electromagnetic pairs in W
	Reformulation of the minimization problem
	Optimality conditions

	Variational formulation and well-posedness. The penalized systems
	System for general impedance boundary conditions
	An iterative algorithm and its convergence
	Discussion of numerical issues
	The method by itself
	Coupled algorithms and coupled problems

	Acknowledgements
	Appendix A. Decomposition of the regular part of operator S
	Appendix B. Calderon projectors
	Appendix C. An example: the case of the sphere
	References


