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Abstract

We study cyclic codes of arbitrary length N over the ring of integers modulo M. We first
reduce this to the study of cyclic codes of length N =pkn (n prime to p) over the ring Zpe for
prime divisors p of N. We then use the discrete Fourier transform to obtain an isomorphism �
between Zpe [X]/〈XN − 1〉 and a direct sum �i∈I Si of certain local rings which are ambient
spaces for codes of length pk over certain Galois rings, where I is the complete set of
representatives of p-cyclotomic cosets modulo n. Via this isomorphism we may obtain all codes
over Zpe from the ideals of Si . The inverse isomorphism of � is explicitly determined, so
that the polynomial representations of the corresponding ideals can be calculated. The general
notion of higher torsion codes is defined and the ideals of Si are classified in terms of the
sequence of their torsion codes.
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1. Introduction

Cyclic codes are a widely studied family of codes that are very important from both
a theoretical and an applied standpoint. Cyclic-codes over Zpe of length N where p
does not divide N are a well-understood object; see [3,7] for example and the references
therein. Cyclic codes over Z4 of odd length were studied in [12], of length 2k were
studied in [1] and of length 2n, n odd, were studied in [2]. In [5], this work was
completed by studying cyclic codes of length 2kn.

Cyclic codes of length N over a ring R are identified with the ideals of R[X]/〈XN−1〉
by identifying the vectors with the polynomials of degree less than N. Cyclic codes
over a finite field Fq are well-known [11]. Indeed every cyclic code C over Fq is
generated by a nonzero monic polynomial of the minimal degree in C, which must be
a divisor of XN − 1 by the minimality of degree. Since Fq [X] is a UFD, cyclic codes
over Fq are completely determined by the factorization of XN − 1 whether or not N
is prime to the characteristic of the field, even though when they are not relatively
prime we are in the repeated root case [4,9]. This is true for cyclic codes over Zpe

if the length N is prime to p, since XN − 1 factors uniquely over Zpe by Hensel’s
Lemma in this case. In fact, all cyclic codes over Zpe of length N prime to p have
the form 〈f0, pf1, p

2f2, . . . , p
e−1fe−1〉, where fe−1 | fe−2 | · · · | f0 | XN − 1 [3,7].

Therefore, cyclic codes of length N prime to p are again easily determined by the
unique factorization of XN − 1. The case of the characteristic of the ring dividing the
length N is more difficult because there is no unique factorization of XN − 1.

We begin with some definitions. A code C of length N over a ring R is said to be
constacyclic if there exists a unit u ∈ R, such that

(c0, c1, . . . , cN−1) ∈ C ⇒ (ucN−1, c0, c1, . . . , cN−2) ∈ C.

If u = 1, then C is a cyclic code. In general, linear constacyclic codes are identified
with ideals of R[X]/〈XN − u〉 by the identification

(c0, c1, . . . , cN−1) �→ c0 + c1X + c2X
2 + · · · + cN−1X

N−1. (1)

In this paper, all codes are linear and the ambient space RN for constacyclic codes of
length N over R is identified with R[X]/〈XN − u〉.

Let C be a (linear) cyclic code of length N over the ring ZM , where M and N are
arbitrary positive integers. First we use the Chinese Remainder Theorem to decompose
the code C, i.e. an ideal of ZM [X]/〈XN − 1〉, into a direct sum of ideals over Z

p
ei
i

according to the prime factorization of M = p
e1
1 p

e2
2 . . . per

r as follows. For each prime
divisor pi of M, let C(pi) = C (mod p

ei

i ). By the Chinese Remainder Theorem, we
have an isomorphism

�M : C 	
r⊕

i=1

C(pi) (2)
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by the map �M(v) = (v (mod p
e1
1 ), v (mod p

e2
2 ), . . . , v (mod p

er
r )). Conversely, if C(pi)

are cyclic codes over Z
p

ei
i

then the Chinese Remainder Theorem again gives us a cyclic

code C = CRT (C(p1), C(p2), . . . , C(pr )), called a Chinese product [6], over ZM , such
that �M(C) = �r

i=1C
(pi). Therefore, it is enough to study cyclic codes over the rings

Zpe for a prime p.
Fix a prime p and write N = pkn, p not dividing n. We shall examine cyclic

codes over Zpe of length N. In our case the factorization of XN − 1 is not unique
so we take the discrete Fourier transform approach which is a generalization of the
approach in [2,5]. We define an isomorphism between Zpe [X]/〈XN − 1〉 and a direct
sum, �i∈ISpe (mi, u), of certain local rings defined in (9). This shows that any cyclic
code over Zpe can be described by a direct sum of ideals using this decomposition. We
also give the inverse isomorphism so that the corresponding ideal in Zpe [X]/〈XN − 1〉
can be computed explicitly. This will clarify the correspondence of ideals described in
[2,5]. The ideals of local rings that occur are classified in the final section.

2. Cyclic codes over Zpe

Let p be a prime. Throughout this paper we let R = Zpe and write RN = Zpe [X]/
〈XN − 1〉, so that RN = RN after the identification (1). We shall consider cyclic codes
over R of length N = pkn, where p does not divide n. By introducing an auxiliary
variable u, we first define the ring

R = Zpe [u]/〈upk − 1〉.

There is a natural Zpe -module isomorphism � : Rn → ZN
pe defined by

�(a(0), a(1), . . . , a(n−1))

= (a
(0)
0 , a

(1)
0 , . . . , a

(n−1)
0 , a

(0)
1 , a

(1)
1 , . . . , a

(n−1)
1 , . . . , a

(0)

pk−1
, a

(1)

pk−1
, . . . , a

(n−1)

pk−1
),

(3)

where a(i) = a
(i)
0 + a

(i)
1 u + · · · + a

(i)

pk−1
upk−1 ∈ R for 0� i�n − 1. It is easy to see

that the constacyclic shift by u in Rn corresponds to a cyclic shift in ZN
pe . As before

we identify Rn with R[X]/〈Xn − u〉. If we view � as a map from R[X]/〈Xn − u〉
to Zpe [X]/〈XN − 1〉, we have that

�

⎛
⎝n−1∑

i=0

⎛
⎝pk−1∑

j=0

a
(i)
j uj

⎞
⎠Xi

⎞
⎠ =

n−1∑
i=0

pk−1∑
j=0

a
(i)
j Xi+jn. (4)
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It is straightforward to prove the following lemma:

Lemma 2.1. � is an Zpe -algebra isomorphism between R[X]/〈Xn − u〉 and Zpe [X]/
〈XN − 1〉. Furthermore, the cyclic codes over Zpe of length N correspond to consta-
cyclic codes of length n over R via the map �.

R[X]/〈Xn − u〉 �−−−−→ Zpe [X]/〈XN − 1〉∥∥∥ ∥∥∥
Rn �−−−−→ ZN

pe

The ring R is shortly proved to be a finite local ring, and hence the regular poly-
nomial Xn − u has a unique factorization in R[X]

Xn − u = g1g2 . . . gl (5)

into monic, irreducible and pairwise relatively prime polynomials gi ∈ R[X], and by
the Chinese Remainder Theorem

R[X]/〈Xn − u〉 	 R[X]/〈g1〉� · · · �R[X]/〈gl〉. (6)

This isomorphism will give us a decomposition of Zpe [X]/〈XN − 1〉 via the map
�. However, the corresponding decomposition of Zpe [X]/〈XN − 1〉 seems difficult to
manage. We will examine this isomorphism in more detail later. Instead we will use
the discrete Fourier transform to obtain another decomposition, which is more natural
and manageable.

3. Extension rings

Zpe is a local ring with maximal ideal pZpe and residue field Zp. Let

� : Zpe [X] → Zp[X], �(f ) = f (mod p)

denote the ring homomorphism that maps f to f (mod p).
Let m be a positive integer and let GR(pe, m) = Zpe [X]/〈h(X)〉 be the Galois

extension of degree m over Zpe , called a Galois ring. Here h(X) is a monic basic
irreducible polynomial in Zpe [X] of degree m that divides Xpm−1 − 1, and it can be
chosen so that � = X + 〈h(X)〉 is a primitive (pm − 1)th root of unity. GR(pe, m) =
Zpe [�] is a local ring with maximal ideal 〈p〉 and residue field Fpm . In fact, GR(pe, m)

is a finite chain ring since every ideal in GR(pe, m) has the form 〈pi〉 for 0� i�m. We
recall that the Galois extensions are unique and simple. The map � naturally extends
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to the canonical projection

� : Zpe [X]/〈h(X)〉 → Zp[X]/〈�(h)(X)〉 	 Fpm,

f + 〈h(X)〉 �→ �(f ) + 〈�(h)(X)〉.

The set Tm = {0, 1, �, . . . , �pm−2} is a complete set, known as Teichmüller set, of coset
representatives of GR(pe, m) modulo 〈p〉. Any a ∈ GR(pe, m) can be uniquely written
as a finite sum a = a0 + a1p + a2p

2 + · · · + ae−1p
e−1 with ai ∈ Tm. Slightly abusing

notation, we sometimes write �(a) = a0. Note that a is a unit if and only if �(a) 
= 0
by the following lemma.

Lemma 3.1. Suppose a − b is nilpotent in a ring. Then a is a unit if and only if b is
a unit.

Elements of GR(pe, m) can also be written in the �-adic expansion b0 + b1�+· · ·+
bm−1�

m−1 with bi ∈ Zpe . The Galois group of isomorphisms of GR(pe, m) over Zpe

is a cyclic group of order m generated by the Frobenius automorphism Fr given by

Fr

(
m−1∑
i=0

bi�
i

)
=

m−1∑
i=0

bi�
ip (bi ∈ Zpe ) (7)

in �-adic expansion. We recall that l | m if and only if GR(pe, l) ⊂ GR(pe, m).
Moreover, the Galois group of GR(pe, m) over GR(pe, l) is generated by Frl and
hence

GR(pe, l) = {a ∈ GR(pe, m) | Frl (a) = a}. (8)

We denote by �[l] the (pl − 1)th root of unity �(pm−1)/(pl−1).
Next, we define another extension ring

S = Spe (m, u) = GR(pe, m)[u]/〈upk − 1〉 (9)

of GR(pe, m). For an appropriate m, this S will be the ambient space for codes of
length pk over the Galois ring which contains the nth root of unity. Note that

S = Zpe [�][u]/〈upk − 1〉 = Zpe [u]/〈upk − 1〉[�] = R[�].

Since upk − 1 is monic, the division algorithm implies that every element s of S
may be uniquely represented by a polynomial in u − 1 of degree less than pk

s = s(u) = s0 + s1(u − 1) + s2(u − 1)2 + · · · + spk−1(u − 1)p
k−1 (10)
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with si ∈ GR(pe, m). Note that s0 = s(1). The map � naturally extends to S → S/pS
by the additional property �(u) = u. We also extend the Frobenius automorphism Fr
to S by setting Fr(u) = u. As usual, the trace map from Spe (m, u) to R is defined
by

Tm(z) =
m−1∑
r=0

Frr (z). (11)

In passing, we warn that p remains prime in GR(pe, m), but it is no longer a
prime in S. The reason for this is that GR(pe, m)/〈p〉 = Fpm is a field, but S/pS =
Fpm [u]/〈(u − 1)p

k 〉 is not an integral domain.

Theorem 3.2. As before, we let R = Zpe [u]/〈upk − 1〉 and S = Zpe [�][u]/〈upk − 1〉 =
R[�].
(i) s ∈ S, written as in (10), is a unit if and only if �(s0) 
= 0.

(ii) S is a local ring with maximal ideal 〈p, u − 1〉 and residue field Fpm .
(iii) R is a local ring with maximal ideal 〈p, u − 1〉 and residue field Zp.
(iv) S is a Galois extension of R. In particular, the set of elements in S fixed by Fr

is R, i.e. SFr = {s ∈ S | Fr(s) = s} = R.

Proof. (i) By Lemma 3.1, s = x + py is a unit in S if and only if x is a unit in S.
If x is a unit in S, then clearly �(x) is a unit in S/pS. Conversely, if �x is a unit
in S/pS, then xx′ = 1 + ps′ for some x′, s′ ∈ S which implies that xx′ is a unit in
S, and then x is a unit in S. Hence s is a unit if and only if �(s) is a unit. Note
that �(u − 1) = u − 1 is nilpotent in S/pS. If s = s0 + (u − 1)s′ in the (u − 1)-adic
expansion, then �(s) = �(s0) + (u − 1)�(s′). Hence �(s) is a unit in S/pS if and only
if �(s0) is a unit in S/pS if and only if �(s0) 
= 0.

(ii) As before S/pS = Fpm [u]/〈(u − 1)p
k 〉, and hence S/〈p, u − 1〉 	 Fpm is a field,

which implies that 〈p, u − 1〉 is a maximal ideal. Furthermore, elements not in the ideal
〈p, u − 1〉 are exactly those elements s with �(s0) 
= 0. By (i), they are exactly the
units. Thus 〈p, u − 1〉 is the unique maximal ideal.

(iii) The proof is similar to (ii).
(iv) It follows from the fact that S is unramified, i.e. the maximal ideal of S = R[�]

is generated by the maximal ideal of R. �

4. Discrete Fourier transforms

From now on we fix m to be the order of p modulo n. Then n | pm − 1 and
hence the Galois ring GR(pe, m) contains a primitive nth root of unity �n = �(pm−1)/n,
where � is the (pm − 1)th root of unity as before. Again we set S = Spe (m, u) =
Zpe [�][u]/〈upk − 1〉. As always, we identify vectors with polynomials.



S.T. Dougherty, Y.H. Park / Finite Fields and Their Applications 13 (2007) 31–57 37

Definition 4.1. Let c = (cj ) ∈ ZN
pe . The discrete Fourier transform of c is the vector

ĉ = (
ĉ0, ĉ1, . . . , ĉn−1

) ∈ Sn, where

ĉi =
N−1∑
j=0

cju
j �ij

n = c(u�i
n)

for all integers i. The reciprocal polynomial of ĉ(Z)

Mc(Z) =
n−1∑
i=0

ĉn−iZ
i ∈ Sn

is called the Mattson–Solomon polynomial of c.

Let n′ be the multiplicative inverse of n mod pk , i.e. nn′ ≡ 1 (mod pk). For each t,
0� t �n − 1, we define a permutation �t of the set {0, 1, . . . , pk − 1} as

�t (�) ≡ (� − t)n′ (mod pk),

i.e. �t (t + �n) = �. This permutation induces a Zpe -isomorphism �t : S → S given by

�t (a0 + a1u + · · · + apk−1u
pk−1) = a0u

�t (0) + a1u
�t (1) + · · · + apk−1u

�t (p
k−1),

where aj ∈ Zpe [�]. For any s = s(u) ∈ S, we have that

�t s(u) = u−n′t s(un′
), �−1

t s(u) = ut s(un). (12)

Theorem 4.2 (Inversion formula). Let c ∈ RN . Then c is recovered from Mc by

c = �

(
1

n

(
�0Mc(1), �1Mc(�n), �2Mc(�

2
n), . . . , �n−1Mc(�

n−1
n )

))
.

Proof. For 0� t �n − 1, we have that

Mc(�
t
n) =

n−1∑
i=0

ĉi�
−it
n =

n−1∑
i=0

N−1∑
j=0

cju
j �ij

n �−it
n =

N−1∑
j=0

cju
j

n−1∑
i=0

�i(j−t)
n = n

pk−1∑
�=0

ct+�nu
t+�n

= n(ctu
t + ct+nu

t+n + ct+2nu
t+2n + · · · + ct+(pk−1)nu

t+(pk−1)n)

= n�−1
t (ct + ct+nu + ct+2nu

2 + · · · + ct+(pk−1)nu
pk−1).

Here, we used the well-known fact that
∑n−1

i=0 �ij
n = 0 unless j ≡ 0 (mod n). �
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We make Sn into a ring by defining the product

A ∗ B = (A0B0, A1B1, . . . , An−1Bn−1)

for two elements A = (A0, A1, . . . , An−1), B = (B0, B1, . . . , Bn−1) in Sn. (Sn, ∗) is
not only a ring but also a Zpe -algebra with componentwise addition and multiplication,
and the obvious scalar multiplication a(A0, A1, . . . , An−1) = (aA0, aA1, . . . , aAn−1).

It is easy to prove the following properties of the Mattson–Solomon polynomials.

Theorem 4.3. Let c, d ∈ Zpe [X]/〈XN − 1〉. Then

(i) M0 = 0 and M1(Z) = ∑n−1
i=0 Zi .

(ii) Mac(Z) = aMc(Z) for a ∈ Zpe .
(iii) Mc+d(Z) = Mc(Z) + Md(Z).
(iv) Mcd(Z) = Mc(Z) ∗ Md(Z).

We view M as a map M : Zpe [X]/〈XN − 1〉 → Sn sending c to Mc(Z). We
would like to determine the image space of Zpe [X]/〈XN − 1〉 under this map. For all
i, 0� i�n − 1, we have that

ĉip = Fr(ĉi), Mc,ip = Fr(Mc,i ), (13)

where subscripts are calculated mod n. Let

A = {(A0, A1, . . . , An−1) ∈ Sn | Aip = Fr(Ai) for all i}.

Then A is a Zpe -subalgebra of Sn.

Lemma 4.4. Let A(Z) = A0+A1Z+· · ·+An−1Z
n−1 ∈ S[Z]/〈Zn − 1〉 be a polynomial

of degree less than n. If A(�t
n) = 0 for all 0� t �n − 1, then A(Z) = 0.

Proof. We have

⎡
⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 �n (�n)

2 . . . (�n)
n−1

1 �2
n (�2

n)
2 . . . (�2

n)
n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 �n−1
n (�n−1

n )2 . . . (�n−1
n )n−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

A0
A1
A2
...

AN−1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦ .

The determinant of the Vandermonde matrix is
∏

0� i<j �n−1(�
j
n − �i

n). Since each

�j
n − �i

n is a unit in S, the Vandermonde determinant is also a unit in S. Thus Ai = 0
for all i. �
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We recall the cyclotomic cosets. Let 0� i�� − 1. The p-cyclotomic coset modulo �

which contains i is the set

clp(i, �) = {i, ip, ip2, . . . , ipmi−1},

where mi is the smallest positive integer such that ipmi ≡ i (mod �). We have that
mi = |clp(i, �)| and mi divides m1 = m.

Theorem 4.5. The map M : Zpe [X]/〈XN − 1〉 → A is a Zpe -algebra isomorphism.

Proof. Theorem 4.2 and 4.3 together with (13) show that the map is a well-defined
one-to-one Zpe -algebra homomorphism. Thus it only remains to show that the map is
surjective. Let A = (A0, A1, . . . , An−1) ∈ A and A(Z) = ∑n−1

i=0 AiZ
i . For 0� t �n−1,

A(�t
n) =

n−1∑
i=0

Ai�
t i
n =

∑
i∈I

∑
j∈clp(i,n)

Aj �
tj
n .

Now note that

Fr

⎛
⎝ ∑

j∈clp(i,n)

Aj �
tj
n

⎞
⎠ =

∑
j∈clp(i,n)

Fr(Aj )�
tjp
n =

∑
j∈clp(i,n)

Ajp�tjp
n =

∑
j∈clp(i,n)

Aj �
tj
n ,

which shows that
∑

j∈clp(i,n) Aj �
tj
n ∈ SFr = R. Thus A(�t

n) ∈ R. Therefore

B = 1

n

(
�0A(1), �1A(�n), �2A(�2

n), . . . , �n−1A(�n−1
n )

)
∈ Rn.

Set c = �(B). By Theorem 4.2, we then have Mc(�
t
n) = A(�t

n) for all 0� t �n − 1.
Now the previous lemma shows that Mc(Z) = A(Z), and the proof is completed. �

Lemma 4.6. Let I be a complete set of p-cyclotomic representatives modulo n. Then
the map (A0, A1, . . . , An−1) �→ (Ai)i∈I is a Zpe -algebra isomorphism from A to⊕

i∈I Spe (mi, u).

Proof. Any element (A0, A1, . . . , An−1) ∈ A is completely determined by (Ai)i∈I by
the property Ajp = Fr(Aj ) for all j, which implies that Aipr = Frr (Ai) for i ∈ I

and 0�r �mi − 1. In particular, Frmi (Ai) = Ai for all i ∈ I and thus Ai ∈ SFrmi =
Spe (mi, u). Now the rest of the assertion is clear. �



40 S.T. Dougherty, Y.H. Park / Finite Fields and Their Applications 13 (2007) 31–57

Theorem 4.5 and Lemma 4.6 give the following:

Theorem 4.7. The map � : Zpe [X]/〈XN − 1〉 → ⊕
i∈I Spe (mi, u) defined by �(c) =

(ĉi)i∈I is a Zpe -algebra isomorphism: in particular, if C is an ideal of Zpe [X]/
〈XN − 1〉, then C 	 ⊕

i∈I Ci , where Ci is the ideal {c(u�i
n) | c ∈ C} of Spe (mi, u).

Going back to the most general modulus and using the isomorphisms given in (2)
and Theorem 4.7 we have the following:

Theorem 4.8. Let M = p
e1
1 p

e2
2 . . . p

er
r and let C be a cyclic code over ZM of length

N. Write N = p
ki

i ni for each 1� i�r . Let Ii be the complete set of pi-cyclotomic
cosets modulo ni and let mij = |clpi

(j, ni)|. Then C 	 ⊕r
i=1

⊕
j∈Ii

Cij , where Cij ⊂
S

p
ei
i
(mij , ui) is the ideal {c(ui�

j
n) (mod p

ei

i ) | c ∈ C}.

5. Polynomial representations

In this section, we shall compute the inverse map �−1 to obtain the polynomial
representation of the ideal in Zpe [X]/〈XN − 1〉. Given an element

(di)i∈I ∈ �i∈ISpe (mi, u),

we obtain the corresponding element d = (d0, d1, . . . , dn−1) ∈ A, where dipj = Frj (di).

Let A(Z) = ∑n−1
j=0 dn−jZ

j . The inverse image of (di)i∈I under � is then

�−1((di)i∈I ) = �
(

1
n

(
�0A(1), �1A(�n), �2A(�2

n), . . . , �n−1A(�n−1
n )

))
, (14)

which is a element in Zpe [X]/〈XN − 1〉. We shall compute these inverse images in
more detail. We fix an integer i ∈ I and take an element s ∈ Spe (mi, u). Consider the
element

di(s) = (0, . . . , 0, s, 0, . . . , 0) ∈ �j∈ISpe (mj , u),

where s is the i-component. For notational convenience we let Fi,s(X) = �−1(di(s)).
In other words, Fi,s(X) is an element in Zpe [X]/〈XN − 1〉, such that

Fi,s(u�j
n) =

{
s if j = i

0 otherwise
(j ∈ I ).

We remark that each of these Fi,s(X) is a generator for a minimal cyclic code.
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Lemma 5.1. Let Tmi
: Spe (mi, u) → R be the trace map defined in (11). Then

Fi,s(X) = �

(
1

n

(
�0Tmi

(s), �1Tmi
(s�−i

n ), �2Tmi
(s�−2i

n ), . . . , �n−1Tmi
(s�−(n−1)i

n )
))

.

Proof. It follows from (14), since we have

A(�t
n) =

n−1∑
j=0

dj �
−tj
n =

∑
j∈clp(i,n)

dj �
−tj
n =

mi−1∑
r=0

Frr (s)�−t ipr

n

=
mi−1∑
r=0

Frr (s)Frr (�−it
n ) =

mi−1∑
r=0

Frr (s�−it
n ) = Tmi

(s�−it
n ). �

The map s �→ Fi,s(X) is a Zpe -algebra homomorphism from Spe (mi, u) to Zpe [X]/
〈XN − 1〉 and hence �−1 ((si)i∈I ) = ∑

i∈I Fi,si (X). Therefore, it is sufficient to compute

Fi,s(X) for s = 1, u and �[mi ] = �(pm−1)/(pmi −1). Let

Ei(X) = Fi,1(X),

which will play an important role in the sequel. Let

�i,j = Tmi
(�−ij

n ), �∗
i,j = Tmi

(�[mi ]�
−ij
n ).

Note that these are elements in Zpe and that Tmi
(bs) = bTmi

(s) for any b ∈ R. Recall
that n′n ≡ 1 (mod pk).

Lemma 5.2. (i) Ei(X) = 1
n

∑n−1
j=0 �i,jX

j(1−n′n).

(ii) Fi,u(X) = Xnn′
Ei(X).

(iii) Fi,�[mi ](X) = 1
n

∑n−1
j=0 �∗

i,jX
j(1−n′n).

Proof. For any constant polynomial b ∈ R, we have that �t (b) = bu−n′t and �t (bu) =
bu(1−t)n′

. By Lemma 5.1 and (4), we have that

Ei(X) = �

(
1

n

(
�0(�i,0), . . . , �t (�i,t ), . . . , �n−1(�i,n−1)

))

= �

(
1

n

(
�i,0, . . . , �i,t u

−tn′
, . . . , �i,n−1u

−(n−1)n′)) = 1

n

n−1∑
t=0

�i,tX
t(1−n′n),
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which proves (i). Secondly,

Fi,u(X) = �

(
1

n

(
�0(�i,0u), . . . , �t (�i,t u), . . . , �n−1(�i,n−1u)

))

= �

(
1

n

(
�i,0u

n′
, . . . , �i,t u

(1−t)n′
, . . . , �i,n−1u

−nn′))

= 1

n

n−1∑
t=0

�i,tX
t+(1−t)n′n = Xnn′ 1

n

n−1∑
t=0

�i,tX
t(1−n′n) = Xnn′

Ei(X).

Finally, a similar computation yields (iii). �

Since �i,t = �i,tp, we can write

Ei(X) = 1

n

∑
j∈I

�i,j �j (X
1−n′n) with �j (X) =

∑
t∈clp(j,n)

Xt . (15)

For any element s = ∑
j

∑
k ajk�

k[mi ]u
j ∈ Spe (mi, u) with ajk ∈ Zpe , we denote by

s(Fi,�[mi ](X), Xnn′
) =

∑
j

∑
k

ajkFi,�[mi ](X)k(Xnn′
)j ∈ Zpe [X]/〈XN − 1〉,

the polynomial obtained by substituting �[mi ], u in s by Fi,�[mi ](X), Xnn′
, respectively.

Theorem 5.3. Fi,s(X) = s(Fi,�[mi ](X), Xnn′
)Ei(X).

Proof. This follows from Lemma 5.2 together with the facts that s �→ Fi,s is a Zpe -
algebra homomorphism and Ei(X)Fi,s(X) = Fi,s(X). �

We introduce another inverse image, which is convenient for dealing with multipli-
cation. For s ∈ Spe (mi, u), let

d∗
i (s) = (1, . . . , 1, s, 1, . . . , 1) ∈ �j∈ISpe (mj , u),

where s is the i-component, and let Gi,s(X) = �−1(d∗
i (s)) ∈ Zpe [X]/〈XN − 1〉, i.e.

Gi,s(u�t
n) =

{
1 if t 
= i

s if t = i
(t ∈ I ). (16)
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Since d∗
i (s) = (1, . . . , 1) − di(1) + di(s), we have that

Gi,s(X) = 1 − Ei(X) + Fi,s(X). (17)

Theorem 5.4. Let Ci ⊂ Spe (mi, u) be ideals for i ∈ I . Without loss of generality
we may assume that Ci’s have the form Ci = 〈b1si1, b2si2, . . . , blsil〉 with bj ∈ Zpe ,
independent of i, and sij ∈ Spe (mi, u). Then

�−1 (�i∈I Ci

) = 〈b1

∏
i∈I

Gi,si1(X), b2

∏
i∈I

Gi,si2(X), . . . , bl

∏
i∈I

Gi,sil (X)〉.

Proof. By (16), bj

∏
i∈I Gi,sij (u�t

n) = bj stj for each t ∈ I and for each 1�j � l. �

Theorem 5.4 and (17) provide us an explicit way of computing the generator poly-
nomials of the corresponding ideal of Zpe [X]/〈XN − 1〉 to an ideal of �iSi (mi, u)

whose generators are given.
The coefficients �i,t can be easily computed, once the minimal polynomials of �t

n’s
are known. Since (n, pe) = 1, Xn − 1 ∈ Zpe [X] factors into monic, basic irreducible
polynomials in a unique way as Xn−1 = ∏

i∈I fi , where fi is an irreducible polynomial
over Zpe having �i

n as a root. In fact, fi(X) = ∏
j∈clp(i,n)(X − �j

n). We call fi the

minimal polynomial of �i
n over Zpe .

Let −aj be the coefficient of Xmj −1 in fj (X). As is well-known, aj = Tmj
(�j

n).

Suppose j is the representative of the p-cyclotomic coset of −it . Since �−it
n ∈ S(mi, u),

we have that �j
n ∈ S(mi, u), which implies that jpmi ≡ j (mod n). Since mj is the

smallest integer satisfying the congruence jpmj ≡ j (mod n), we must have that mj |
mi . Since Frmj (s) = s for s ∈ S(mj , u), we have that

Tmi
(�j

n) =
mi−1∑
r=0

�jpr

n = mi

mj

mj −1∑
r=0

�jpr

n = mi

mj

Tmj
(�j

n) = mi

mj

aj . (18)

The coefficients �∗
i,t can be computed in a similar manner. We first note that

�∗
i,t = Tmi

(�[mi ]�
−it
n ) = Tmi

(
�

1− ipmi −i
n

t

[mi ]
)

= Tmi

(
�

pm−1
pmi −1

− ipm−i
n

t
)

.

Let Im be the complete set of representatives of the p-cyclotomic cosets modulo pm−1.
Then the factorization Xpm−1 − 1 = ∏

j∈Im
	̄j (X) into monic irreducible coprime

polynomials over Zp lifts to the corresponding factorization Xpm−1 −1 = ∏
j∈Im

	j (X)

over Zpe , such that �(	j ) = 	̄j and 	j (X) = ∏
t∈clp(j,pm−1)(X − �t ) is the minimal

polynomial of �j over Zpe . Let m′
j be the degree of 	j , which is |clp(j, pm − 1)|.
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Then m′
j is the smallest integer, such that �j ∈ S(m′

j , u) and −bj = −Tm′
j
(�j ) is the

coefficient of X
m′

j −1 in 	j (X). If �j ∈ S(mi, u), then Zpe [�j ] ⊂ Zpe [�[mi ]] and hence
m′

j | mi and

Tmi
(�j ) = mi

m′
j

Tm′
j
(�j ) = mi

m′
j

bj . (19)

We could have used the factorization of Xpmi −1 − 1 to compute �∗
i,t , but (19) works

for all i.
We shall now relate fi(X) with certain Gi,s(X). For two elements a, b in a ring,

we write a ∼ b if a = bv for some unit v.

Lemma 5.5. Let fi(X) be the minimal polynomial of �i
n over Zpe .

(i) fi(u�j
n) ∼ 1 if j /∈ clp(i, n).

(ii) fi(u�i
n) ∼ un − 1 ∼ u − 1.

Proof. (i) fi(u�j
n) = ∏

�∈clp(i,n)(u�j
n−��

n), and each factor u�j
n−��

n = (�j
n−��

n)+�j
n(u−1)

is a unit, since �j
n − ��

n 
= 0.
(ii) We have Xn − 1 = ∏

j fj (X). Thus (u�i
n)

n − 1 = ∏
j fj (u�i

n), or un − 1 =∏
j fj (u�i

n). Since each fj (u�i
n) is a unit for j 
= i, fi(u�i

n) ∼ un − 1. Write un − 1 =
(u − 1)s(u). Then s(1) = n. Since n is relatively prime to p, we have that �(n) 
= 0,
which implies that s(u) is a unit by Theorem 3.2(i), and hence un − 1 ∼ u − 1. �

Theorem 5.6. Let fi(X) be the minimal polynomial of �i
n over Zpe .

(i) fi(X) ∼ Gi,u−1(X) = 1 + (Xnn′ − 2)Ei(X).

(ii) fi(X
pk

) ∼ Gi,0(X) = 1 − Ei(X).

Proof. (i) By the Lemma 5.5, it is clear that �(fi(X)) ∼ d∗
i (u− 1). Now Gi,u−1(X) =

1 − Ei(X) + (Xnn′ − 1)Ei(X) = 1 + (Xnn′ − 2)Ei(X).
(ii) Recall that fi(X) = ∏mi

r=0(X − �ipr

n ) and �jpk

n − �ipr

n 
= 0 is a unit for every r

unless j ∈ clp(i, n). Thus fi((u�j
n)

pk
) = fi(�

jpk

n ) is a unit for j /∈ clp(i, n) and zero if

j ∈ clp(i, n). Therefore fi(X
pk

) ∼ Gi,0(X) = 1 − Ei(X). �

In the next section, it is shown that the ideals of Spe (m, u) have the form

〈s0, ps1, p
2s2, . . . , p

e−1se−1〉,

where si = 0 or si = (u − 1)ti + pzi with 0� ti < pk − 1 and zi ∈ Spe (m, u).
In [2,5], the generators of the corresponding ideals in Zpe [X]/〈XN − 1〉 are given in

terms of fi(X)t , fi(X
pk

) and f̃i (X) = fi(X) + pgi(X), which is called a lift, with
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gi(X) ∈ Zpe [X]/〈XN − 1〉. However the exact forms of the lifts are not studied. We
can now describe their lifts in more detail by expressing Gi,(u−1)t+pz in terms of fi(X).
Recall that Gi,u−1(X) ∼ fi(X), say Gi,u−1(X)Hi(X) = fi(X) for some unit Hi(X).
Thus we have that

Gi,(u−1)t+pz(X) = Gi,(u−1)t (X) + pFi,z(X) ∼ fi(X)t + pHi(X)tFi,z(X). (20)

To determine Hi(X), let �(Hi) = (sj )j∈I and apply � to Gi,u−1(X)Hi(X) = fi(X) to
obtain

sj = fi(u�j
n)for j 
= i (u − 1)si = fi(u�i

n).

Although u − 1 is not a unit, we can still take si = fi(u�i
n)/(u − 1) since fi(�

i
n) = 0

so that u − 1 divides fi(u�i
n). Therefore

Hi(X) =
∑

j∈I−{i}
F

j,fi (u�j
n)

+ F
i,fi (u�i

n)/(u−1)
. (21)

Hence the lifts of fi(X) can be explicitly given by (20).
Recall that the multiplication of the ring A is the componentwise multiplication.

Hence, it is quite natural that the idempotent elements in A are rather easy to determine,
while those in Zpe [X]/〈XN − 1〉 are not. However, the isomorphism � will be of great
help in this matter. Recall that Ei(X) = �−1(0, . . . , 0, 1, 0, . . . , 0), where 1 is the
i-component.

Theorem 5.7. Let RN = Zpe [X]/〈XN − 1〉.
(i) Each Ei is idempotent, i.e. E2

i = Ei .
(ii) EiEj = 0 for i 
= j , and

∑
i∈I Ei = 1.

(iii) The only idempotents in RN are
∑

j∈J Ej for some subset J of I. In particular,

there are 2|I | idempotent elements in RN .
(iv) RN is a direct sum of the ideals 〈Ei〉:

RN =
⊕
i∈I

〈Ei〉 	
⊕
i∈I

RN/〈1 − Ei〉. (22)

Proof. (i) and (ii) follow from the fact that � is an isomorphism.
(iii) In a local ring, the only idempotents are 0 and 1. Indeed, if a is an idempotent

which is different from 0 and 1, then a(1 − a) = 0 shows that a and 1 − a are
nonunits, which implies that 1 = a + (1 − a) is in the maximal ideal consisting of
nonunits, a contradiction. Since each Spe (mi, u) is a local ring, the only idempotents
in �Spe (mi, u) are (ai)i∈I , where ai = 0 or 1. Take J = {j ∈ I | aj = 1}.



46 S.T. Dougherty, Y.H. Park / Finite Fields and Their Applications 13 (2007) 31–57

(iv) The decomposition follows from (ii). Consider the homomorphism RN → 〈Ei〉
mapping f to Eif . If Eif = 0, then f = (1 − Ei)f + Eif = (1 − Ei)f . Thus, the
kernel of the map is 〈1 − Ei〉 and RN/〈1 − Ei〉 	 〈Ei〉. �

Corollary 5.8. Let N = pkn as before and let Xn−1 = ∏
i∈I fi(X) be the factorization

into monic, basic irreducible, coprime polynomials over Zpe . Then

(i) Zpe [X]/〈XN − 1〉 	
⊕
i∈I

Zpe [X]/〈fi(X
pk

)〉. (23)

(ii) Any ideal C of Zpe [X]/〈XN − 1〉 having an idempotent generator has the form

〈f (Xpk
)〉 for some divisor f (X) of Xn − 1. If f (X) = ∏

j∈J fj (X), then the
unique idempotent generator of C is

∑
j /∈J Ej . Furthermore, C is isomorphic to

�j /∈J Spe (mj , u).

Proof. (i) This follows from Theorem 5.6(ii) and 5.7(iv).
(ii) We know that the only idempotents are

∑
j∈J Ej for some subset J of I. Note

that
∑

j∈J Ej = 1 −∑j /∈J Ej = ∏
j /∈J (1 − Ej) ∼ ∏

j /∈J fj (X
pk

). Replacing J with its

complement, we obtain the result. �

We are now in good position to examine the isomorphism (6) more closely. Let
v = un′ ∈ R so that vn = unn′ = u. It is easy to see that the factorization given in (5)
is exactly Xn − u = ∏

i∈I gi, where gi(X) = ∏
j∈clp(i,n)(X − v�j

n) ∈ R[X]. Recalling

that �(ujXi) = Xi+jn, we have that

�(gi)(X) =
∏

j∈clp(i,n)

(X − Xn′n�j
n) ∈ Zpe [X].

We compute �(gi)(u�j
n) to find its image on �i∈ISpe (mi, u):

�(gi)(u�j
n) =

∏
�∈clp(i,n)

(u�j
n − u��

n) = umi
∏

�∈clp(i,n)

(�j
n − ��

n) =
{

0 ifj ∈ clp(i, n),

a unit if j /∈ clp(i, n).

This means that �(gi)(X) ∼ Gi,0(X) = 1−Ei(X) and hence � induces an isomorphism

R[X]/〈gi〉 	 RN/〈1 − Ei〉, (24)

where RN = Zpe [X]/〈XN − 1〉. Collecting previous isomorphisms, we have that

R[X]/〈gi〉 	 RN/〈1 − Ei〉 	 〈Ei〉 	 Spe (mi, u) 	 Zpe [X]/〈fi(X
pk 〉. (25)

Hence the factorizations in (6), (22), (23) and Theorem 4.7 are all equivalent. However,
we find that Spe (mi, u) is most convenient to describe the structures and ideals.
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Example 5.9. We consider the case p = 2 and n = 15. We have cl2(0, 15) = {0},
cl2(1, 15) = {1, 2, 4, 8}, cl2(3, 15) = {3, 6, 12, 9}, cl2(5, 15) = {5, 10}, and cl2(7, 15) =
{7, 14, 13, 11}. Thus I = {0, 1, 3, 5, 7} and

Zpe [X]/〈XN − 1〉 	 Spe (1, u)�Spe (4, u)�Spe (4, u)�Spe (2, u)�Spe (4, u).

Since m = 4, we have that � = �[4] = �15 = �n.
Let e = 2 and k = 1, so that N = 2 · 15 = 30. Then n′ = 1 and 1 − nn′ =

−14 ≡ 16 (mod N). Recall that �j (X) = ∑
t∈clp(j,n) Xt , so that �0(X) = 1, �1(X) =

X + X2 + X4 + X8, etc. The irreducible polynomial of the primitive element �̄ over
Z2 is f̄1(X) = X4 + X + 1, which lifts to f1(X) = X4 + 2X2 + 3X + 1 ∈ Z4[X] by
Hensel’s Lemma [8,10]. Thus we choose � = X + 〈f1(X)〉. We know that X15 − 1
has the factorization of the form X15 − 1 = f0(X)f1(X)f3(X)f5(X)f7(X) over Z4
where fi(X) is the irreducible polynomial of �i of degree mi over Z4. To obtain this
factorization, we first factor X15 − 1 over Z2 as

X15 − 1 = (X + 1)(X2 + X + 1)(X4 + X + 1)(X4 + X3 + 1)(X4 + X3 + X2 + X + 1)

and then lift over Z4 as

X15 − 1 = (X + 3)(X2 + X + 1)(X4 + 2X2 + 3X + 1)(X4 + 3X3 + 2X2 + 1)

×(X4 + X3 + X2 + X + 1).

It is not difficult to find f0(X) = X + 3, f3(X) = X4 + X3 + X2 + X + 1, f5(X) =
X2 + X + 1, and f7(X) = X4 + 3X3 + 2X2 + 1. By (18) and from the fact that
1
n

(mod 4) = 3, we obtain

⎛
⎜⎜⎜⎜⎝

E0(X)

E1(X)

E3(X)

E5(X)

E7(X)

⎞
⎟⎟⎟⎟⎠ = 3

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
0 1 3 2 0
0 3 3 0 3
2 3 2 3 3
0 0 3 2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�0(X
16)

�1(X
16)

�3(X
16)

�5(X
16)

�7(X
16)

⎞
⎟⎟⎟⎟⎠ .

Explicitly the polynomials Ei(X) are

E0(X) = 3
14∑
t=0

X2t ,

E1(X) = 3(X2 + X4 + 3 X6 + X8 + 2 X10 + 3 X12 + X16 + 3 X18 + 2 X20 + 3 X24),
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E3(X) = 3(3 X2 + 3 X4 + 3 X6 + 3 X8 + 3 X12 + 3 X14 + 3 X16

+3 X18 + 3 X22 + 3 X24 + 3 X26 + 3 X28),

E5(X) = 3(2 + 3 X2 + 3 X4 + 2 X6 + 3 X8 + 3 X10 + 2 X12 + 3 X14

+3 X16 + 2 X18 + 3 X20 + 3 X22 + 2 X24 + 3 X26 + 3 X28),

E7(X) = 3(3 X6 + 2 X10 + 3 X12 + X14 + 3 X18 + 2 X20 + X22

+3 X24 + X26 + X28).

Recall that these Ei’s determine all 25 idempotents of Zpe [X]/〈XN − 1〉 = Z4[X]/
〈X30 − 1〉. Furthermore, Fi,u(X) = X15Ei(X). Keeping �[0] = 1, �[4] = � and �[2] = �5

in mind, and using (19), we similarly find that

F0,1(X) = E0(X),

F1,�(X) = 3(X2 + 3 X4 + 2 X6 + 3 X10 + X18 + X20 + 3 X22 + X24

+2 X26 + 3 X28),

F3,�(X) = 3(2 X2 + X6 + X8 + 2 X12 + X16 + X18 + 2 X22 + X26 + X28),

F5,�5(X) = 3(3 + 3 X2 + 2 X4 + 3 X6 + 3 X8 + 2 X10 + 3 X12 + 3 X14 + 2 X16

+3 X18 + 3 X20 + 2 X22 + 3 X24 + 3 X26 + 2 X28),

F7,�(X) = 3(3 X4 + 2 X8 + 3 X10 + X12 + 3 X16 + 2 X18 + X20

+3 X22 + X24 + X26).

Now the generators for the corresponding ideals of RN can be explicitly found using
these polynomials. For example, take the ideal

C = 〈1〉 × 〈2(u − 1)〉 × 〈u − 1 + 2�〉 × 〈u − 1, 2〉 × 〈0〉 ⊂ �i∈IS4(mi, u).

Write each factor ideal in the form Ci = 〈si1, 2si2〉 for i ∈ I . By Theorem 5.4, this
ideal corresponds to the ideal

C = 〈G0,1G1,0G3,u−1+2�G5,u−1G7,0, 2G0,0G1,u−1G3,0G5,1G7,0〉

of Zpe [X]/〈XN − 1〉. This gives an explicit polynomial representation of the ideal.
To compare with the generators given in [2], we recall that Gi,0(X) ∼ fi(X

2),
Gi,1(X) = 1 and Gi,u−1(X) ∼ fi(X). Thus

C = 〈f1(X
2)G3,u−1+2�(X)f5(X)f7(X

2), 2f0(X
2)f1(X)f3(X

2)f7(X
2)〉. (26)
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As before, G3,u−1+2�(X) = G3,u−1(X) + 2F3,�(X) ∼ f3(X) + 2H3(X)F3,�(X). Using
the notation as in [2], we let f̃3(X) = f3(X)+2H3(X)F3,�(X). According to the recipe
in (21), we find that

H3(X) = 1 + 3 X3 + 3 X4 + 2 X5 + 2 X6 + X7 + X8 + 3 X11 + 3 X12

+2 X13 + 2 X14 + 2 X15 + 2 X16 + X17 + X18 + 3 X21

+3 X22 + 2 X23 + 2 X24 + 2 X25 + 2 X26 + X27 + X28.

Replacing G3,u−1+2�(X) by f̃3(X) in (26), we obtain the explicit polynomial represen-
tation of C in terms of the minimal polynomials.

6. Ideals of Spe(m, u)

In this section we classify ideals of Spe (m, u) = Zpe [�][u]/〈upk − 1〉. To emphasize

the underlying ring Zpe , we temporarily write Spe for Zpe [�][u]/〈upk − 1〉 (m and k
are fixed).

Note that Spe is an ambient space for cyclic codes of length pk over Zpe [�]. For
any code C over the local ring Zpe [�], we introduce the following torsion codes over
the residue field Zpe [�]/pZpe [�] = Fpm by reading the elements of Spe modulo p.

Definition 6.1. Let C be a code of length l over the local ring Zpe [�]. For 0� i�e−1,
define

Tori (C) = {�(v) | piv ∈ C, v ∈ Zpe [�]l}. (27)

Tori (C) is called the ith torsion code of C. Tor0(C) = �(C) is usually called the
residue code and sometimes denoted by Res(C).

Let us view elements of Fpm = S/pS as elements of S. Then

v0 ∈ Tori (C) ⇐⇒ pi(v0 + pz) ∈ C for some z ∈ Zpe [�]l .

Moreover, it is clear that Tori (C) ⊂ Tori+1(C).
One use for torsion codes is for computing the size of the code. If C is the code

with generator matrix of the standard form

⎛
⎜⎜⎜⎜⎜⎝

Ik0 A0,1 A0,2 . . . A0,e−1
0 pIk1 pA1,2 . . . pA1,e−1

0 0 p2Ik2 . . . p2A2,e−1
...

0 0 . . . pe−1Ike−1 pe−1Ae−1,e−1

⎞
⎟⎟⎟⎟⎟⎠ , (28)
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the code Tori (C) is the code over Fpm generated by

�

⎛
⎜⎜⎜⎝

Ik0 A0,1 A0,2 . . . A0,e−1
0 Ik1 A1,2 . . . A1,e−1
...

0 0 . . . Iki
Ai,e−1

⎞
⎟⎟⎟⎠ . (29)

Note that |Zpe [�]| = pme and |pj Zpe [�]| = pm(e−j) for 0�j �e in general. We can
compute the cardinality of C with generator matrix as in (28) in general by

|C| =
e−1∏
j=0

|pj Zpe [�]|kj = p
m
∑e−1

j=0(e−j)kj .

But, by (29) we have that |Tori (C)| = ∏i
j=0 pmkj , which gives

e−1∏
i=0

|Tori (C)| =
e−1∏
i=0

i∏
j=0

pmkj = p
m
∑e−1

i=0
∑i

j=0 kj = p
m
∑e−1

j=0(e−j)kj = |C|.

This gives the following:

Theorem 6.2. For a code C over Zpe [�], we have that

|C| =
e−1∏
i=0

|Tori (C)|.

For any integer 1�j �e − 1, let �j : Zpe → Zpj be the canonical map sending a to
a (mod pj ). For convenience we view elements of Zpj as elements of Zpe for j < e. If
C is a code over Zpe [�], then �j (C) is a code over Zpj [�] such that for any c ∈ �j (C),
there exists some w such that c + pjw ∈ C. Note that Zpj [�]/pZpj [�] = Fpm for
any j.

Lemma 6.3. Let C be a code over Zpe [�]. Then Tori (C) = Tori (�j (C)) for all j > i.

Proof. Suppose v0 ∈ Tori (C). Then there exists some z such that pi(v0 + pz) ∈ C.
Hence �j (p

i(v0 + pz)) = pi(v0 + p�j (z)) ∈ �j (C), which implies that �(v0 + p�j (z))

= v0 ∈ Tori (�j (C)). Conversely, suppose that v0 ∈ Tori (�j (C)), i.e. pi(v0 + pz)

∈ �j (C) for some z. Then pi(v0 + pz) + pjw ∈ C for some w, which implies that
v0 ∈ Tori (C). �
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Suppose C is an ideal of Spe (m, u). Then Tori (C) = 〈(u − 1)j 〉 for some j, since

any ideal of Fpm [u]/〈(u − 1)p
k 〉 has such form. The following lemma is somewhat

useful when we compute the torsion codes.

Lemma 6.4. Let 0� i�e − 1 and 0�j �pk − 1.

(i) If g(u) ∈ Zpe [�][u], such that deg g(u) < pk and pig(u) = 0 in Zpe [�][u]/
〈upk − 1〉, then g(u) = pe−ih(u) for some h(u) ∈ Zpe [�][u].

(ii) If f (u) ∈ Fpm [u], such that (u − 1)j f (u) = 0 in Fpm [u]/〈(u − 1)p
k 〉, then f (u) =

(u − 1)p
k−j f1(u) for some f1(u) ∈ Fpm [u].

Proof. (i) Write g(u) = ∑pk−1
t=0 gt (u − 1)t with gt ∈ Zpe [�]. Then pig(u) = ∑pk−1

t=0
pigt (u − 1)t = 0, which implies pigt = 0 in Zpe [�] for every t, which implies that

gt = pe−iht . Now set h = ∑pk−1
t=0 ht (u − 1)t .

(ii) If (u − 1)j f (u) = 0 in Fpm [u]/〈(u − 1)p
k 〉, there exists a polynomial f1(u) ∈

Fpm [u] such that (u− 1)j f (u) = f1(u)(u− 1)p
k

in Fpm [u], which implies that f (u) =
(u − 1)p

k−j f1(u). �

As a corollary, we obtain that

|〈(u − 1)j 〉| = pm(pk−j) (30)

for 0�j �pk − 1. Therefore, once we find all torsion codes Tori (C) of an ideal C, it
is straightforward to find the cardinality of C.

Theorem 6.5. Any ideal C of Spe = Zpe [�][u]/〈upk − 1〉 has the form

C = 〈s0, ps1, . . . , p
e−1se−1〉, (31)

such that

(i) either sj = 0, or sj = (u − 1)tj + pzj for some zj ∈ Spe and 0� tj < pk ,
(ii) sj 
= 0 if and only if Torj (C) 
= {0} and Torj (C) 
= Torj−1(C),

(iii) if sj 
= 0, then Torj (C) = 〈(u − 1)tj 〉.
In particular, the set {j | sj 
= 0} is uniquely determined by C and the partial sequence
{tj }sj 
=0 is strictly decreasing.

Proof. We prove this by induction on e. Assume e = 1. The ring in this case is
Sp1 = Zp[�][u]/〈upk − 1〉 = Fpm [u]/〈upk − 1〉 = Fpm [u]/〈(u − 1)p

k 〉. Since Fpm is a
field, ideals of Sp1 have the form 〈(u − 1)t0〉 for some 0� t0 �pk . If t0 = pk , then

(u − 1)p
k ≡ upk − 1 ≡ 0 (mod p), so in this case we take s0 = 0. Thus the statement

is true for e = 1.
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Now suppose that any ideal of Spe has the form given in (31) and an ideal C
of Spe+1 is given. Clearly �e(C) is an ideal of Spe , and hence, by the induction
hypothesis, �e(C) has the form 〈s′

0, ps′
1, . . . , p

e−1s′
e−1〉 satisfying the conditions (i)–

(iii) in the theorem. If s′
j = 0, we take sj = 0. If s′

j 
= 0, then we take any element

sj = (u−1)tj +pzj in Spe+1 such that pj sj ∈ C and �e(p
j sj ) = pj s′

j . Such an element

exists since C contains an element of the form pj s′
j +peyj = pj ((u−1)tj +pzj ) with

zj = z′
j + pe−j−1yj ∈ Spe+1 .

By Lemma 6.3 we have that Torj (C) = Torj (�e(C)), and hence every sj , 0�j �
e − 1, satisfies the conditions in the theorem.

Now Tore(C) is an ideal of Fpm [u]/〈(u − 1)p
k 〉, say 〈(u − 1)te 〉 for some 1� te �pk .

We take se = (u − 1)te . We claim that C = 〈s0, ps1, . . . , p
ese〉. First of all, there

exists an element v ∈ Tore(C) such that v ≡ (u − 1)te (mod p), which implies that
pe(u − 1)te ∈ C. Hence 〈s0, ps1, . . . , p

ese〉 ⊂ C. Conversely, suppose c ∈ C. Then
�e(c) = ∑e−1

i=0 x′
ip

is′
i for some x′

i ∈ Spe . Since pj s′
j = pj sj − peyj for j < e, we

have that c = ∑e−1
i=0 xip

isi +pex for some xi, x ∈ Spe+1 . Then x ∈ Tore(C), and hence
x ≡ b(u − 1)te (mod p) for some b ∈ Sp1 , which implies that c ∈ 〈s0, ps1, . . . , p

ese〉.
Thus, we have shown that C = 〈s0, ps1, . . . , p

ese〉 as claimed.
Notice that if se = (u − 1)p

k = 0, then C itself has to be {0} and then the theorem
is clear. So assume that C 
= {0} so that se 
= 0. If sj = 0 for all j < e, then again
we are done. So assume that sj 
= 0 for some j. Let Tore−1(C) = 〈(u − 1)t 〉. It is
clear that te � t since Tori (C) ⊂ Tori+1(C) for any i. If te < t , then we are done.
Suppose te = t . There exists some l�e − 1 such that sl = (u− 1)t +pzl . Then pese =
pe(u−1)te = pe−lpl(u−1)t = pe−lplsl , which implies that C = 〈s0, ps1, . . . , p

ese〉 =
〈s0, ps1, . . . , p

e−1se−1〉. We replace se with 0 in this case. In any case se satisfies the
conditions in the theorem.

Clearly the set {j | sj 
= 0} is uniquely determined by (ii), and the partial sequence
{tj }sj 
=0 is strictly decreasing since Torj−1(C)�Torj (C) = 〈(u − 1)tj 〉 when sj 
= 0.
The proof is completed. �

Definition 6.6. The representation of C in terms of the generators as in the theorem is
called the torsional form. If Torj (C) = 〈(u − 1)tj 〉, then tj is called the jth torsional
degree of C and denoted by tdegj (C) (if Torj (C) = 0, then tdegj (C) = pk). The partial
sequence {tj }sj 
=0 is called the reduced sequence of torsional degrees and written as
{(tj )j }sj 
=0.

Note that the reduced sequence is simply the sequence of tj ’s which are actually
appearing in the torsional form. For example, if C = 〈(u − 1)5, p3((u − 1)3 + pz3),
p4((u − 1) + pz4)〉, then the reduced sequence is 50, 33, 14.

The sequence of the torsional degrees completely determines the reduced sequence
of torsional degrees and vice versa. Indeed, if the sequence of torsional degrees is

t0 = · · · = ti1−1 > ti1 = · · · = ti2−1 > ti2 = · · · = ti3−1 > ti3 = · · · ,
then sj 
= 0 if and only if tj 
= pk and j = il for some l. For example, if the tor-

sional degrees of a code C ⊂ Z28 [�][u]/〈u25 − 1〉 are 25, 25, 3, 3, 2, 2, 2, 0, then
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s0 = s1 = s3 = s5 = s6 = 0 and the reduced sequence is 32, 24, 07. Conversely,
it is easy to see that the reduced sequence 32, 24, 07 gives the torsional degrees
25, 25, 3, 3, 2, 2, 2, 0.

Moreover, if the ideal C of Spe has the torsional form C = 〈s0, ps1, . . . , p
e−1se−1〉

then it is easy to see that its torsion codes are

Tori (C) = �〈s0, s1, . . . , si〉. (32)

The proof of Theorem 6.5 is actually constructive and uses the inductive process.
The torsional form of �i+1(C) is obtained from that of �i (C) and the ith torsion of C:

tdeg t0 t1 t2 ti−1 ti ti+1 . . .

�i+1(C) = 〈si+1,0, psi+1,1, p2si+1,2, · · · , pi−1si+1,i−1, pisi+1,i〉
↓ ↓ ↓ ↓

�i (C) = 〈si,0, psi,1, p2si,2, · · · , pi−1si,i−1〉

Here tj = tdegj (C), ↓ indicates the map �i . Moreover, each si+1,j for j < i and si+1,i

are determined as follows.

(i) if si,j = 0, then si+1,j = 0,
(ii) if si,j = (u − 1)tj + pzij , then si+1,j = (u − 1)tj + pzi+1,j ∈ Spe , such that

pj si+1,j ∈ �i+1(C), and �i (p
j si+1,j ) = pj sij ,

(iii) si+1,i = (u − 1)ti if ti 
= pk and ti 
= ti−1; otherwise si+1,i = 0.

Since Tori (C) = (u − 1)ti , there exists some si = (u − 1)ti + pzi in Spe such that
pisi ∈ C. We take such an si if ti 
= pk and ti 
= ti−1, and si = 0 otherwise. Then
sl,i = �l (si) will work for all l > i, since �l (sl+1,i ) = �l (�l+1(si)) = �l (si) = sl,i .
Thus the inductive steps (i)–(iii) collapse to the direct algorithm:

• for each i = 0, 1, . . . , e − 1, take an element pisi of the form

pisi =
{

pi((u − 1)ti + pzi) ∈ C for some zi ∈ Spe if ti 
= pk and ti 
= ti−1,

0 otherwise.

(33)

We give an example of finding the torsional form of a code.

Example 6.7. Let C = 〈(u − 1) + 2�〉 be an ideal of S8 = Z8[�][u]/〈u2 − 1〉. We
shall find the torsional form of C. We first need to compute the torsion codes of
C. Clearly Tor0(C) = 〈u − 1〉. To compute Tor1(C), assume 2v ∈ C, namely 2v =
(u − 1 + 2�)g for some g ∈ S8. Then 0 = (u − 1)�(g). It follows from Lemma
6.4(ii) that g = (u − 1)f1 + 2w1 = (u + 1)f1 + 2w for some f1, w1, w ∈ S8. Then
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2v = 2(u − 1)w + 2(u + 1)�f1 + 4�w, which implies that v ≡ (u − 1)w + (u + 1)�f1 +
2�w (mod 4). Thus �(v) ∈ 〈u − 1, u + 1〉 = 〈u − 1〉. Consequently, Tor1(C) = 〈u − 1〉.
Next it can be shown that

4 · 1 = (u − 1 + 2�)(2�−1 + 4(� + 1)−1 − 4�−1 − (�2 + �)−1(u − 1)) ∈ C,

which implies that Tor2(C) = 〈1〉 (see Example 6.10(i) for detail). Thus C is not
written in torsional form, which must be of the form 〈s0, 0, 4 · 1〉.

To find the torsional form of C, we may start with tdeg0(C) = 1, so we take
s0 = (u − 1)1 + 2z ∈ C for some z ∈ S8, say z = �. Next, tdeg2(C) = 1 = tdeg0(C),

and hence s1 = 0. Finally, tdeg2(C) = 0, and hence we take 22s2 = 22(1 + 2z) ∈ C,
say z = 0. Thus C = 〈(u − 1) + 2�, 0, 4〉 is the torsional representation of C.

Remark. As Example 6.10 will show, 〈u − 1 + 2 · 1〉 is in torsional form. Therefore
〈u − 1 + 2z〉 can be a torsional form for some z, but not a torsional form for other z.

The ideals of Z4[�][u]/〈up − 1〉 are listed in [2] and those of Z4[�][u]/〈upk − 1〉 for
arbitrary k are listed in [5]. The following corollary is the direct generalization of their
results to arbitrary prime p.

Corollary 6.8. The ideals of Zp2 [�][u]/〈upk − 1〉 consist of

• 〈0〉,
• 〈p(u − 1)
〉 with tdeg0 = 0, tdeg1 = 
,
• 〈(u − 1)
 + pz〉 with tdeg0 = 
 = tdeg1,
• 〈(u − 1)� + pz, p(u − 1)
〉 with tdeg0 = � > tdeg1 = 
.

Here 0�
, ��pk − 1, and z may be assumed to have the form
∑
−1

j=0 sj (u − 1)j with
sj ∈ Zp2 [�].

Proof. The list of ideals now easily follows from Theorem 6.5 by listing all possible
reduced sequence of torsional degrees ti = tdegi (C) as in the following table, where
empty degree indicates si = 0.

t0 t1 Sequence of tdeg Ideal

pk, pk 〈0〉

 
, 
 〈(u − 1)
 + pz〉for some z


 pk, 
 〈p(u − 1)
〉
� 
 �, 
 〈(u − 1)� + pz, p(u − 1)
〉 for some z

Note that if (u − 1)
 + pz is in the ideal, then p((u − 1)
 + pz) = p(u − 1)
 is in the
ideal, which justifies the form of z. �
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Table 1
Torsional forms in Z8[�][u]/〈u2 − 1〉
t0 t1 t2 Sequence of tdeg Ideal C |C|

2,2,2 〈0〉 1
0 0,0,0 〈1〉 26m

0 2,0,0 〈2〉 24m

0 2,2,0 〈4〉 22m

1 1,1,1 〈(u − 1) + 2z0〉 23m

1 2,1,1 〈2(u − 1) + 4z1〉 22m

1 2,2,1 〈4(u − 1)〉 2m

1 0 1,0,0 〈(u − 1) + 2z0, 2〉 25m

1 0 1,1,0 〈(u − 1) + 2z0, 4〉 24m

1 0 2,1,0 〈2(u − 1) + 4z1, 4〉 23m

Again, the actual torsional forms of ideals 〈(u − 1)
 + pz〉 and 〈(u − 1)� + pz,
p(u − 1)
〉 in Corollary 6.8 depend on z. The explicit classification for p = 2 is done
in [5].

Example 6.9. We list the ideals of S8 = Z8[�][u]/〈u2 − 1〉 in Table 1, which cor-
respond to the direct summands of cyclic codes over Z8 of length 2n, where n is
odd. Note that if ti = tdegi (C) = 0 then si is a unit. Since 0� ti �1, it is easy to
list the ideals according to the possible reduced sequence of torsional degrees as in
the following table, where empty ti corresponds to si = 0. Here, z0, z1 are elements
in S8 such that the given ideal has the corresponding sequence of torsional degrees.
The exact forms of z0, z1 are determined in Example 6.10. The cardinality of C is
obtained by Theorem 6.2 and (30). Note that 〈(u − 1) + 2z0, 2〉 = 〈(u − 1), 2〉 and
〈2(u − 1) + 4z1, 4〉 = 〈2(u − 1), 4〉.

The torsional forms given in Example 6.9 are the forms that the codes must have
in order to have the given torsional degrees. However, as shown in Example 6.7, the
ideals of the given form can have different torsional degrees. In the next example, we
compute the torsion codes of all forms given in Table 1. As a result, torsional forms of
all ideals are determined. Table 2 is the ‘converse’ to Table 1. In this table, z represents
an arbitrary element of S8. Notice that there is only one type, namely 〈(u − 1) + 2z〉,
that does not have the unique torsional degrees in this case.

Example 6.10. Most of the torsion codes in Table 2 are easy to get, except for the
codes containing (u − 1) + 2z or 2(u − 1) + 4z.

We start with noting that (u − 1)2 = u2 − 2u + 1 = 6(u − 1) in Z8[�][u]/〈u2 − 1〉.
Write z = z0 + z1(u − 1) with z0, z1 ∈ Z8[�].

We will compute torsion codes for C = 〈(u − 1) + 2z〉. Other torsion codes can be
verified in a similar way. As in Example 6.7, Tor1(C) = 〈u − 1〉. Next, Tor2(C) = 〈1〉
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Table 2
Torsion codes for ideals of Z8[�][u]/〈u2 − 1〉
C tdeg0(C) tdeg1(C) tdeg2(C)

〈0〉 2 2 2
〈1〉 0 0 0
〈2〉 2 0 0
〈4〉 2 2 0

〈(u − 1) + 2z〉 1 1

{
0 if z and z + 1 are units
1 otherwise

〈2(u − 1) + 4z〉 2 1 1
〈4(u − 1)〉 2 2 1
〈(u − 1), 2〉 1 0 0
〈(u − 1) + 2z, 4〉 1 1 0
〈2(u − 1), 4〉 2 1 0

if and only if there exists g0 + g1(u − 1) with g0g1 ∈ Z8[�], such that

4 · 1 = ((u − 1) + 2(z0 + z1(u − 1)))(g0 + g1(u − 1))

= 2z0g0 + (2z0g1 + g0 + 2z1g0 + 6g1 + 4z1g1)(u − 1),

equivalently

4 = 2z0g0, (2z0 + 6 + 4z1)g1 + (1 + 2z1)g0 = 0. (34)

Multiplying the second equation by 2z0, we get 4(z2
0 + z0)g1 + 4 = 0. If �(z2

0 + z0) =
�(z0)�(z0 + 1) = 0, then z2

0 + z0 = 2w, which implies that 4 = 0, a contradiction.
Therefore we assume that �(z0) 
= 0 and �(z0 + 1) 
= 0, meaning z0 and z0 + 1
are invertible or equivalently z and z + 1 are invertible. Let g0 = 2z−1

0 + 4a, g1 =
−(z2

0 + z0)
−1, where a is to be determined. We have 2z0g0 = 4 and

(2z0 + 6 + 4z1)g1 + (1 + 2z1)g0

= 2(z0 + 1)−1 + 2z−1
0 (z0 + 1)−1 + 2z−1

0 − 4(z0 + 1)−1

−4z1z
−1
0 (z0 + 1)−1 + 4a + 4z1z

−1
0 .

Since

2(z0 + 1)−1 + 2z−1
0 (z0 + 1)−1 + 2z−1

0 = 2(z0 + 1)−1z−1
0 (z0 + 1 + (z0 + 1)) = 4z−1

0 ,

we have that

(2z0 + 6 + 4z1)g1 + (1 + 2z1)g0

= 4z−1
0 − 4(z0 + 1)−1 − 4z1z

−1
0 (z0 + 1)−1 + 4a + 4z1z

−1
0 .
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Taking a = −z−1
0 + (z0 + 1)−1 + z1z

−1
0 (z0 + 1)−1 − z1z

−1
0 , we get g0 + g1(u − 1)

satisfying Eq. (34). Thus Tor2(C) = 〈1〉.
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