
Theoretical Computer Science 410 (2009) 4241–4261

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On-the-fly TCTLmodel checking for time Petri nets
Rachid Hadjidj, Hanifa Boucheneb ∗
Department of Computer Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal, Québec, Canada

a r t i c l e i n f o

Article history:
Received 10 February 2006
Received in revised form 27 May 2009
Accepted 10 June 2009
Communicated by V. Sassone

Keywords:
Time Petri nets
State space abstractions
State class method
TCTLmodel checking

a b s t r a c t

In this paper, we show how to efficiently model check a subset of TCTL properties for
the Time Petri Net model (TPN model), using the state class method. The verification
proceeds by augmenting the TPN model under analysis with a special TPN, called Alarm-
clock, to allow the capture of relevant time events. A forward on-the-fly exploration is
then applied on the resulting TPN state class space to verify a timed property. A relaxation
operation on state classes is also introduced to further improve performances. Alarm-
clock is the same for all properties, whereas the exploration technique is not. Three
exploration techniques are presented to cover most interesting TCTL properties. We prove
the decidability of our verification technique for bounded TPNmodels and compare it with
the reachability algorithm implemented in the tool UPPAAL [G. Behrmann, J. Bengtsson,
A. David, K.G. Larsen, P. Pettersson, W. Yi, Uppaal implementation secrets, in: Proc. of
the 7th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, 2002]. Finally, we give some experimental results to show the efficiency of our
verification technique.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Time Petri nets provide a formal framework to model and verify the correct functioning of real-time systems. Petri nets
extended with timing dependencies are very numerous in the literature [1,18,23,29,31]. The best known timed extensions
are timed Petri nets proposed by Ramchandani [31] and time Petri nets proposed by Merlin and Farber [29]. We focus in this
paper on the time Petri net model [29], referred in the sequel as the TPN model, and propose a model checking approach to
verify its timed properties.
Several abstractions of the TPN model state space have been proposed in the literature to verify its untimed temporal

properties [9,13,14,12,20,22,27,33].Most proposed approaches are based on the so called state classmethod [9], where a state
class is a symbolic representation for some infinite set of states sharing the same marking. These approaches allow one to
construct state class spaces that preserve reachability [12,27], linear properties [9], and branching properties [13,14,22,33],
which are then verified using standard model-checking techniques [17]. To our knowledge, no known techniques based
on state class method exists yet to verify timed properties for the TPN model with the same versatility reached for timed
automata [4]. The use of observers [32], for instance, allows one to express some timed properties in the form of TPNs, but
properties on markings are quite difficult to express with observers [16]. Other techniques define translation procedures
from the TPN model into a semantically equivalent timed automata [4], in order to make use of available model checking
tools [15,19,21,28,33].Model checking is then performed on the resulting timed automaton,with results interpreted back on
the original TPNmodel. Though effective, these techniques face the difficulty to interpret back and forth properties between
the two models. In this paper, we propose a model checking approach to directly verify timed properties on the TPN model

∗ Corresponding author. Tel.: +1 514 340 4711.
E-mail addresses: rachid.hadjidj@polymtl.ca (R. Hadjidj), hanifa.boucheneb@polymtl.ca (H. Boucheneb).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.06.019

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:rachid.hadjidj@polymtl.ca
mailto:hanifa.boucheneb@polymtl.ca
http://dx.doi.org/10.1016/j.tcs.2009.06.019

4242 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

using the state class method, and prove its decidability for all bounded1 TPN models. Timed properties we consider are
mostly a subset of the TCTL timed logic [3], we call TCTLTPN , sufficient in general to verify most interesting timed properties
(reachability, safety, bounded liveness, etc). For reasons of efficiency, the model checking approach we propose is based on
an on-the-fly exploration technique [5,11,25], combined with an abstraction by inclusion2 [14] to better confine the state
explosion problem. For further improvement, we introduce a relaxation operation where state classes are extended with
states reachable via time progressions. The relaxation allows one to compute a relaxed version of the SCG, we call RSCG,
with similar properties, but smaller and faster to compute in general.
Given a TPNmodel and a TCTLTPN property, the TPNmodel is first augmented (put in parallel)with a special TPNmodel,we

call Alarm-clock. The state class graph3 [9] of the combined TPN is then explored, while looking for important time events to
decide the truth value of the considered timed property. Alarm-clock has two transitionswith special firing priorities. During
the exploration, these transitions can be set to fire at precise moments (the beginning and the end of a time interval), which
allows one to capture important time events. State classes construction is also adapted to cope with the introduced priority
concepts. To show the effectiveness of our verification technique, we compare it with the approach implemented in the tool
UPPAAL [5], and give some experimental results. On average, wewere able to verify some properties 13.85 times faster than
UPPAALwith 1.48 times lesser memory. For some properties andmodels, our approachwas 3485 times faster, and used 120
times lesser memory.
The rest of the paper is organized as follows. Section 2 introduces the TPN model and its semantics. Section 3 presents

the state class method and shows how to construct the state class graph (SCG) as an abstraction of the TPN state space.
In Section 4, we propose a relaxed version of the SCG. Section 5 describes the timed temporal logic TCTL, then introduces
TCTLTPN . In Section 6, we develop our model checking technique and give an illustrative example. In Section 7, we compare
our approach with the reachability algorithm implemented in the tool UPPAAL [5]. Section 8 reports some experimental
results and comparisons with the tool UPPAAL.

2. Time Petri nets

Let Q+ and R+ be, respectively, the set of nonnegative rational numbers and the set of nonnegative real numbers. Let
Q+
[]
be the set of non empty intervals of R+ which bounds are respectively inQ+ andQ+ ∪ {∞}. For an interval I ∈ Q+

[]
, ↓ I

and ↑ I denote respectively its lower and upper bounds.

Definition 1. Time Petri net (TPN)
A TPN is a tuple (P, T , Pre, Post,m0, Is)where:

• P is a finite set of places,
• T is a finite set of transitions, such as P ∩ T = ∅,
• Pre and Post are the backward and the forward incidence functions: P × T → N, where N is the set of nonnegative
integers,
• m0 : P → N, is the initial marking,
• Is : T → Q+

[]
associates with each transition t an interval [↓ Is(t),↑ Is(t)] called its static firing interval. The bounds

tmin(t) =↓ Is(t) and tmax(t) =↑ Is(t) are called theminimal andmaximal static firing delays of t .

Informally, a TPN is a Petri net with time intervals attached to its transitions [29]. LetM be the set of all markings of the
TPNmodel,m ∈ M amarking, and t ∈ T a transition. t is said to be enabled inm, iff all tokens required for its firing are present
inm, i.e.:∀p ∈ P,m(p) ≥ Pre(p, t). For clarity reasons, we consider here only T-safe TPNs (nomulti-enabled transitions).We
denote by En(m) the set of all transitions enabled inm. Ifm results from firing transition tf from anothermarking,New(m, tf)
denotes the set of all transitions newly enabled inm, i.e.: New(m, tf) = {t ∈ En(m)|∃p,m(p)− Post(p, tf) < Pre(p, t)}.

2.1. The TPN state

There are two known characterizations of the TPN state. The first one, based on clocks, associates with each transition t
of the TPN model a clock to measure the time elapsed since t became enabled most recently. The TPN state is defined as a
marking and a clock valuation function which associates with each enabled transition the value of its clock [13–15,20].

Definition 2. Clock state
The TPN clock state is a couple (m, V), wherem is a marking and V is a clock valuation function, V : En(m)→ R+.

1 A TPN is bounded if the marking of each one of its places is bounded. In other words, a TPN is bounded if it has a finite number of reachable markings.
2 When a state class is explored, there is no need to explore another state class which is included in it.
3 The verification applies similarly on both the SCG and RSCG.

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4243

For a clock state (m, V) and t ∈ En(m), V (t) is the value of the clock associated with transition t . The initial clock state is
s0 = (m0, V0)where V0(t) = 0, for all t ∈ En(m0). The TPN clock state evolves either by time progression or by firing tran-
sitions. When a transition t becomes enabled, its clock is initialized to zero. The value of this clock increases synchronously
with time until t is fired or disabled by the firing of another transition. t can fire, if the value of its clock is inside its static
firing interval Is(t) = [tmin(t), tmax(t)]. It must be fired immediately, without any additional delay, when the clock reaches
tmax(t). The firing of a transition takes no time, butmay lead to anothermarking (required tokens disappearwhile produced
ones appear).
The second characterization, based on intervals, defines the TPN state as a marking and a function which associates with

each enabled transition the time interval in which the transition can fire [9].

Definition 3. Interval state
The TPN interval state is a couple (m, I), wherem is a marking and I is an interval function, I : En(m)→ Q+

[]
.

For a state s = (m, I), and t ∈ En(m), I(t) is called the firing interval of t . I is also called the firing domain of s, since it
can be interpreted as a set of tuples {i|i(t) ∈ I(t),∀t ∈ En(m)}. The initial state of the TPN model is s0 = (m0, I0), where
I0(t) = Is(t), for all t ∈ En(m0). The TPN state evolves either by time progression or by firing transitions.When a transition t
becomes enabled, its firing interval is set to its static firing interval Is(t). The bounds of this interval decrease synchronously
with time, until t is fired or disabled by another firing. t can fire, if the lower bound of its firing interval reaches 0, but must
be fired, without any additional delay, if the upper bound of its firing interval reaches 0. The firing of a transition takes no
time.
We focus, in the remainder of this paper, on the later characterization, for its advantages over the first one when

computing abstractions for the TPN model that preserve markings and linear properties. These advantages will be made
clear in Section 3.3.
Let s = (m, I) and s′ = (m′, I ′) be two states of the TPN model. We write s

θ
→ s′, iff state s′ is reachable from state s after

a time progression of θ time units (s′ is also denoted s+ θ), i.e.:
∃θ ∈ R+,

∧
t∈En(m)

θ ≤ ↑ I(t),

m′ = m,
∀t ′ ∈ En(m′), I ′(t ′) = [max(↓ I(t ′)− θ, 0),↑ I(t ′)− θ].

We write s
t
→ s′ iff state s′ is immediately reachable from state s by firing transition t . i.e.:

t ∈ En(m),
↓ I(t) = 0,
∀p ∈ P, m′(p) = m(p)− Pre(p, t)+ Post(p, t),

∀t ′ ∈ En(m′)
{
I ′(t ′) = Is(t ′) if t ′ ∈ New(m′, t),
I ′(t ′) = I(t) otherwise.

As a shorthand, we write s
θ t
→ s′ iff s

θ
→ s′′ and s′′

t
→ s′ for some state s′′, θ ∈ R+ and t ∈ T . We write s t s′ iff s

θ t
→ s′,

and write s s′ iff ∃t ∈ T s.t. s t s′.

2.2. The TPN state space

Definition 4. TPN state space
The state space of a TPN model is the structure (S,→, s0), where:

• s0 = (m0, I0) is the initial state of the TPN model,
• S = {s|s0

∗
→ s}, where

∗
→ is the reflexive and transitive closure of→, is the set of reachable states of the TPN model.

An execution path in the TPN state space, starting from a state s, is a maximal sequence ρ = s0
θ0t0
→ s1

θ1t1
→ s2....., such

that s0 = s. When no starting state is specified, the initial state of the TPN model is intended. The sequence θ0 t0 θ1 t1 is
called the trace of ρ.We denote by π(s) (respectively τ(s)) the set of all execution paths (respectively traces) starting from
state s. π(s0) and τ(s) are therefore the sets of all execution paths and traces of the TPN. The TPN state space defines the
branching semantics of the TPNmodel, whereas π(s0) defines its linear semantics. The total elapsed time during an execution
path ρ, denoted time(ρ), is the sum

∑
i≥0 θi. An infinite execution path is diverging if time(ρ) = ∞, otherwise it is said

to be zeno. A TPN model is said to be non zeno if all its execution paths are not zeno. Zenoness is a pathological situation
which suggests that an infinity of actions may take place in a finite amount of time. We consider, in this paper, non zeno
TPN models. Zenoness can be detected using the approach proposed in [15].

4244 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

3. Abstraction of the TPN state space preserving linear properties

Because of time density,4 a state in the TPN state space may have an infinity of successors. To finitely represent the state
space of a TPN model while preserving linear properties, Berthomieu and Menasche proposed in [9] to abstract time, and
group states in what is called state classes.

3.1. The TPN concrete state space

The abstraction of time consists in hiding time progressions in the TPN state space, while keeping only those states which
are immediately reachable after firing transitions. This operation results in a graph called concrete state space [30].

Definition 5. TPN concrete state space
The concrete state space of the TPN model is the structure (Σ, , s0)where:

• s0 is the initial state of the TPN model,
• Σ = {s|s0

∗
 s}, where ∗ is the reflexive and transitive closure of , is the set of reachable concrete states of the TPN

model.

3.2. The state class method

A state class is a symbolic representation for some infinite set of concrete states sharing the same marking. All concrete
states reachable from the initial state by the firing of the same sequence of transitions are agglomerated in the same state
class. The resulting graph is called state class graph (SCG) [9].
Let ω = t0, t1, t2, ...tn be a sequence of transitions firable from the initial TPN state. The state class corresponding to ω

(i.e., {s ∈ S|∃s1, . . . , sn ∈ S, s0
t0 s1

t1 s2...sn
tn s}) is represented by the pair (m, F), where m is the common marking of

all states agglomerated in the state class, and F is a formula that characterizes the union of all firing domains of these states.
In F , each transition enabled inm is represented with a variable having the same name.
The initial state class (m0, F0) coincides with the initial state of the TPN model (i.e., m0 is the initial marking and

F0 = (
∧
t∈En(m0)

tmin(t) ≤ t ≤ tmax(t))). Let α = (m, F) be a state class and tf a transition. The class α has a successor by
tf , denoted succ(α, tf), iff tf is enabled inm and can be fired before any other transition enabled in α. If this is the case, tf is
said to be firable from α. Algorithm 1 shows how to perform such a test.

Algorithm 1: isFirable(α = (m, F), tf)
if tf /∈ En(m) then Return false1
if (F ∧ (

∧
t∈En(m)−{tf }

tf ≤ t)) is consistent then2
Return true3

Return false4

Step 1 of algorithm1 checks if tf is enabled inm. Step 2 computes and checks the consistency of the formula corresponding
to the part of the firing domain of α where tf can be fired before any other enabled transition. If tf is firable from α,
α′ = succ(α, tf) is computed according to algorithm 2.

Algorithm 2: succ(α = (m, F), tf)
Let m′(p) = m(p)− Pre(p, tf)+ Post(p, tf), ∀p ∈ P1
Let F ′ = F ∧ (

∧
t∈En(m)−{tf }

tf ≤ t)2

Replace in F ′ each variable t 6= tf with t + tf3
Eliminate by substitution, in F ′, tf and all variables associated with transitions conflicting with tf form4
forall t ∈ New(m′, tf) do5
Add to F ′ the constraint tmin(t) ≤ t ≤ tmax(t)6

Return α′ = (m′, F ′)7

Step 1 of algorithm 2 computes the marking after firing tf . Step 2 selects in F ′ states from which tf is firable. Steps 3
and 4 decrease each firing delay by tf time units to coincide with the moment tf is fired. Steps 5 and 6 add constraints
corresponding to the newly enabled transitions.

4 The domain of clocks is R+ (continuous domain).

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4245

Fromalgorithm2, it is easy to see that the formula F of a state class can be rewritten as a conjunction of atomic constraints
of the form t − t ′ ≺ c (called also triangular constraints) or t ≺ c (called also simple constraints),where c ∈ Q∪{∞,−∞},≺∈
{=,≤,≥} and t, t ′ ∈ T . The domain of F is therefore convex and has a unique canonical form defined by:

∧
(x,y)∈(En(m)∪{o})2

x− y ≺x−yF Sup(x− y, F)
where:

• o represents the value zero,
• Sup(x− y, F) is the supremum of x− y in the domain of F .
• ≺

x−y
F is either≤ or<, depending respectively on whether x− y reaches its supremum in the domain of F or not.

The canonical form of state class (m, F) can be represented by the pair (m,D), where D is a DBM of order |En(m) ∪ {o}|,
defined by:
∀(x, y) ∈ (En(m) ∪ {o})2, Dx,y = (Sup(x− y, F),≺

x−y
F).

Each element of D is called a bound. Operations on bounds are defined as usual [5,6]. The computation of the canonical form
is based on the shortest path Floyd–Warshall’s algorithm [5,6].
State classes are considered modulo an equivalence relation, such that two state classes are equivalent iff they have the

same marking and their domains are equal (i.e., their formulas are equivalent). To compare two state classes, each one is
translated into its canonical form. They are equal if they have identical canonical forms [9]. Formally the SCG definition can
be stated as follows:

Definition 6. State class graph (SCG)
The state class graph of a TPN model is the structure (C,�, α0), where:

• α0 = (m0, F0) is the initial state class,
• α

t
� α′ iff (isFirable(α, tf) ∧ α′ = succ(α, t)),

• C = {α|α0 �
∗ α}, where�∗ is the reflexive and transitive closure of�.

Algorithm 3 shows how to progressively construct the SCG. It starts from the initial state class and uses the list WAIT
to store state classes which are not yet explored. In [8–10], the authors proved that the SCG is finite for all bounded TPN
models, and also preserves markings and traces (i.e., linear properties) of the concrete state space.

Algorithm 3: SCG(N = (P, T , Pre, Post,m0, Is))
α0= (m0, F0)1
C= {α0}2
�= ∅3
WAIT={α0}4
whileWAIT 6= ∅ do5
get α = (m, F) fromWAIT6
forall t ∈ En(m) s.t. isFirable(α, t) do7
α′=succ(α, t)8
if (α′ /∈ C) then9
Add α′ to C and to WAIT10
Add (α, t, α′) to�11

Return (C,�, α0)12

3.3. Other abstractions of the TPN model

Several other abstractions of the TPN state space exist also in the literature, but based on the clock characterization
of state classes. Some examples are the geometric region graph [33], the zone based graph (ZBG) [20], and the strong state
class graph (SSCG) [10]. All these abstractions are, however, less interesting than the SCG when only linear properties are
of interest. They are, in general, much larger, and do not naturally enjoy the finiteness property for all bounded TPNs, as
is the case for the SCG.5 The origin of these differences stems from the relationship between the two characterizations
of states which can be stated as follows: Let (m, V) be a clock state. Its corresponding interval state is (m, I) such that:
∀t ∈ En(m), I(t) = [max(0, tmin(t)−V (t)), tmax(t)−V (t)]. In words, the bounds of I(t) are respectively the minimal and
maximal remaining times before t can fire. Note that for any real value v ≥ tmin(t), if tmax(t) = ∞, tmax(t)− v = ∞ and

5 For bounded TPN models with unbounded firing intervals, finiteness is enforced using an approximation operation on state classes. This operation
known under the name k-approximation or k-normalization, is similar to the one used for timed automata to achieve the same objective [20].

4246 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

Fig. 1. The relaxation operation.

max(0, tmin(t)−v) = 0. This means that for TPNmodels with unbounded firing intervals, infinitely many clock states may
map to the same interval state. In such a case, all these stateswill obviously exhibit the same future behavior. In otherwords,
theywill be bisimilar to each other. The same remark also extends to state classes, where several state classes based on clocks
(sometimes an infinity) may map to a single state class based on intervals. Note, also, that states in a clock state class can
be distinguished one by one, whereas it is impossible with an interval state class. The reason is that the firing domain of
an interval state class is the union of firing domains of all its states, and the union is known to be an irreversible operation.
Together, the mentioned remarks suggest that the interval characterization of states has a more abstracting power than the
clock characterization, and allows one to construct much more compact abstractions of the TPN state space. It is therefore a
better choice in our context (see Table 1 in Section 8 for a comparison between the SCG and its equivalent computed using
the clock characterization of states).

4. Relaxing state classes

We propose, in the following, to construct a relaxed version of the SCG, we call RSCG (Relaxed SCG), as an abstraction of
the whole TPN state space, instead of just its concrete state space. The construction proceeds exactly as for the SCG, despite
the fact that state classes are relaxed each time they are computed (including the initial state class). The relaxation of a
state class consists in extending it with states reachable via time progressions. Knowing that delays decrease with time, the
relaxation consists in replacing lower bounds of delay intervals with 0. Let α = (m, F) be a state class in canonical form.
The relaxation of α, denoted by relax(α), is the class α′ = (m, F ′) computed according to algorithm 4.

Algorithm 4: relax(α = (m, F))
F ′ = F1

forall atomic constraint f of F ′, of the form o− t ≺o−tF ′ c, with t ∈ En(m) do2
Replace f with o− t ≤ 0 in F ′3

Return canonical form of α′ = (m, F ′)4

In algorithm 4, steps 2 and 3 replace each atomic constraints of F of the form o − t ≺o−tF c with o − t ≤ 0, causing the
lower bound of the firing domain of each transition to be retracted as close as possible to the bound zero. In fact, since F
is in canonical form, in constraint o − t ≺o−tF c , c = Sup(o − t, F) with c ≤ 0 and o = 0. This constraint can be written
−c ≺o−tF t , and is extended to become 0 ≤ t . From the interval characterization perspective, this extension reflects a time
progression, since firing delays decrease with time progression. Fig. 1 shows the relaxation of a state class with two enabled
transitions.

Lemma 1. (i) A state class and its relaxation (in canonical forms) have identical triangular constraints and upper bounds of
transition delays.

(ii) A state class and its relaxation have the same successors, i.e., succ(α, tf) = succ(relax(α), tf).

Proof. (i) Let α = (m, F) be a state class and α′ = (m, F ′) = relax((m, F)) its relaxed state class. F ′ is obtained from the
canonical form of F by replacing constraints of the form o− t ≺o−tF ′ Sup(o− t, F), t ∈ En(m)withmore larger constraints
o− t ≤ 0 and then putting the resulting formula in canonical form. It follows that:
• F ′ is consistent.

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4247

• ∀t, t ′ ∈ En(m),
Sup(t − t ′, F ′) = Sup(t − t ′, F).
Sup(t − o, F ′) = Sup(t − o, F).
Sup(o− t, F ′) ≥ Sup(o− t, F).

Then, (m, F) and its relaxed state class have identical triangular constraints and upper bounds of transition delays. Their
lower bounds are more close to 0 in relax((m, F)) than in (m, F).

(ii) Note, first, that by succ(relax(α), tf) we mean the direct successor of relax(α) before it is relaxed and not the one
after applying the relaxation. The one after applying the relaxation (i.e., after letting some time to pass) would be
relax(succ(relax(α), tf)), which is, in general, different from succ(relax(α), tf).
Intuitively, since the computation of succ(α, tf) already takes into account all states reachable from α by time

progression (steps 3 and 4 in Algorithm 2), the fact of adding these states to α prior to computing the successor (i.e.,
using relax(α) instead of α) would not have any impact on the final result.
For a more formal proof, let us first give some definitions and notations. Let α = (m, F) be a state class and tf a

transition of En(m) and α′ = relax(α) = (m, F ′).
A firing schedule of α is a function
v : En(M) ∪ {o} → (R+ ∪ {∞}) s.t. v(o) = 0 and∧

x,y∈En(m)∪{o}

v(x)− v(y) ≺x−yF Sup(x− y, F)).

Let v be a firing schedule of α, d ∈ R+, and v + d the function over En(M) ∪ {o} defined by: (v + d)(o) = 0 and
∀t ∈ En(m), (v + d)(t) = v(t)+ d.
Let FS(α) be the set of firing schedules of α.
The proof of (ii) consists of showing that:

Claim 1- FS(α) ⊆ FS(α′).
Claim 2- For each firing schedule v′ of α′, there exists some firing schedule v of α and d ≥ 0 such that v = v′ + d.
Claim 3- tf is firable from α iff tf is firable from relax(α).

Claim 4- succ(α, tf) = succ(relax(α), tf).
Proof of claim 1: is immediate since α′ includes α.
Proof of claim 2: Let v′ be a firing schedule of α′. Then:∧

t,t ′∈En(m)

v′(t)− v′(t ′) ≺t−t
′

F Sup(t − t ′, F) ∧∧
t∈En(m)

v′(t) ≺t−oF Sup(t − o, F) ∧∧
t∈En(m)

− v′(t) ≺o−tF 0.

We have to show that there exists d ≥ 0 such that:∧
t,t ′∈En(m)

v′(t)+ d− v′(t ′)− d ≺t−t
′

F Sup(t − t ′, F)) ∧∧
t∈En(m)

v′(t)+ d ≺t−oF Sup(t − o, F) ∧∧
t∈En(m)

− v′(t)− d ≺o−tF Sup(o− t, F).

Since ∀d ∈ R, v′(t)− v′(t ′) = v′(t)+ d− v′(t ′)− d, it suffices to show that: there exists d ≥ 0 s.t.:∧
t∈En(m)

d ≺t−oF Sup(t − o, F)− v′(t) ∧∧
t∈En(m)

− d ≺o−tF Sup(o− t, F)+ v′(t).

Let x and y be respectively transitions of En(m) s.t.

(Sup(o− x, F)+ v′(x),≺o−xF) = Min
t∈En(m)

(Sup(o− t, F)+ v′(t),≺o−tF)

(Sup(y− o, F)− v′(y),≺y−oF) = Min
t∈En(m)

(Sup(t − o, F)− v′(t),≺t−oF).

4248 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

Such a d exists iff:

−(Sup(o− x, F)+ v′(x),≺o−xF) ≤ (Sup(y− o, F)− v′(y),≺y−oF).

Or else

(v′(y)− v′(x),≤) ≤ (Sup(y− o, F)+ Sup(o− x, F),Min(≺o−xF ,≺
y−o
F).

The rest of the proof is straightforward from the fact that v′(y)− v′(x) ≺y−xF Sup(x− y, F) and

(Sup(y− x, F),≺y−xF) ≤ ((Sup(y− o, F)+ (Sup(o− x, F),Min(≺y−oF),≺o−xF)).

Proof of claim 3: tf is firable from α = (m, F) iff F
∧
t∈En(m) tf − t ≤ 0 is consistent.

Or else tf is firable from α = (m, F) iff there exists a firing schedule v of α such that ∀t ∈ En(m), v(tf) ≤ v(t). Claims
1 and 2 allow us to state that such a firing schedule exists iff there exists a firing schedule v + d of α′ such that d ∈ R+
and ∀t ∈ En(m), (v + d)(tf) ≤ (v + d)(t).
Proof of claim 4: Consider steps 2 and 3 of algorithm 2 (succ((m, F)). Let F2 and F3 be, respectively, formulas obtained
at steps 2 and 3. Firing schedules of (m, F2) and (m, F2) are respectively:

FS((m, F2)) = {v ∈ FS((m, F)) | ∀t ∈ En(m), v(tf) ≤ v(t)}
FS((m, F3)) = {v − v(tf) | v ∈ FS((m, F2))}.

Let F2′ and F3′ be, respectively, formulas obtained at steps 2 and 3 for relax((m, F)). Firing schedules of (m, F2′) and
(m, F2′) are respectively:

FS((m, F2′)) = {v′ ∈ FS(relax((m, F))) | ∀t ∈ En(m), v′(tf) ≤ v′(t)}
FS((m, F3′)) = {v′ − v′(tf) | v′ ∈ FS((m, F2′))} �

Claim 1 implies that FS((m, F3)) ⊆ FS((m, F3′)). Let v′ ∈ FS((m, F2′)). Claim 2 states that there exists v ∈ FS
(relax(m, F)) and d ≥ 0 s.t. v = v′ + d. Since ∀t ∈ En(m), v′(tf) ≤ v′(t), it follows that ∀t ∈ En(m), v(tf) ≤ v(t) and
v − v(tf) = v′ − v′(tf). Therefore, FS((m, F3)) = FS((m, F3′)) and then succ(α, tf) = succ(relax(α), tf). �

The following theorem states some characteristics of the RSCGwhichmake it more suitable than SCG formodel checking
linear properties of the TPN model.

Theorem 1. (i) The RSCG preserves markings and traces of the complete TPN state space.
(ii) The RSCG is smaller or equal in size than the SCG.
(iii) The RSCG is finite for all bounded TPNs.

Proof. (i) Recall that the construction of the RSCG proceeds exactly as for the SCG, except that state classes are
relaxed each time they are computed, including the initial state class. From the fact that isFirable((m, F), tf) iff
isFirable(relax(m, F), tf) and succ(α, tf) = succ(relax(α), tf), we can conclude that state classes of the RSCG are relaxed
state classes of the SCG. Since the relaxation of a state class consists in extending it with all states reachable by time
progressions, it follows that the RSCG preserves markings and traces of the complete TPN state space.

(ii) Two different state classes may have identical relaxations. As an example, consider the two state classes α1 = (m, 2 ≤
t ≤ 3) and α2 = (m, 1 ≤ t ≤ 3). We have relax(α1) = relax(α2) = (m, 0 ≤ t ≤ 3) while α1 6= α2. So, because of the
relaxation, the number of state classes of the RSCG gets reduced compared with the number of state classes of the SCG,
as identical relaxed state classes get grouped in one class (see experimental results 8).

(iii) The proof is immediate from (ii) and the fact that the SCG is bounded for all bounded TPNs. �

5. Our timed temporal Logic

We define a timed temporal logic for which we give algorithms to verify the satisfaction of its formulas in the context of
the TPNmodel. The logic we consider is mostly a subset of the TCTL timed logic, for which atomic propositions are expressed
on markings.
Let M be the set of reachable markings of a TPN model N , and PR the set of propositions on M , i.e., {℘|℘ : M →

{true, false}}. Before introducing our temporal logic we recall the syntax and semantics of TCTL logic in the context of the
TPN model. The syntax of TCTL formulas is defined by the following grammar (in the grammar, ℘ ∈ PR and index I is an
element of Q+

[]
):

ϕ := ℘ | ¬ϕ | ϕ ∧ ϕ | ∀(ϕ UI ϕ) | ∃(ϕ UI ϕ).

TCTL formulas are interpreted on states of a model M = (S,V), where S = (S,→, s0) is the state space of the TPN
model and V : S → 2PR is a valuation function such that: if s = (m, I) is a TPN state, V(s) = {℘ ∈ PR | ℘(m) = true}. To
interpret a TCTL formula on an execution path, we introduce the notion of dense execution path. Let s ∈ S be a TPN state and

ρ = s0
θ1t1
→ s1

θ2t2
→ s2..... an execution path such that s0 = s (i.e., ρ ∈ π(s)). The dense execution path corresponding to ρ is

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4249

the set defined by:
ρ̆ = {(siδ, i, δ) ∈ S × N × R+ | siδ = si + δ ∧ δ ≤ θi+1}. Let ≺∈ {<,≤} and �∈ {>,≥} be relations over ρ̆ defined by:
∀r = (siδ, i, δ), r ′ = (siδ′ , i′, δ′) ∈ ρ̆,
- r ≺ r ′ iff (i < i′ ∨ (i = i′ ∧ δ ≺ δ′)).
- r � r ′ iff (i > i′ ∨ (i = i′ ∧ δ � δ′)).
Let r = (siδ, i, δ) ∈ ρ̆, Θρ(r) = (

∑i
j=0 θj) + δ (with θ0 = 0) and ρ̆(r) = siδ . The formal semantics of TCTL is given by the

satisfaction relation |= defined as follows:
-M, s |= p iff p ∈ V(s);
-M, s |= ¬p iff p /∈ V(s);
-M, s |= ϕ ∧ ψ iffM, s |= ϕ andM, s |= ψ;
-M, s |= ∀(ϕUIψ) iff ∀ρ ∈ π(s), s.t time(ρ) = ∞, ∃r ∈ ρ̆,Θρ(r) ∈ I,M, ρ̆(r) |= ψ and ∀r ′ ∈ ρ̆ s.t. r ′ < r ,M, ρ̆(r ′) |= ϕ;
-M, s |= ∃(ϕUIψ) iff ∃ρ ∈ π(s), s.t time(ρ) = ∞, ∃r ∈ ρ̆,Θρ(r) ∈ I,M, ρ̆(r) |= ψ and ∀r ′ ∈ ρ̆ s.t. r ′ < r ,M, ρ̆(r ′) |= ϕ.
The TPN model N is said to satisfy a TCTL formula φ iffM, s0 |= φ. To ease TCTL formulas writing, some abbreviations

are used: ∃♦Iϕ = ∃(trueUIϕ), ∀♦Iϕ = ∀(trueUIϕ), ∃�Iϕ = ¬∀♦I¬ϕ, ∀�Iϕ = ¬∃♦I¬ϕ. When interval I is omitted, its
value is [0,∞[by default.
Our timed temporal logic, we call TCTLTPN , is defined as follows:

TCTLTPN ::= ∃(℘1UI℘2) | ∀(℘1UI℘2) | ℘1 7→I ℘2 | ∃♦I℘1| ∀♦I℘1 | ∃�I℘1 | ∀�I℘1 | ℘1 Ir ℘2

℘1 and ℘2 are propositions on markings (i.e., ℘1, ℘2 ∈ PR). Index I is an element of Q+[]. Ir is a time interval which starts
from 0.
Formula℘1 Ir ℘2 is a shorthand for the TCTL formula∀�(℘1 ⇒ ∀♦Ir℘2)which expresses a bounded response property.
Formula ℘1 7→I ℘2 expresses also a bounded response property, but with a slightly different semantics.

Intuitively, φ = ℘1 7→I ℘2 holds at a state s iff for each execution path ρ starting from s, if ℘1 is true for the first time on
ρ at a state s′, then ℘2 should be true the first time at a state s′′, reachable from s′, within time interval I (starting from s′).
Furthermore, φ must be recursively valid starting from s′′. More precisely, this means that if ℘1 holds the first time on ρ at
state s′, then:
1 - In case℘2 does not hold at state s′ then℘2 will eventually hold the first time at a state s′′, within time interval I (relatively
to the time s′ occurred), while φ holds also at state s′′.
2 - In case ℘2 holds at state s′ then ↓ I must be equal to zero, and φ must hold at the first following state which does not
satisfy both ℘1 and ℘2.
Formally, M, s |= ℘1 7→I ℘2 iff ∀ρ ∈ π(s), s.t time(ρ) = ∞, if (∃r ′ ∈ ρ̆, (M, ρ̆(r ′) |= ℘1) and ∀r1 ∈ ρ̆ s.t. r1 < r ′,
M, ρ̆(r1) 2 ℘1 then:
1 - M, ρ̆(r ′) 2 ℘2 ⇒ ∃r" ∈ ρ̆, M, ρ̆(r") |= ℘2, Θρ(r") − Θρ(r ′) ∈ I, ∀r2 ∈ ρ̆ s.t. r ′ < r2 < r", M, ρ̆(r2) 2 ℘2 and
(M, ρ̆(r") |= ℘1 7→I ℘2).
2 - M, ρ̆(r ′) |= ℘2 ⇒ ↓ I = 0 and ∃r" ∈ ρ̆ s.t. r" ≥ r ′, (M, ρ̆(r") |= ¬(℘1 ∧ ℘2)), ∀r2 ∈ ρ̆ s.t. r ′ < r2 < r",
(M, ρ̆(r2) |= (℘1 ∧ ℘2)) and (M, ρ̆(r") |= ℘1 7→I ℘2).

In the sequel,℘1 7→I ℘2 will be called the bounded first response property. One remark about this property is that it does
not seem to have a simple TCTL equivalent6 as is the case for the bounded response property. However, the next theorem
states that, for intervals starting from 0, the bounded response and the bounded first response are equivalent.

Theorem 2. M, s |= ℘1 7→Ir ℘2 iffM, s |= ℘1 Ir ℘2.

Proof. Let b be the upper bound of Ir and ρ ∈ π(s).
[⇒:] Let s′ be the first state in ρ, starting from swhere℘1 is true (if s′ does not exist, the proof ends). Let s" be the first state,
in ρ starting from s′ where ℘2 is true. The semantics of ℘1 7→Ir ℘2 assures that the time θ which separates s

′ and s" is such
that θ ≤ b. From this, it is obvious that for each state si which is reached before s" in ρ, if si satisfies ℘1 then there exists
a state sj reachable, in ρ, from si within b time units s.t. sj satisfies ℘2 (in this case sj would be s"). The recursive semantics
of ℘1 7→Ir ℘2 assures also that the same property is also satisfied for the sub-path that starts from s". This, in turn, assures
that for any state si of ρ if si satisfies ℘1 then there exists a state sj reachable from si in ρ within b time units s.t. sj satisfies
℘2, which means that ℘1 Ir ℘2 is true for the path ρ.
[⇐:] Let s′ be the first state, in ρ, starting from swhere℘1 is true (if s′ does not exist, the proof ends). Let s" be the first state,
in ρ, starting from s′ where ℘2 is true. From the semantics of ℘1 Ir ℘2 we can be sure that the time θ which separates s

′

and s" is such that θ ≤ b. This property is also satisfied for the sub-path starting from s". In other words ℘1 7→Ir ℘2 is true
for the path ρ. �

The following lemma asserts that two states with the same marking and identical traces have exactly the same TCTLTPN
properties. Consequently, any TPN abstraction which preserves markings and traces, it also preserves TCTLTPN properties.

6 In fact, it seems to have no equivalent at all. However, a full proof of this claim is necessary but is out of the scope of this paper.

4250 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

ta [a, a]

Pa Pb

tb [b – a, b – a]

Fig. 2. The Alarm-clock TPN.

Lemma 2. Let φ be a TCTLTPN formula, s = (m, I) and s′ = (m′, I ′) two states which have the same marking (i.e. m = m′) and
identical traces (i.e. τ(s) = τ(s′)).
ThenM, s |= φ iffM, s |= φ.

Proof. The proof is immediate from the fact that two execution pathsρ ofρ ′which have the same trace, satisfy the following
relation: ∀i ∈ N , states of ρ̆(i) and those of ρ̆ ′(i) have the same marking. �

6. On-the-fly TCTLTPN model checking

On-the-fly forward model checking of a TPN model N for a TCTLTPN formula φ could be performed by progressively
constructing an abstraction of the TPN state space that preserves its markings and traces (the SCG or the RSCG in our case),
while checking the truth value ofφ. The construction stops as soon as this truth value is established,which avoids computing
the whole abstraction in most cases. This technique has proven to be very effective for model checking timed automata for
a subset of TCTL formulas similar to TCTLTPN , but without the bounded first response property [5]. Tools like UPPAAL [5]
implement this technique and report better performances than when using standard model checking techniques [17].
First,we give an algorithm tomodel check the bounded first response property, thenwe showhow to adapt this algorithm

to model check the remaining TCTLTPN properties. Note that all the following developments apply similarly to both the SCG
and the RSCG. The SCG is considered for explanations.

6.1. Model checking the bounded first response property

Let N be a TPN model and φ = ℘1 7→I ℘2 where I = [a, b]. Model checking φ on N could be performed by analyzing
each execution path of N ’s SCG, until the truth value of φ is established. The SCG is progressively constructed, depth first,
while looking for the satisfaction of property ℘1. If ℘1 is satisfied at a state class α, ℘2 is looked for in each execution paths
which starts from α (i.e., ∀ρ ∈ π(α)). For each execution path ρ ∈ π(α), ℘2 is required to be satisfied the first time at
a state class α′ such that the time separating α and α′ is within the time interval I . If this is the case the verification of φ
is restarted again from α′, and so forth, until all state classes are explored. Otherwise, the exploration is stopped, and φ is
declared invalid.
Two important issues need to be addressed in this technique: how to count time between the moments ℘1 and ℘2 are

satisfied on a execution path, and how to deal with infinite paths resulting from cycles. To resolve these two issues, we
propose to put the TPN modelN in parallel with the TPN model of Fig. 2, we call Alarm-clock. The resulting TPN we denote
N ||Alarm, is used instead ofN to verify φ.
The verification of φ now proceeds as follows: During the generation of the SCG of N ||Alarm, if ℘1 is satisfied in a state

class α = (m, F), transition ta is enabled in α to capture the event corresponding to the beginning of time interval I . ta is
enabled by changing the markingm in α such that place Pa would contain one token, and replacing F with F ∧ ta = a. These
two actions correspond to artificially putting a token in place Pa of Alarm-clock. The generation process continues while
checking℘2. If℘2 is satisfied before ta is fired, φ is declared invalid and the exploration stops.When ta is fired (whichmeans
that time has come to start looking for ℘2), tb gets enabled in the resulting state class α′ = (m′, F ′) to capture the event
corresponding to the end of interval I . If tb is fired during the exploration, φ is declared invalid and the exploration stops. If
before firing tb,℘2 is satisfied in a state class α′′ = (m′′, F ′′), transition tb is disabled in α′′ by changing the markingm′′ such
that place Pb would contain zero tokens, and eliminating variable tb from F ′′. These two actions corresponds to artificially
removing the token in place Pb. After α′′ is modified, φ is checked again starting from α′′. Note that in this technique, the fact
of knowing a state class and the transition that led to it, is sufficient to knowwhich action to take.7 This means that there is
no need to keep track of execution paths during the exploration, and hence, the exploration strategy of the SCG (depth first,
breadth first,..) is irrelevant. This, in turn, solves the problem of dealing with cycles and infinite execution paths for bounded
TPN models.
Letα = (m, F) be a state class and t the transition that led to it. The different cases thatmight arise during the exploration

are given in what follows (see Section 6.3 for an illustrative example):

1- The case where ta, tb /∈ En(m) and t /∈ {ta, tb} corresponds to a situation where we are looking for ℘1.
• In case ℘1 is satisfied in α while ℘2 is not, we enable ta in α,
• In case ℘1 and ℘2 are both satisfied in α while a 6= 0, we stop the exploration and declare φ invalid.

7 For uniformity reasons, we assume a fictitious transition tε as the transition which led to the initial state class.

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4251

2- The case where ta ∈ En(m) corresponds to a situation where ℘1 has been satisfied before, and where we need to make
sure that ℘2 is not satisfied, unless a = 0. If ℘2 is satisfied in α while a > 0, we stop the exploration and declare φ
invalid.

3- The case where tb ∈ En(m) corresponds to a situation where we are looking for℘2. If℘2 is satisfied in α then we disable
tb and get in a situation where we are looking for ℘1 (i.e., (1)).

4- The case where t = tb corresponds to a situation where interval I has expired while we are looking for ℘2. In this case,
we stop the exploration and declare φ invalid.

Some attention is required when dealing with transitions ta and tb. If transition ta can be fired at exactly the same time as
another transition t , and t is fired before ta,ϕmight be declaredwrongly false if the resulting state class satisfies℘2. A similar
situation might arise for transition tb if it is fired before a transition t which can be fired at exactly the same time. To deal
with these two special situations, we assign a high firing priority to transition ta, so that it is fired before any other transition
which can be fired at exactly the same time. As the contrary, we assign a low firing priority to tb so that it is fired after any
other transition which can be fired at exactly the same time. To cope with this priority concepts, we need to change the way
we decide if a transition is firable or not (i.e., operation isfirable), and the way the successor of a state class α = (m, F), by a
transition t , is computed (i.e., operation succ).

Algorithm 5: isFirableAC (α = (m, F), tf)
if tf /∈ En(m) then Return false1
Let F ′ = F ∧ (

∧
t∈En(m)−{tf }

tf ≤ t)2

if ta ∈ En(m) ∧ tf 6= ta then3
F ′ = F ′ ∧ tf < ta4

else if tb ∈ En(m) ∧ tf = tb then5
F ′ = F ∧ (

∧
t∈En(m)−{tf }

tf < t)6

if F ′ is consistent then Return true7
Return false8

isFirableAC (α, tf) replaces isFirable(α, tf) to check whether a transition is firable or not. What changes is the way formula
F ′ is computed. In case ta is enabled while we want to fire a different transition tf (step 4), we need to make sure that tf is
fired ahead of time of ta. In case tb is enabled and is the one we want to fire (step 6), we need to make sure that tb is the only
transition that can be fired. The remaining cases are handled exactly as before.
succAC (α, tf) replaces succ(α, tf) for generating successor state classes during the exploration. What changes is also the

way formula F ′ is computed.

Algorithm 6: succAC (α = (m, F), tf)
Let m′(p) = m(p)− Pre(p, tf)+ Post(p, tf),∀p ∈ P1
if tf /∈ En(m) then Return false2
Let F ′ = F ∧ (

∧
t∈En(m)−{tf }

tf ≤ t)3

if ta ∈ En(m) ∧ tf 6= ta then4
F ′ = F ′ ∧ tf < ta5

else if tb ∈ En(m) ∧ tf = tb then6
F ′ = F ∧ (

∧
t∈En(m)−{tf }

tf < t)7

Replace in F ′ each variable t with t + tf8
Eliminate by substitution, in F ′, tf and all variables associated with transitions conflicting with tf form9
forall t ∈ New(m′, tf) do10
Add to F ′ the constraint tmin(t) ≤ t ≤ tmax(t)11

Return (m′, F ′)12

6.2. Model checking algorithms

The on-the-fly TCTLTPN model checking of formula φ is based on the exploration algorithm 7.
The algorithmuses two lists:WAIT and COMPUTED, tomanage state classes, and calls a polymorphic satisfaction function

checkStateClassφ to check the validity of formula φ. COMPUTED contains all computed state classes, while WAIT contains
state classes of COMPUTEDwhich are not yet explored. As a consequenceWAIT is just a sublist of COMPUTED.8 The algorithm

8 From an implementation point of view, the list WAIT is a list of references to state classes in the list COMPUTED.

4252 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

Algorithm 7:modelChek(φ)
Let continue=true /* global variable */1
Let valid=true /* global variable */2
Let COMPUTED= ∅3
Let α0= (m0, F0)4
Let α′0=checkStateClassφ(α0, tε)5
Let WAIT={α′0}6
while continue do7
remove α = (m, F) fromWAIT8
forall t ∈ En(m) s.t. isFirableAC (α, t) provided continue do9
α′:=succAC (α, t)10
α′′:=checkStateClassφ(α′, t)φ11
if continue ∧ α′′ 6= ∅ ∧ @αp ∈ COMPUTED s.t. α′′ ⊆ αp then12

forall αp ∈ COMPUTED s.t. αp ⊆ α′′ do13
remove αp from COMPUTED and fromWAIT14

Add α′′ to COMPUTED and toWAIT15

Return valid16

generates state classes by firing transitions. The initial state class is supposed to result from the firing of a fictive transition
tε . Each time a state class α is generated as the result of firing a transition t , α and t are supplied to checkStateClassφ to
perform actions and take decisions. In general, checkStateClassφ enables or disables transitions ta and tb in α. It also takes
decisions and records them in two global boolean variables continue and valid, to guide the exploration process. Finally, it
returns either α after modification or ∅ in case α needs to be no more explored (i.e., ignored). The exploration continues
only if continue is true. valid is used to record the truth value of φ. After checkStateClassφ is called, the state class α′ it returns
is inserted in the list WAIT only if it is not included in a previously computed state class (i.e., @α ∈ COMPUTED s.t. α′ ⊆ α).
Otherwise, α′ is inserted in the list WAIT, while all state classes of the list COMPUTEDwhich are included into α′ are deleted
from both COMPUTED andWAIT. This strategy, which is also used in the tool UPPAAL [5], attenuates considerably the state
explosion problem. So instead of exploring both α and α′, exploring α′ is sufficient. Operation checkStateClassφ takes as
parameters: a state class, and the transition that led to it. Three different implementations of checkStateClassφ are required
for the three principal forms of φ, i.e.,℘1 7→I ℘2, ∀(℘1UI℘2) and ∃(℘1UI℘2), with I = [a, b] (bound b can be either finite or
infinite). All of these implementations handle four mutually exclusive cases corresponding to four types of state classes that
can be encountered on an execution path. The first implementation (algorithm 8) corresponds to property φ = ℘1 7→I ℘2.
Its steps match exactly those described in Section 6.1. The first case it handles corresponds to a state class not reached by
the firing ta nor tb, and neither of them is enabled in it. The remaining cases correspond respectively to: a state class where
transition ta is enabled, a state class where transition tb is enabled, and a state class reached by the firing of transition tb.

Algorithm 8: checkStateClass℘1 7→I℘2(α = (m, F), t)
if ta, tb /∈ En(m) ∧ t /∈ {ta, tb} then /* case 1 */1

if ℘1(m) ∧ ¬℘2(m) then2
enable ta in α;3

if ℘1(m) ∧ ℘2(m) ∧ a > 0 then4
valid=false; continue=false ;5

if ta ∈ En(m) ∧ ℘2(m) then /* case 2 */6
valid=false; continue=false;7

if tb ∈ En(m) ∧ ℘2(m) then /* case 3 */8
disable tb in α;9

if t = tb then /* case 4 */10
valid=false ; continue=false;11

Return α;12

The second implementation (algorithm 9) corresponds to property φ = ∀(℘1UI℘2). In the first case, this implementation
looks for the initial state class only. The remaining cases are similar to those of the first implementation, but different actions
are taken for each one of them. Intuitively, the verification of property φ = ∀(℘1UI℘2) checks if proposition ℘1 is true in
the initial state class (step 2) and all state classes following it (step 8), until ta fires. From the moment ta is fired, the verifier
checks for the satisfaction of either ℘1 or ℘2 (steps 11 and 12), until ℘2 is true or tb is fired (case 4). If ℘2 becomes true in

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4253

Algorithm 9: checkStateClass∀(℘1UI℘2)(α = (m, F), t)
if t = tε then /* case 1 */1

if ℘1(m) then2
enable ta in α3

else4
if ¬℘2(m) ∨ a > 0 then5
valid=false; continue=false6

else7
valid=true; continue=false8

if ta ∈ En(m) ∧ ¬℘1(m) then /* case 2 */9
valid=false; continue=false10

if tb ∈ En(m) then /* case 3 */11
if ¬℘2(m) then12

if ¬℘1(m) then valid=false; continue=false13
else14
Return ∅15

if t = tb then /* case 4 */16
valid=false; continue=false17

Return α18

Algorithm 10: checkStateClass∃(℘1UI℘2)(α = (m, F), t)
if t = tε then /* case 1 */1
valid=false2
if ℘1(m) then3
enable ta in α4

else5
if ¬℘2(m) ∨ a > 0 then6
continue=false7

else8
valid=true; continue=false9

if ta ∈ En(m) then /* case 2 */10
if ¬℘1(m) then Return ∅11

if tb ∈ En(m) then /* case 3 */12
if ℘2(m) then13
valid=true; continue=false14

else15
if ¬℘1(m) then Return ∅16

if t = tb then /* case 4 */17
Return ∅18

Return α19

a state class α, α is no more explored (step 13). In case tb is fired (case 4), the exploration is stopped and the property is
declared invalid.
The last implementation of checkStateClassφ (algorithm 10) corresponds to property φ = ∃(℘1UI℘2). It handles four

similar cases as the previous implementation, but different actions are taken. For instance, this implementation initializes
variable valid to false as soon as the initial state class is entered (step 2), and stops the exploration of a state class α if it does
not comply with the semantics of φ (steps 10, 15 and 17). It also aborts the exploration as soon as a satisfactory execution
path is found (steps 8 and 13).
The following theorem states the decidability of our model checking approach for all bounded TPNs.

Theorem 3. TCTLTPN model checking is decidable for Bounded TPN models.

Proof. If a TPNmodelN is bounded, it has a finite number of markings. The fact of puttingN in parallel with Alarm− clock,
which is itself bounded (it has only three different markings {(Pa = 0, Pb = 0), (Pa = 1, Pb = 0), (Pa = 0, Pb = 1)}) also
results in a bounded TPN model. Since the number of possible state classes with the same marking is always finite [9], The

4254 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

Fig. 3. A cyclic TPN model.

state class graph ofN ||Alarm is finite too. In other words, TCTLTPN model checking algorithm always terminates for bounded
TPN models. �

6.3. Illustrative example

To illustrate our verification approach, we consider the simple TPN model shown in Fig. 3, we call cyclic . The TCTLTPN
property we verify is φ = ℘1 [0,3] ℘2, with proposition ℘1(m) = (m(P0) = 0) and proposition ℘2(m) = (m(P1) = 1).
For simplicity reasons, we selected a cyclic TPN model with a single execution path, for which property φ is trivially valid.
The verification process of φ starts first by constructing the TPN model cyclic||Alarm, such that a = 0 and b = 3, then

runs according to the following steps (a marking is demoted only by its marked places):

(1) Compute the initial state class of cyclic||Alarm (step 4, algorithm 7),
result: α0 = ((P0 = 1), 1 ≤ t0 ≤ 2).

(2) Check if ℘1 and ℘2 are valid in α0, (case 1, algorithm 8)
result: ℘1 and ℘2 are not valid in α0.

(3) Fire t0 from α0 and put the result in α1 (step 10, algorithm 7),
result: α1 = ((P1 = 1), 2 ≤ t1 ≤ 3).

(4) Check if ℘1 and ℘2 are valid in α1 (case 1, algorithm 8)
result: ℘1 is valid in α1 but ℘2 is not valid in α1.

(5) Enable ta in α1 (step 3, algorithm 8),
result: α1 becomes ((P1 = 1, Pa = 1), 2 ≤ t1 ≤ 3 ∧ ta = 0).

(6) Fire ta from α1 and put result in α2 (step 10, algorithm 7)
result: α2 = ((P1 = 1, Pb = 1), 2 ≤ t1 ≤ 3 ∧ tb = 3).

(7) Check if ℘2 is satisfied in α2 (step 8, algorithm 8),
result: ℘2 is not satisfied in α2.

(8) Fire t1 from α2 and put the result in α3 (step 10, algorithm 7),
result: α3 = ((P0 = 1, Pb = 1), 1 ≤ t0 ≤ 2 ∧ 0 ≤ tb ≤ 1).

(9) Check if ℘2 is satisfied in α3 (step 8, algorithm 8),
result: ℘2 is satisfied in α3.

(10) Disables tb in α3 (step 9, algorithm 8),
result: α3 becomes ((P0 = 1), 1 ≤ t0 ≤ 2).

(11) Declare φ valid since α3 has already been explored (α3 = α0) (step 16, algorithm 7).

7. Comparing with UPPAAL’s reachability algorithm

UPPAAL [5] is a tool for modeling, simulation and verification of real time systems, based on timed automata [4]. The
tool allows to verify systems modeled as a collection of processes (timed automata) communicating through channels and
shared integer variables. Typical applications include real time controllers and communication protocols. The verification
engine of UPPAAL is based on the classical reachability algorithm 11. The algorithm checks whether or not a state satisfying
a given state formula9 β is reachable from an initial configuration of the system to verify.
Properties that UPPAAL can check is a subset of CTL. The four temporal quantifiers E<>, A[], E[] and A<> are supported,

which stand for possibly (∃♦), always (∀�), inevitably (∃�), and potentially always (∀♦). In addition, the operator β1−− >β2
is supported, which stands for the leads-to property A[](β1 ⇒ A<> β2).
The verification of timed properties is achieved by explicitly using clock variables in state formulas.While this may allow

for great versatility, it may also oblige the user to modify the model and use extra clocks for a specific timed property. Using
extra clocks also means extra burden on the verification, which is exponential in number of clocks. To verify properties that
are not pure reachability, such as bounded liveness and bounded response, it is necessary to compute a test automaton for

9 An atomic proposition which is a combination of control nodes and constraints on clocks and integer variables.

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4255

a) ProdCons1 b) ProdCons2

Fig. 4. The producer/consumer model.

the property to verify, and turns the verification problem to a reachability problem of the original automaton synchronized
with the test automaton [2]. The truth value of the formula is established if a fail state of the test automaton is reached in
the synchronized automaton, or if the abstract state space construction terminates.
Compared to the classical reachability algorithm 11, our exploration algorithm (i.e., Algorithm 7) shares lots of

similarities, even if the verification strategy is different. This difference results mainly from the way states and state classes
are characterized in both methods. UPPAAL uses the clock characterization of states. In our case, we use the interval
characterization of states for twomain reasons, even if the clock characterization is possible with TPNs [13–15,20]. First, the
interval characterization ismore abstracting than the clock characterization, and therefore, leads to smaller state class spaces
to explore (see Table 2 for some experimental results). Second, the interval characterization requires no approximation to
enforce finiteness. On the other hand, the clock characterization requires an approximation, called k-approximation or k-
normalization, which is very sensitive to the magnitude of the biggest constant with which clocks are compared in both the
formula and the model to verify [6]. In fact, the size of the state class space grows exponentially with the magnitude of this
constant [4]. Table 7 in the next section effectively illustrates this situation.

Algorithm 11: UPPAAL reachability algorithm
PASSED:={}1
WAITING:={(l0,D0))}2
repeat3
Get (l,D) fromWAITING4
if (l,D) |= β then5
Return ‘‘YES"6

else if D * D′ for all (l,D′) ∈ PASSED then7
Add (l,D) to PASSED8
SUCC:={ (ls,Ds): (l,D) (ls,Ds) ∧ Ds 6= ∅ }9
forall (ls′ ,Ds′) in SUCC do10
Put (ls′ ,Ds′) to WAITING11

untilWAITING={}12
return ‘‘NO"13

8. Implementation results

We implemented our verification approaches in our experimental tool called RT-Studio. The tool, written in JAVA and
C++, integrates several functionalities related to enumerative analysis of time Petri nets. It also includes a CTLmodel checker
and a minimizer under bisimulation. All tests have been performed on a 3 Gigahertz Pentium-4 with two Gigabytes of RAM.
For our experimentations, we considered two classical examples: The producer/consumer model and the level crossing

model. We tested several possible configurations of these models constructed by properly combining and synchronizing
their TPN components shown in Figs. 4 and 5 respectively. The TPN model of n concurrent consumers and n producers
sharing a single limited store, is obtained by the parallel composition of n − 1 copies of the TPN in Fig. 4.b with one copy
of the TPN in Fig. 4.a, while merging all places named P1 in one single place. We denote this model P(n). The TPN model of
n trains concurrently crossing the level is obtained by synchronously composing10 the controller model with its parameter
m11 set to n, the barrier model, and n copies of the train model. The resulting model is denoted T (n).

10 Transitions with the same name are merged together.
11 m is a number of tokens.

4256 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

a

Fig. 5. The level crossing TPN model.

Our experimental results are presented in two subsections. In the first subsection, we give results to show the impact of
some of our choices on performances. In the second subsection, we evaluate our verification technique on the level crossing
example and compare our results with those of the tool UPPAAL 3.5.7.

8.1. Impact of some of our choices on performances

Results of this section are organized in three tables. In each table, each row reports results obtained for the model given
in the first column. Results for a TPN model abstraction are given in terms of its size (nodes/arcs) and its computing time
(in seconds). An interrogations mark indicates a situation where the computation has not completed after an hour, or the
construction aborted for a memory shortage.
Table 1 shows the abstracting power of the interval characterization of states over the clock characterization (see

Section 3.3 for more details). It compares the size of the SCG computed using the interval characterization of states, with its
equivalent, computed using the clock characterization. In this last case we denote the resulting graph clock-SCG. This graph
is computed according to the firing rule described in [14] for computing the CSCG,12 but with state classes normalized using
the k-normalization operation of timed automata implemented in the tool UPPAAL [7]. Let k be the higher finite constant
appearing in the firing time intervals of the TPN. The k-normalization of a state class is computed based on its canonical
form. It is to remove all upper bounds higher than k and replace all lower bounds, higher than k, by k. Column four of Table 1
gives, where appropriate, the ratio of the clock-SCG results over those of the SCG. Note that for the TPN P(2), the SCG is
45.54 times smaller than the clock-SCG and 50.72 times faster to compute. The construction of P(3) and P(4) clock− SCGs
have aborted because of a memory shortage.
Table 2 shows the impact on performances of both the state class relaxation introduced in Section 4, and the on-the-fly

exploration technique we used to verify TCTLTPN properties. Column three and four give results for contracting the SCG and
the RSCG by inclusion. These contractions correspond in a certain sense to the actual graphs explored by ourmodel-checking
approach during the verification of TCTLTPN properties. The resulting graphs, we denoted I-SCG and I-RSCG respectively, are
computed similarly to the SCG and the RSCG, but with grouping, during the construction process, state classes in the most
including ones. A state class (m, F) is grouped into another state class (m′, F ′) iffm = m′ and F ⊆ F ′.
To get a better idea about improvements, we report in Table 3 improvement ratios for results of the different contractions

(RSCG, I-SCG and I-RSCG) over those of the SCG.

8.2. Evaluation of the TCTL verification technique

In this section, we report some results obtained for the verification of some TCTLTPN properties over the classical level
crossing example. We also compare our results with those obtained using UPPAAL.
Fig. 6 shows a timed automata version of the level crossing example. The controller part of the timed automata is obtained

by the parallel composition of three separate automata tomaintain an equivalent semantics as the TPN version of themodel.

12 The CSCG is a version of the SCG computed using the clock characterization of states and contracted by inclusion (two state classes aremerged together
whenever one is included in the other).

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4257

Table 1
SCG compared to the clock-SCG.

TPN SCG clock-SCG θ SCGclock−SCG

P(2) 748 / 2460 3924 / 13222 5.344
cpu 0.04 0.18 4.5
P(3) 4604 / 21891 205129/1001659 45.54
cpu 0.40 20.29 50.72
P(4) 14086 / 83375 ? –
cpu 1.83 –
P(5) 31657 / 217423 ? –
cpu 5.67 –
T(1) 11 / 14 12 / 15 1.08
cpu 0 0.00 –
T(2) 123 / 218 146 / 264 1.20
cpu 0 0.01 –
T(3) 3101 / 7754 6174 / 16190 2.06
cpu 0.09 0.17 1.88
T(4) 134501 / 436896 664006/2317692 5.21
cpu 6.33 47.42 7.49
T(5) ? ? –
cpu –

Table 2
SCG, RSCG, I-SCG and I-RSCG of the tested models.
TPN SCG RSCG I-SCG I-RSCG

P(2) 748/2460 593/1922 41/137 30/94
cpu 0.04 0.01 0 0
P(3) 4604/21891 3240/15200 121/581 121/581
cpu 0.40 0.14 0.01 0.01
P(4) 14086/83375 9504/56038 275/1631 197/1051
cpu 1.83 0.62 0.03 0.01
P(5) 31657/217423 20877/145037 514/3604 367/2175
cpu 5.67 2.01 0.07 0.04
T(1) 11/14 11/13 10/13 10/13
cpu 0 0 0 0
T(2) 123/218 113/198 37/74 35/70
cpu 0 0 0 0
T(3) 3101/7754 2816/6941 172/494 166/476
cpu 0.09 0.07 0.01 0
T(4) 134501/436896 122289/391240 1175/4599 1151/4475
cpu 6.33 5.74 0.16 0.08
T(5) ? ? 10972/55682 10852/53573
cpu > 3600.00 > 3600.00 2.04 1.81

Table 3
Improvement ratios of the RSCG, I-SCG and
I-RSCG abstractions over those of the SCG.
TPN RSCG I-SCG I-RSCG

P(2) 1.28 18.02 25.87
cpu 4.00 – –
P(3) 1.44 37.74 37.74
cpu 2.86 40.00 40.00
P(4) 1.49 51.13 78.09
cpu 2.95 61.00 183.00
P(5) 1.50 60.49 97.99
cpu 2.82 81.00 141.75
T(1) 1.04 1.09 1.09
cpu – – –
T(2) 1.10 3.07 3.25
cpu – –
T(3) 1.11 16.30 16.91
cpu 1.29 9.00 –
T(4) 1.11 98.96 101.56
cpu 1.10 39.56 79.13
T(5) – – –
cpu – > 1764.70 > 1988.95

4258 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

Fig. 6. The level crossing timed automata model.

The properties we considered are:

1- The gate is never open whenever a train is crossing:

φ1 = ∀�¬

(
open ∧

∨
1≤i≤n

on_i

)
2- If a train approaches, the gate closes in less than 2 time units:

φ2 = coming [0,2] closed

3- The level crossing model is deadlock free:

φ3 = ∀�(∃t ∈ En(m)).

The corresponding properties for UPPAAL are:

1- φu1 = A[]!(barrier .open && (train1.on_i||..||trainn.on_i)),
2- φu2 = ctrlUp.coming=>(barrier .closed&&barrier.y<=2),
3- φu3 = A[] not deadlock.

Where barrier , traini, ctrlUp are, respectively, instances of Barrier, Train and the upper part of Controller in Fig. 6.
Note that we considered only properties which require an exhaustive exploration of the TPN SCG. To ease the writing of

properties, we coincide atomic propositions with places. An atomic proposition is true iff the corresponding place is marked
with at least one token.
Table 4 reports results obtained for model checking the selected properties using our approach, applied on both the

SCG and the RSCG. Each result is given in terms of the number of stored/explored state classes (i.e., the final size of the list
COMPUTED (PASSED for UPPAAL) and the total number of explored state classes), followed by the exploration time. Note
that all selected properties have been successfully tested as valid.
Similarly to Table 4, Table 5 reports the results obtained using the tool UPPAAL for the same properties.
Table 6 compares the results of Table 5 to those of Table 4 (i.e, ratios of UPPAAL’s results to those of RT-Studio). On

average, properties were verified 13.85 times faster than UPPAAL, with 1.48 times lesser memory usage, using the SCG.
Further improvements were made using the RSCG, with average ratios of 14.64 for time and 1.67 for space compared to
UPPAAL.
Table 7 compares our results to those of UPPAAL for property φ(b) = coming [0,b] closed, where b takes increasing

values. Column four gives the ratios of UPPAAL’s results to those of RT-Studio. From the obtained results, we can see that
our approach is not sensitive to themagnitude of b, while it is for UPPAAL. The reason for this difference is related to the used
characterization of states. In our case, if the property is already valid, the fact of increasing the values of parameters b has
no impact on the verification process. For UPPAAL, states are characterized using clocks. This characterization requires an
approximation operation to enforce finiteness (see Section 7). The size of the symbolic state graph (the equivalent of the SCG)
to explore grows considerably with the magnitude of the biggest constant with which clocks are compared. As an example,
the last row of Table 7 shows that for b = 100 our approach was 3485 times faster than UPPAAL, and used 120 times lesser
memory. Note that UPPAAL uses a technique to attenuate this problemwhich can give rise to an unnecessary fragmentation
of the symbolic state space [5,24]. The problem generally appears when the timed automata in a model use different time
scales. As a result, model-checking requiresmore time andmemory. UPPAAL uses an acceleration technique< for a subset of

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4259

Table 4
Results for some TCTLTPN properties using our approach.

TPN φ1 φ2 φ3

SCG

2 trains 38/116 42/91 38/116
CPU (s) 0 0 0
3 trains 173/790 182/646 173/790
CPU (s) 0 0.01 0.01
4 trains 1176/7162 1194/6073 1176/7162
CPU (s) 0.12 0.10 0.12
5 trains 10973/81370 11008/71152 10973/81370
CPU (s) 2.37 2.04 2.30
6 trains 128116/1103250 128184/986939 128116/1103250
CPU (s) 110.81 100.92 111.18

RSCG

2 trains 36/110 40/87 36/110
CPU (s) 0 0 0
3 trains 167/706 176/583 167/706
CPU (s) 0 0 0
4 trains 1156/6122 1170/5241 1152/6122
CPU (s) 0.12 0.08 0.12
5 trains 10853/67660 10888/59727 10853/67660
CPU (s) 2.22 1.90 2.24
6 trains 127396/902658 127464/815003 127396/902658
CPU (s) 100.97 90.02 100.06

Table 5
Results for some TCTLT PN properties using UPPAAL.
TPN φu1 φu2 φu3

2 trains 36/89 54/117 38/101
CPU (s) 0.01 0.02 0.02
3 trains 176/601 344/1306 194/826
CPU (s) 0.02 0.40 0.30
4 trains 1372/5859 3084/18243 1456/8947
CPU (s) 0.100 0.51 0.49
5 trains 14758/74047 35218/277612 14408/115182
CPU (s) 3.06 36.08 13.72
6 trains 192022/1106973 ? 173332/1692129
CPU (s) 267.88 806.20

Table 6
Improvement ratios of our results compared to
those of UPPAAL.

TPN θ
φu1
φ1

θ
φu2
φ2

θ
φu3
φ3

SCG

2 trains 0.81 1.29 0.90
cpu – – –
3 trains 0.81 1.99 1.06
cpu – 40.00 30.00
4 trains 0.87 2.93 1.25
cpu 0.83 5.10 4.08
5 trains 0.96 3.81 1.40
cpu 1.29 17.69 5.97
6 trains 1.05 – 1.51
cpu 2.42 > 35.67 7.25

RSCG

2 trains 0.86 1.35 0.95
cpu – – –
3 trains 0.89 2.17 1.17
cpu – >40 >30
4 trains 0.99 3.33 1.43
cpu 0.83 6.38 4.08
5 trains 1.13 4.43 1.65
cpu 1.38 18.99 6.13
6 trains 1.26 – 1.81
cpu 2.65 39.99 8.06

timed automata, namely those that contain special cycles,13 using a syntactical adjustment. In the case of the level crossing
example we verified here, the acceleration technique does not apply, which explains the big difference in performances.

13 The subset of cycles that can be accelerated may use only a single clock y in the invariants, guards and resets.

4260 R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261

Table 7
Our results compared to those of UPPAAL for the property φ(b) = Coming [0,b] closed, with increasing values for b.

TPN Ours UPPAAL θUPPAALOurs

φ(2) 1194/6073 3084/18243 2.93
cpu 0.10 0.51 5.10
φ(10) 1194/6073 16301/65792 11.30
cpu 0.v 10 4.30 43.00
φ(20) 1194/6073 32422/131420 22.55
cpu 0.10 13.60 136.00
φ(30) 1194/6073 48950/197212 33.87
cpu 0.10 29.83 298.30
φ(50) 1194/6073 84686/341231 58.61
cpu 0.10 88.43 884.30
φ(100) 1194/6073 173658/695112 119.55
cpu 0.10 348.48 3484.80

9. Conclusion

In this paper, we considered the time Petri net model and proposed an efficient model checking approach to verify
its timed properties. Our approach is based on the state class method [9], defined originally to verify untimed properties.
To attenuate the state explosion problem, we use an on-the-fly exploration technique combined with an abstraction by
inclusion. This technique has already been proven very effective tomodel check timed properties for timed automata [5,26].
We also relax state classes by extending themwith states reachable via time progressions to further improve performances.
The timed properties we considered are mainly a subset of TCTL, sufficient in general to verify most important timed
properties. We have also proven the decidability of our verification technique for all bounded time Petri nets, and compared
our results with those of the tool UPPAAL [5] to show its effectiveness.

Acknowledgment

Research supported by the NSERC grant num.238841-2001.

References

[1] P.A. Abdulla, A. Nyln, Timed Petri Nets and BQOs, in: Proc. of ICATPN’01, in: LNCS, vol. 2075, Springer-Verlag, 2001, pp. 53–70.
[2] L. Aceto, P. Bouyer, A. Burgueno, K.G. Larsen, The power of reachability testing for timed automata, Theoretical Computer Science 300 (1-3) (2003)
411–475.

[3] R. Alur, C. Courcoubetis, D. Dill, Model checking in dense real-time, Information and Computation 104 (1) (1993) 2–34.
[4] R. Alur, D. Dill, Automata for modelling real-time systems, in: Proc. Of ICALP’90, in: LNCS, 443, Springer-Verlag, 1990, pp. 322–335.
[5] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, W. Yi, Uppaal implementation secrets, in: Proc. of the 7th International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems, 2002.

[6] J. Bengtsson, W. Yi, On clock difference constraints and termination in reachability analysis in timed automata, in: Proc. of ICFEM’03, in: LNCS,
vol. 2885, Springer-Verlag, 2003, pp. 491–503.

[7] J. Bengtsson, W. Yi, Timed automata: Semantics, algorithms and tools., in: Lectures on Concurrency and Petri Nets, 2003, pp. 87–124.
[8] B. Berthomieu, M. Diaz, Modeling and verification of time dependent systems using Time Petri Nets, IEEE Transactions on Software Engineering 17
(3) (1991) 259–273.

[9] B. Berthomieu, M. Menasche, An enumerative approach for analyzing Time Petri Nets, in: Proc. of the IFIP 9th World Computer Congress,
in: Information Processing, vol. 9, IFIP, North Holland, 1983, pp. 41–46.

[10] B. Berthomieu, F. Vernadat, State class constructions for branching analysis of Time Petri Nets, in: Proc. of TACAS’03, in: LNCS, vol. 2619, Springer-
Verlag, 2003, pp. 442–457.

[11] A. Bouajjani, S. Tripakis, S. Yovine, On-the-fly symbolic model checking for real-time systems, in: Proc. of RTSS’97, 1997, pp. 232–243.
[12] H. Boucheneb, G. Berthelot, Towards a simplified building of Time Petri Nets reachability graph, in: Proc. of the 5th Int. Workshop on Petri Nets and

Performance Models, 1993, pp. 46–55.
[13] H. Boucheneb, R. Hadjidj, Towards optimal CTL*model checking of Time Petri Nets, in: Proc. of the InternationalWorkshop on Discrete Event Systems,

WODES’04, Reims-France, 2004.
[14] H. Boucheneb, R. Hadjidj, CTL* model checking for time Petri nets, Theoretical Computer Science 353 (1-3) (2006) 208–227.
[15] F. Cassez, O.H. Roux, Structural translation from Time Petri Nets to timed automata, Electronic Notes in Theoretical Computer Science 128 (6) (2005)

145–160.
[16] F. Cassez, O.H. Roux, Structural translation from time Petri nets to timed automata, Journal of Systems and Software 29 (2006) 1456–1468.
[17] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.
[18] J. Coolahan, N. Roussopoulos, Timing requirements for time-driven systems using augmented Petri nets, IEEE Transactions on Software Engineering

SE 9 (5) (1983) 603–616.
[19] L.A. Corts, P. Eles, Z. Peng, Verification of real-time embedded systems using Petri net models and timed automata, in: Proc. of the 8th Int. Conf. on

Real-Time Computing Systems and Applications, RTCSA’02, 2002, pp. 191–199.
[20] G. Gardey, O.H. Roux, O.F. Roux, Using zone graph method for computing the state space of a Time Petri Net, in: Proc. of FORMATS’03, in: LNCS,

vol. 2791, Springer-Verlag, 2004.
[21] Z. Gu, K. Shin, Analysis of event-driven real-time systems with Time Petri Nets, in: Proc. of DIPES’02, in: IFIP, vol. 219, Kluwer, 2002, pp. 31–40.
[22] R. Hadjidj, H. Boucheneb, Much compact Time Petri Net state class spaces useful to restore CTL* properties, in: Proc of the Sixth International

Conference on Application of Concurrency to System Design, ACSD’05, IEEE Computer Society Press, 2005.
[23] H.-M. Hanisch, Analysis of place/transition nets with timed arcs and its application to batch process control, in: Proc. of ICATPN’93, in: LNCS, vol. 691,

Springer-Verlag, 1993, pp. 282–299.
[24] M. Hendriks, K.G. Larsen, Exact acceleration of real-timemodel checking, Electronic Notes in Theoretical Computer Science 65(6) (20) (2002) 435–459.

R. Hadjidj, H. Boucheneb / Theoretical Computer Science 410 (2009) 4241–4261 4261

[25] O. Kupferman, T.A. Henzinger, M.Y. Vardi, A space-efficient on-the-fly algorithm for real-time model checking, in: Proc. of CONCUR’96, in: LNCS,
vol. 1119, Springer-Verlag, 1996, pp. 514–529.

[26] K.G. Larsen, P. Pettersson, W. Yi, Model-checking for real-time systems, in: Proc. of Fundamentals of Computation Theory, in: LNCS, vol. 965, 1995,
pp. 62–88.

[27] J. Lilius, Efficient state space search for Time Petri Nets, in: Proc. of MFCS Workshop on Concurrency, Brno’98, in: ENTCS, vol. 18, Elsevier Science
Publishers, 1999.

[28] D. Lime, O.H. Roux, State class timed automaton of a time Petri net, in: Proc. of the 10th Int. Workshop on Petri Nets and Performance Models
(PNPM’03), IEEE Comp. Soc. Press, 2003.

[29] P. Merlin, D.J. Farber, Recoverability of communication protocols - implication of a theoretical study, IEEE Transactions on Communications 24 (9)
(1976) 1036–1043.

[30] W. Penczek, A. Polrola, Abstractions and partial order reductions for checking branching properties of Time Petri Nets, in: Proc. of ICATPN’01, in: LNCS,
vol. 2075, Springer-Verlag, 2001, pp. 323–342.

[31] C. Ramchandani, Analysis of asynchronous concurrent systems by timed Petri nets, Massachusets Institute of Technology, 1974.
[32] J. Toussaint, F. Simonot-Lion, J.-P. Thomesse, Time constraint verifications methods based time Petri nets, Proc. of the 6thWorkshop on Future Trends

in Distributed Computing Systems, FTDCS 97, Tunis, Tunisia, 1997, pp. 262–267.
[33] T. Yoneda, H. Ryuba, CTLmodel checking of time Petri nets using geometric regions, Institute of Electronics Information and Communication Engineer

(IEICE) Transactions on Information and Systems E81-D (3) (1998) 297–306.

	On-the-fly T C T L model checking for time Petri nets
	Introduction
	Time Petri nets
	The TPN state
	The TPN state space

	Abstraction of the TPN state space preserving linear properties
	The TPN concrete state space
	The state class method
	Other abstractions of the TPN model

	Relaxing state classes
	Our timed temporal Logic
	On-the-fly TCTLTPN model checking
	Model checking the bounded first response property
	Model checking algorithms
	Illustrative example

	Comparing with UPPAAL's reachability algorithm
	Implementation results
	Impact of some of our choices on performances
	Evaluation of the TCTL verification technique

	Conclusion
	Acknowledgment
	References

