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a b s t r a c t

Yield management is important and challengeable in semiconductor industry for the
quality uncertainty of the final products. The total yield rate of the semiconductor
manufacturing process is uncertain, each product is graded into one of several quality
levels according to performance before being shipped. A product originally targeted to
satisfy the demand of one product may be used to satisfy the demand of other products
when it conforms to their specifications. At the same time, the products depreciate in
allocation periods, which mainly results from technical progresses. This paper studies
the semiconductor yield management issue of a make-to-stock system with single input,
multi-products, multi-demand periods, upward substitution and periodic depreciation.
Thewhole time horizon of the system operation process can be divided into two stages: the
production stage and the allocation stage. At the first stage, the firm invests in rawmaterials
before any actual demand is known and produces multiple types of products with random
yield rates. At the second stage, products are classified into different classes by quality and
allocated in numbers of periods. The production and allocation problem are modeled as a
stochastic dynamic program inwhich the objective is tomaximize the profit of the firm.We
show that the PRA (parallel allocation first, then upgrade) allocation policy is the optimal
allocation policy and the objective function is concave in production input. An iterative
algorithm is designed to find the optimal production input and numerical experiments are
used to illustrate its effectiveness.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The more challengeable environment of a semiconductor industry can be characterized by randomly periodic demand,
high manufacturing lead time, the expensive set-up costs, and the rapid change of technology, all of which means a
significant capital and big risk. The first step in the production of semiconductor chips is the drawing of ingots of either
silicon or gallium arsenide. These ingots are sliced into wafers. After several layers of semiconductor materials are placed on
the wafers, they are cut into individual chips. Depending on the complexity of the circuits involved, each wafer may yield
between 10 and 100,000 chips. The individual chips can then be measured against one or more dimensions of electrical
performance and classified as different products. A more detailed description of the production process can be found in
[1,2]. In otherwords, the products have randomyields and are used to satisfy the demands ofmany products. These products
have specification requirements that overlap. A product originally targeted to satisfy the demand of one productmay be used
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to satisfy the demand of other products when it conforms to their specifications. The total yield rate of the semiconductor
manufacturing process is probabilistic. Hence, the percentage of acceptable units and the relative proportions of products in
each production lot could be different from run to run. Meanwhile, a large proportion of the product mix of a semiconductor
firm has a relatively short life cycle (one or two years, typically), and a semiconductor chipmay loses 60% of valuewithin the
first half year of its life cycle. All these means that yield management is important and challengeable in the semiconductor
industry.

Some literatures have focused on the yield management of the make-to-stock production systems. Pasternack and
Drezner [3] consider a stochastic model for two products which have a single-period inventory structure and which can
be used as substitutes for each other. They prove that the expected profit function is concave, and it is possible to find
optimal stocking levels for these two products. However, the deterministic yield rates assumption limits the applications of
the proposed model. In practice, the yield rates are often random. Karmarkar and Lin [4], Moinzadeh and Lee [5], Lee and
Yano [6], Henig and Gerchak [7] study the substitution and allocation problems with assumptions that the yield rate of one
product is random and other yield rates are deterministic. Gerchak et al. [8] model a production system with random yield
rates and two kinds of products, and the products can be substituted with each other. Their study focuses on identifying
the properties of their model. Hsu and Bassok [9] first present a single-period, multi-product inventory model with upward
substitution, and thendetermine the optimal production input and the allocationpolicy ofnproducts for satisfyingndemand
classes. Ha [10–12] consider a make-to-stock production system with several product types and demand classes. The study
mainly proves that the optimal stock rationing policy is closely related to the production limits, and storage level can be
characterized by the corresponding customer class. Tomlin andWang [13] assume that supplies, demands and yield rates are
random, and they allow customers to choose the second-choice products if their first choice is not available. They investigate
the pricing and allocation policies in a co-production system with two-class products. In all of these studies, only the single
demand period is considered in the proposed models.

Replenishment is not allowed to occur within the allocation periods in several papers. Alstrup et al. [14] study a dynamic
overbooking problem with substitution and two product types. The paper proposes a two-stage model: the booking stage
and the allocation stage. All demands are realized at the beginning of the allocation periods and substitution is allowed in the
allocation stage. Karaesmen and van Ryzin [15] give amore generalmodelwithmultiple product classes. Our study is similar
to their model but with a difference that the demands are realized at the beginning of each period instead of all demands
being realized at the beginning of the whole allocation stage. Bitran and Dasu [16] consider a multi-product, multi-period
modelwith demand substitution anddiscrete randomyield. The paper gives the structure of the optimal inventory allocation
policy for a two-product, two-period problem. Bitran and Leong [17] add a new service level constraint in the model and
assume that the substitution decision is made before the demand is observed. Different from the discrete random yield
assumption, our model assumes a continuous random yield and does not allow the backorder.

In yieldmanagement, the firm always looks for the optimal policies for allocating the inventory among customer demand
classes. Thus, some literatures consider the inventory allocation problem with multi-demand periods. Van Mieghem and
Rudi [18] present a newsvendormodelwithmultiple demandperiods, and theirmodel allows the firm to replenish inventory
in each demand period. Karmarkar [19], Robinson [20], Archibald et al. [21], Frank et al. [22] and Axsater [23] also use
the same replenishment policy as Van Mieghem and Rudi [18]. Bassok et al. [24]prove that the substitution is beneficial
in the multi-product inventory model. Shumsky and Zhang [25] examine a multi-period inventory allocation model with
substitution and describe an optimal allocation policy, and then give an approximate solution for the optimal allocation
quantity in each period.

A product-specific depreciation rate is usually based on the rate implicit in financial statements, and it is used in
a production or allocation system as one of control variables sometimes [26–28]. In this paper, we consider a yield
management problem with different application settings from the previous literatures. Our model can be seen as an
extension of the single input, multi-products, single demand period model of Hsu and Bassok [9] to a new application with
multi-demand periods. This paper studies the yield management issue of a make-to-stock system with single input, multi-
products, multi-demand periods, upward substitution and periodic depreciation. We assume that a single input yields n
different products and there are n corresponding demands. The continuous random yield rates of the products are denoted
as η1, η2, . . . , ηn, respectively. The allocation stage can be divided into several demand periods (T ), and the firm allocates
the inventory to customers after the demands within each period are observed. In each demand period, if a particular
product is out of stock, the firmmight upgrade the customer with amore expensive one. Each class of product has a periodic
depreciation rate ri. We consider the single input, n products, and demands, T periods make-to-stock system, as 1 × n × T
system. The objective is to find the optimal production input quantity of the system. Because customers could arrive in any
period, this means that the future demands for a particular product type are still unknown, the decision making on optimal
allocation and the input quantity is very difficult.

The contributions of this paper are threefold. First, it extends the previous research to a multi-product, multi-demand
period make-to-stock system with upward substitution and periodic depreciation rates. Second, an effective algorithm is
designed to solve the proposed stochastic dynamic programming model. Third, we prove that the objective function is
concave in input quantity and show that PRA allocation policy ismore profitable than other propositional allocation policies.

The rest of the paper is organized as follows. Section 2 describes the basic model, which is a stochastic dynamic
programming model. In Section 3, we prove that the objective function is concave in the production input quantities, give
the available allocation framework and show that the PRA allocation policy is the optimal policy for allocating inventory
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Fig. 1. Two stages of the whole time horizon.

among different customer classes. In Section 4, an effective iterative algorithm is designed to solve the proposed stochastic
dynamic programming model and a numerical example is provided. Section 5 concludes the paper.

2. The model

For the convenience, the following assumptions are adopted in the study.

Assumption 1. The demands for all products in each period are random and independent, the PDF (probability density
function) are known, the yield rate of each product is also random and its PDF is known. The periodic depreciation rate of
each product class is constant and is known.

Assumption 2. The salvage value of each product is zero, and all unsatisfied demands cannot be backordered. One unsatis-
fied demand can be upgraded by one higher class product.

The whole time horizon can be divided into two stages: the production stage and the allocation stage (see Fig. 1). At the
production stage, the firm determines the optimal production input, while at allocation stage, the firm allocates the products
through T time periods.

2.1. Production stage

At the beginning of production stage, the production input Q0 is determined, and the cost of each unit of the production
input is c. The production outputs are proportional to the production input quantity with random yield rates, which are
denoted by η1, η2, . . . , ηn. If the production input quantity Q0 and yield rates η1, η2, . . . , ηn are given, then the product
quantities (Q1,Q2, . . . ,Qn) = (η1, η2, . . . , ηn) × Q0. There is a ranking among the products which is indexed based on
quality. Here, the quality will decrease when the index increases. Therefore, if i > j, then demand i can be satisfied by
product j.

2.2. Allocation stage

The initial inventory at the allocation stage is the output of the production stage. There are T periods in this stage, and
the demand dt = (dt1, d

t
2, . . . , d

t
n) is observed at the beginning of period t . Suppose that inventory X t

= (xt1, x
t
2, . . . , x

t
n) is

available at the beginning of period t , so the initial inventory at the allocation stage is X1
= (η1, η2, . . . , ηn) × Q0. Let N t be

the difference between the actual demand at period t and available inventory at period t , then we have

N t
= (N t

1,N
t
2, . . . ,N

t
n) = ((xt1 − dt1), (x

t
2 − dt2), . . . , (x

t
n − dtn)).

Obviously, N t
i (i = 1, . . . , n) can be positive, negative, or zero. The allocation decisions made in period t are based on

both N t and the unrealized demand in the following periods. For i = 1, . . . , n, if N t
i > 0 and N t

i+1 < 0, then yti+1,i units of
product i can be offered for upgrading. The realized upgraded quantity is non-negative and does not exceed the inventory
that product i can provide. That is

0 ≤ yti+1,i ≤ min(|N t
i+1|,N

t
i ).

The firm will make the allocation decisions at the beginning of each period, after the demand is realized. Each class of
product depreciate with periods and excess inventory at the end of period T has no salvage value. So the whole cost in the
time horizon contains four parts: the production input cost, penalty cost, usage cost and depreciation cost.

LetΠ(Q0) be the profit function in thewhole timehorizon. The production input cost occurs at the production stagewhile
product revenue, penalty cost and usage cost occur at the allocation stage. Our objective is to find the optimal production
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input quantity in order to maximize the profit function. This problem can be formulated as a dynamic program with T + 1
steps (the correspondingmodel is considered as a dynamicmodel). In the production stage, the firm determines the optimal
production input quantity, while in periods 1 through T the firm allocates its products inventory to maximize its revenue.
Let pti denote the price of product i at period t, vj denote the penalty cost of product j if unsatisfied, and uj denote the usage
cost of product j per unit (if a unit of product i is sold to customer, then the firm must pay uj). Let αt

i,j be the contribution
margin for satisfying a demand of class i with product i at period t . Similarly, αt

i,j is the contribution margin for satisfying a
demand of class i with product j at period t . So the dynamic model is as follows.

Production stage:

Π(Q0) = max
Q0

{θ1(X1) − cQ0} (1)

where, X1
= (x11, x

1
2, . . . , x

1
n) = (η1, η2, . . . , ηn)Q0. (2)

Allocation stage (1 ≤ t ≤ T ):

θ t(X t) = EDt { max
Y t+X t+1=X t

[H t(Y t/Dt) + θ t+1(X t+1)]} (3)

where, H t(Y t/Dt) = max
Y t

−
i,j

αt
i,jy

t
i,j −

−
i

vidti


(4)

s.t.

αt
i,j = αi,j(1 − ri)t−1 (5)−
j

yti,j ≤ dti (6)

−
i

yti,j ≤ yti (7)

yti,j, Y
t , X t+1

∈ N, Q0 ∈ R+. (8)

In the dynamicmodel, θ t(X t) denotes the total profit of the T −t+1 periods (from period t to period T ). Similarly, θ1(X1)
in Eq. (1) is the whole profit of allocation stage. Thus, Eq. (1) is to maximize the total profit of the whole time horizon, which
is equal to the value that the profit at the allocation stage minus the input cost at the production stage. Because the salvage
value is zero, θ T+1(XT+1) is equal to zero. Eq. (2) describes that the output at the production stage is the initial inventory at
the allocation stage. Y t denotes the available product inventory that will be allocated in period t , so Y t

+X t+1
= X t ensures

that the sum of inventory that sold in period t and the inventory held over to the next period is equal to the inventory
available at the beginning of period t . Eq. (3) states that θ t(X t) is the sum of the profit in period t and the profit obtained in
the following periods. yti,j is the inventory of product j that can be used to substitute for the demand of product i. H t(Y t/Dt)

in Eq. (4) is the revenue in the single period t with substitution, given realized demand Dt . Eq. (5) is the contribution margin
of allocating product j to satisfy the demand i at period t . Eqs. (6) and (7) are the demand constraint and supply constraint in
period t , respectively. Obviously, Eq. (8) shows that variables yti,j, Y

t and X t+1 are non-negative integers and Q0 is a positive
number (R+).

Since the value θ1(X1) is accumulative value from period T to period 1, the calculating process for θ1(X1) is a dynamic
stochastic programming model with T steps.

3. Model analysis and the optimal policy

An allocation decision depends on not only the inventory and demand information in the present period, but also the
estimated demand information in the following periods. The demand variables are random and independent from each
other, and the yield rate ηi is also random. Thus, the dynamic model is a (T + 1)-step stochastic dynamic programming
model:

Lemma 1. Π(Q0) is concave in Q0.

Proof. PRA is the optimal allocation policy, and let Π(Q0) be the maximum profit of the system. Because the salvage value
is zero, θ T+1(XT+1) = 0. From the dynamic model, we have

θ T (XT ) = EDT {max[HT (XT/DT )]} (9)

where HT (Y T/DT ) = maxY T
∑

i,j αi,jyTi,j −
∑

i vidTi

.
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s.t. −
j

yTi,j ≤ dTi (10)

−
i

yTi,j ≤ XT
i (11)

XT
i , yTi,j, Y

T , XT+1
∈ R+

n

HT (Y T/DT ) is a linear program model with the constraints of Eqs. (10) and (11). Obviously, HT (Y T/DT ) is concave in
XT because a linear program is concave in variables that determine the right-hand side of its constraints. Van Slyke and
Wets [29] prove that concavity is preserved over the expectation operator, so θ T (XT ) is concave in XT .

Assume that θ t+1(X t+1) is concave in X t+1. Again, Y t
= (yt1, . . . , y

t
n) determines the right-hand side of constraints in

H t(Y t/Dt), so function H t(Y t/Dt) is concave in Y t . Because of the constraint Y t
+ X t+1

= X t , θ t(X t), as the maximum value
of sum of two concave functions (Eq. (9)), is concave in X t [30].

Fromabove derivations, it can be seen that θ1(X1) is concave in X1. X1
= (η1, η2, . . . , ηn)Q0 is a positive linear function in

Q0, so θ1(X1), as the function ofX1, is also concave inQ0. Because−cQ0 is also a linear function inQ0, soΠ(Q0) = θ1(X1)−cQ0
must be concave since the sum of concave functions is concave. �

3.1. The optimal allocation policy

We assume that the prices of product i at period t and period 1 are pti and p1i , respectively, and let the depreciation rate
of product i be ri, then product i’s corresponding price at period t + 1 is

pt+1
i = pti − pti ri = p1i (1 − ri)t . (12)

Because of Eq. (9), αt+1
i,j is equal to

αt+1
i,j = pt+1

i + vi − uj = pti (1 − ri) + vi − uj ≤ pti + vi − uj = αt
i,j. (13)

Eq. (13) shows that the contribution margin of one current satisfaction pattern with a certain direction is always more
than that in any of the future periods.

Generally, higher classes of products have higher usage costs, so it is reasonable that usage cost uj decreases with the
index j. At period 1, higher classes of products have higher revenue because the depreciation happens after the demands are
realized at this period. So p1j + vj decreases with index j, and α1

i,j increases with index j and decreases with index i. Then, we
have

ui < uj, vi < vj, α1
i,j < α1

j,j and α1
i,i < α1

j,j for j < i. (14)

Single-step upgrade can deliver the most of benefit of more complex substitution schemes [31]. Then, some literatures
consider the single-step upgrade as the optimal location policy, whichmeans that contributionmargin αi,j becomes positive
if class j products are used to satisfy class j demands or class j + 1 demands, but it will become negative if class j products
are used to satisfy other classes of demands (see Eq. (15)). At period 1, depreciations happen after the demands are realized.
So, 

α1
i,j > 0, for j ≤ i ≤ j + 1

α1
i,j < 0, otherwise.

(15)

When t > 1 and i > j + 1, we can obtain αt
i,j < 0 because of Eqs. (13) and (15). It indicates that the single-step upgrade

still holds in this make-to-stock system with depreciation.
Because of Eqs. (12)–(15), αt

i,j can be described as follows:

(1) If i − j > 1: αt
i,j = p1i (1 − ri)t−1

+ vi − uj ≤ p1i + vi − uj = α1
i,j < 0.

(2) If i − j ≤ 1 and vi − uj ≥ 0: αt
i,j = pi(1 − ri)t−1

+ vi − uj > vi − uj ≥ 0.

(3) If i − j ≤ 1, vi − uj < 0, and t ≤
ln(uj−vi)−ln pi

ln(1−ri)
+ 1:

αt
i,j = pi(1 − ri)t−1

+ vi − uj ≥ pi(1 − ri)(ln(uj−vi)−ln pi)/ ln(1−ri) + vi − uj = 0.

(4) If i − j ≤ 1, vi − uj < 0, and t >
ln(uj−vi)−ln pi

ln(1−ri)
+ 1:

αt
i,j = pi(1 − ri)t−1

+ vi − uj < pi(1 − ri)(ln(uj−vi)−ln pi)/ ln(1−ri) + vi − uj = 0.
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Table 1
The signs of the contribution value αt

i,j .

Condition A > 1 A ≤ 1, B ≥ 0 A ≤ 1, B < 0, t ≤ C A ≤ 1, B < 0, t > C

αt
i,j αt

i,j < 0 αt
i,j > 0 αt

i,j ≥ 0 αt
i,j < 0

Production Stage Allocation Stage (T Periods)

Input

Product n

Product 1

Fig. 2. Available production and allocation flows.

Let A, B and C represent i − j, vi − uj and
ln(uj−vi)−ln pi

ln(1−ri)
+ 1, respectively. The sign of the contribution margin αt

i,j can be
summarized and shown in Table 1.

The price of the higher class products is higher than that of the lower class products in the same allocation period. This
fact is easy to understand and it is a common regulation in semiconductor industry and other industries (for example, a
high-profile computer is certainly expensive than a low-profile one at the same time). Thus, if i > j, we have

αt
i,j = pti + vi − uj < ptj + vi − uj < ptj + vj − uj = αt

j,j. (16)

Eq. (16) indicates that the parallel satisfaction is more profitable than the upgrade satisfaction of the products.
Because different products have different depreciation rates, sometimes high class products may not necessarily means

high contributions to the producer. However, allocation may happen only at the condition that contribution value αt
i,j is a

non-negative value. Based on the above parameter analysis, two insights can be found: (1)When N t
i > 0,N t

i+1 < 0, allocate
as much product i as possible to satisfy demand i, then proper quantities of the remaining product i are allocated to satisfy
demand i + 1. (2) When contribution margin αt

i,j ≤ 0, no allocation that satisfies demand i with product j is allowed in the
current and future periods.

Shumsky and Zhang [25] study an allocation systemwith upgrading and find that PRA is an optimal inventory allocation
policy. According to the insights above, PRA allocation policy is still the optimal allocation policy to the make-to-stock
production systems. So PRA allocation policy is adopted in solving the input quantity problem of the make-to-stock
production systems.

To maximize the profit of the manufacturer, the contribution margins of all allocated products should be non-negative.
An available production and allocation network of the make-to-stock system is shown in Fig. 2, where the arrows represent
the possible production and allocation flows.

3.2. Optimal allocation quantity

PRA allocation policy is adopted in solving the dynamic allocation problem (see Section 3.1). Thus, if N t
i > 0,N t

i+1 < 0
and the firm satisfies as much as class i demands with product i’s inventory, then some excess inventory of product i can be
used to satisfy class i + 1 demands. The parallel satisfaction and upgrade satisfaction by PRA allocation policy are

yP−t
i,i = min(dti , y

t
i ), 0 ≤ yP−t

i+1,i ≤ N t
i + N t

i+1. (17)

The contribution margin of satisfying demand i + 1 with product i in period t is

C(yti+1,i) = αt
i+1,i. (18)

If one of the upgraded products could not be realized and be retained to the next period, the contribution margin of the
last unit of these retained products becomes

C ′(yti+1,i) = θ t+1(xt+1
1 , xt+1

2 , . . . ,N t+1
i − (yti+1,i − 1), . . . , xt+1

n ) − θ t+1(xt+1
1 , xt+1

2 , . . . ,N t+1
i − yti+1,i, . . . , x

t+1
n )

where yti+1,i ≥ 1.
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PRA Policy NV Policy Myopic Policy

Fig. 3. Comparisons between PRA, NV and myopic allocation policies.

Because the retained products may not be allocated at period t+1, we have C ′(yti+1,i) ≤ αt+1
i,j .

To enable the upgrading policy, the upgrading should bring more profits than retaining the products to the next period.
Because θ t+1(X t+1) is concave in X t+1 (see Lemma 1), C ′(yti+1,i) increases with yti+1,i. Since C(yti+1,i) is a constant parameter
and C ′(yti+1,i) decreases with yti+1,i, the values of yti+1,i that satisfy C(yti+1,i) ≥ C ′(yti+1,i) can be found. Thus, the maximal
value of yti+1,i is the optimal upgrade quantity yP−t∗

i+1,i . However, if no yti+1,i satisfies inequality C(yti+1,i) ≥ C ′(yti+1,i), it means
that the contribution margin of upgrading policy is always less than that of retaining policy to next period. So, the optimal
upgrading quantity is zero.

In brief, if N t
i > 0 and N t

i+1 < 0, the optimal upgrade quantity is

yP−t∗
i+1,i =


max(yti+1,i), if C(yti+1,i) ≥ C ′(yti+1,i)

0 otherwise. (19)

3.3. Lower bound of the input quantity

The PRA allocation policy is proved to be the optimal allocation policy at the allocation stage (see Section 3.2).Meanwhile,
allocation decisions in each period depend on not only the current remaining inventories and demands but also the demands
in the future periods. Thus, allocation decisions in each period can be made by using Eq. (19). However, since Eq. (19) takes
the unrealized demands into considerations, the optimal upgrading quantities need a heavy burden computation.

There are two other similar and simple allocation policies: myopia allocation policy and newsboy allocation policy
(myopia policy and NV policy, for simplicity). In a NV allocation policy, the products of one class can only be allowed to
satisfy the demands of the same class at the allocation stage. Meanwhile, themyopic allocation policy at one period includes
two steps. First, allocate the products of one class to satisfy the demands of the same class as much as possible. Second, if
the products of one class are in stock and the products of the adjacent lower class are out of stock, then allocate the products
of the higher class to satisfy the unmet demand of the adjacent lower class as much as possible. An illustrative example is
shown in Fig. 3.

In Fig. 3, the upgrading quantity by myopia policy is yM−t
i+1,i = min(N t

i , −N t
i+1). Meanwhile, the upgrading quantity by

the PRA allocation policy, yP−t
i+1,i, is based on the present and future demands, so the corresponding numerical interval is

0 ≤ yP−t
i+1,i ≤ min(N t

i , −N t
i+1). The upgrading quantity by myopic policy is no less than that by the PRA policy because of Eq.

(17). Obviously, future demand information is not needed for NV and myopic policies. In other words, fewer computations
are needed for these two policies than that for PRA allocation policy.

Lemma 2. PRA policy is profitable than NV policy and myopic policy.

Proof. Given a certain input quantity, some products are produced. After that, products are allocated to the periodic de-
mands in Tallocation periods. Let θM−t(X t), θ P−t(X t) and θNV−t(X t) be the profits from period t to period T by myopic
policy, PRA policy and NV policy, respectively.

Let ∆t be the difference of upgrading quantity by myopia and by PRA policy at period t , and ∆t
= YM−t

i+1,i − Y P−t
i+1,i ≥ 0.

Because the contribution margin of upgrading is αt
i+1,i, the profit of ∆t units of product i by myopia policy is

∑
∆tαt

i+1,i.
The salvage costs of all products are zero, so we have θM−T+1(XT ) = θ P−T+1(XT ) = 0. Because period T is the last period
in the allocation stage, if product inventory is XT at the beginning of period T , both the parallel allocation quantities and
the upgrade allocation quantities by either myopic or PRA policies are the same: θM−T (XT ) = θ P−T (XT ). So the profit from
period T − 1 to period T by myopic policy is

θM−T−1(XT−1) =

−
yT−1
i,i αT−1

i,i +

−
(yP−T−1

i+1,i + ∆T−1)αT−1
i+1,i + θM−T (XT

− ∆T−1)

=

−
yT−1
i,i αT−1

i,i +

−
yP−T−1
i+1,i αT−1

i+1,i +
−

∆T−1αT−1
i+1,i + θM−T (XT

− ∆T−1)

≤

−
yT−1
i,i αT−1

i,i +

−
yP−T−1
i+1,i αT−1

i+1,i + θ P−T (XT ) − θ P−T (XT
− ∆T−1) + θM−T (XT

− ∆T−1)

=

−
yT−1
i,i αT−1

i,i +

−
yP−T−1
i+1,i αT−1

i+1,i + θ P−T (XT )

= θ P−T−1(XT−1) (20)



1248 G. Han et al. / Computers and Mathematics with Applications 61 (2011) 1241–1253

Table 2
Parameters for policy comparisons.

Parameter d11 d12 d21 d22 p1 p2 r1 r2

Distribution n(13, 20) n(18, 23) n(13, 20) n(18, 23) n(10, 30) U[0, 1]p1 U[0, 1] U[0, 1]

Parameter u1 u2 η1 η2 v1 v2 c

Distribution n(4, 18) U[0, 1]u1 B(24, 9) U[0, 1]η1 n(5, 12) U[0, 1]v1 n(2, 10)

where θM−T−1(XT−1) (see Eq. (20)) includes three parts: profit from the parallel satisfaction at period T − 1, profit from the
upgrading satisfaction at period T − 1 and the profit obtained at period T .

Assuming that θM−t+1(X t+1) ≤ θ P−t+1(X t+1), we then compare θM−t(X t) with θ P−t(X t). That is

θM−t(X t) =

−
yti,iα

t
i,i +

−
(yP−t

i+1,i + ∆t)αt
i+1,i + θM−t+1(X t+1

− ∆t)

=

−
yti,iα

t
i,i +

−
yP−t
i+1,iα

t
i+1,i +

−
∆tαt

i+1,i + θM−t+1(X t+1
− ∆t)

≤

−
yti,iα

t
i,i +

−
yP−t
i+1,iα

t
i+1,i + [θ P−t+1(X t+1) − θ P−t+1(X t+1

− ∆t)] + θM−t+1(X t+1
− ∆t)

≤

−
yti,iα

t
i,i +

−
yP−t
i+1,iα

t
i+1,i + θ P−t+1(XT )

= θ P−t(X t). (21)

Because of Eqs. (20) and (21), we have θM−t(X t) ≤ θ P−t(X t) for ∀t ∈ {1, 2, . . . , T }. Accordingly, we can obtain
θM−1(X1) ≤ θ P−1(X1).

Meanwhile, no upgrading is allowed that allocated by NV policy. In Fig. 3, yP−t
i+1,i is the upgrading quantity from product

i to satisfy demand i + 1 with PRA policy. The upgrading quantity is based on the corresponding contribution margin (see
Section 3.2). So let 1Y t

= {yP−t
2,1 , yP−t

3,2 , . . . , yP−t
n−1,n}; the profit from period t to period T is

θ P−t(X t) =

−
yti,iα

t
i,i +

−
yP−t
i+1,iα

t
i+!,i + θ P−t+1(X t+1)

≥

−
yti,iα

t
i,i + [θ P−t+1(X t+1

+ 1Y t) − θ P−t+1(X t+1)] + θ P−t+1(X t+1)

=

−
yti,iα

t
i,i + θ P−t+1(X t+1

+ 1Y t)

= θNV−t(X t). (22)

From Eq. (22), we can obtain θ P−1(X t) ≥ θNV−1(X t).
Because of θ P−1(X t) ≥ θNV−1(X t) and θ P−1(X1) ≥ θM−1(X1), the profit by PRA allocation policy is higher than that by

myopic and NV policies when a certain quantity of input is given. �

Observation 1. The optimal input quantity by PRA policy is more than that by myopic.

Model analysis shows that PRA policy is more profitable than myopic and NV policies due to its better flexibility. Let
Q P∗

0 be the optimal production input quantity generated by PRA policy, and QM∗

0 and QNV∗

0 be the optimal production input
quantities generated by myopic and NV policies, respectively.

In the experiments with a single input, two outputs and two allocation periods, we suppose that each parameter (see
Table 2) follows one type of random distribution. All demands follow the normal distributions truncated at 0 and rounded
to the nearest integer. All the parameters are non-negative and are set based on the previous assumptions (see Section 3.1).

The values of parameters are the same in all comparable simulations when we perform the comparison, and then the
corresponding optimal input quantities of the three allocation policies are calculated and compared. First, 50 scenarios are
generated for prejudgment (Fig. 4). These simulations show that the optimal input quantity by NV policy is either more or
less than that by myopic and PRA policies.

Prejudgment shows that the optimal input quantity by myopic policy is always less than that by PRA policy. To confirm
this observation, more scenarios are generated to compare the optimal input quantities by myopic and PRA polices with the
DOE method (design of experiment). A two-tailed test statistical experiment is designed, and its corresponding confidence
level, test power and permissible error of the result are 0.95, 0.1 and 0.01, respectively. Totally 4000 scenarios are randomly
generated, so that more extreme values and parameter combinations could be included in the experiment. The mean of the
value (Q P∗

0 − QM∗

0 )/Q P∗

0 is 0.0317 and the standard variance is 0.0354, so the basic effective scenario size for the statistical
evaluation is just 2554 by DOE theory [32]. In other words, adequate number of scenarios has been generated to effectively
perform the experiment. Fig. 5 shows the values of difference rate (Q P∗

0 −QM∗

0 )/Q P∗

0 and difference value Q P∗

0 −QM∗

0 in each
scenario.

All the difference values of Q P∗

0 − QM∗

0 are non-negative in the experiment (see Fig. 5). In other words, the optimal input
quantity by PRA policy is always more than that by myopic policy. From the statistics collection of the scenarios, there are
3743 scenarios (about 93.57% among 4000 scenarios) that the difference rates (Q P∗

0 −QM∗

0 )/Q P∗

0 are included in the interval
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Fig. 4. Prejudgment on optimal input quantity by the three allocation policies.

Fig. 5. Comparison on optimal input quantity by myopic and PRA policies.

[0, 0.1]. Then, themeans and variances of all random parameters (see Table 2) aremodified to performmore experiments. In
all the experiments, the difference values ofQ P∗

0 −QM∗

0 are non-negative, and among over 90% scenarios in each experiment,
the values of (Q P∗

0 − QM∗

0 )/Q P∗

0 are less than 0.1. More experiments (in 1 × 2 × 3, 1 × 3 × 3 and 1 × 4 × 3 systems) are
performed to examine the above observation. We find that the optimal production input quantity by PRA allocation policy
is always more than that by myopic allocation policy, and in most of scenarios the values of (Q P∗

0 − QM∗

0 )/Q P∗

0 are less than
0.1.

The objective function is a stochastic dynamic programming problem, and each allocation decision at each period is a
dynamic programming model with all future demands as control variables. Although PRA is the optimal allocation policy
of the make-to-stock system, finding the optimal production input quantity is a significant computational burden by this
allocation policy. For example, given an initial production input quantity, at least n dynamic stochastic programs must be
evaluated to obtain the optimal production input quantity for a 1×n×T system.However, finding the optimal input quantity
that allocated by myopic policy is much easier, because the future demands are not needed when an allocation decision is
made. Since the production input quantity optimization by PRA policy has a heavy computational burden, Observation 1
becomes very useful to reduce the computation complexity for optimizing the production input quantity.

4. Model solution

4.1. Allocation decisions at the current period

Allocation decisions are made based on the current inventories, current demands and the future demands of each class
of product by PRA policy. The allocation in each period becomes a transportation problem, and the framework of the
corresponding transportation problem at period t is given in Table 3.
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Table 3
Transportation framework at period t .

Current inventor y Realized demands at
period t

Expected demands in future periods

dt1 dt2 . . . dtn E(dt+1
1 ) E(dt+1

2 ) . . . E(dt+1
n ) . . . E(dT1) E(dT2) . . . E(dTn)

xt1 ct1,1 ct2,1 . . . ctn,1 ct+1
1,1 ct+1

2,1 . . . ct+1
n,1 . . . cT1,1 cT2,1 . . . cTn,1

xt2 ct1,2 ct2,2 . . . ctn,2 ct+1
1,2 ct+1

2,2 . . . ct+1
n,2 . . . cT1,2 cT2,2 . . . cTn,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xtn ct1,n ct2,n . . . ctn,n ct+1

1,n ct+1
2,n . . . ct+1

n,n . . . cT1,n cT2,n . . . cTn,n

Fig. 6. Solution algorithm for the dynamic model.

Based on Table 3, the transport freight charge per unit product is
cti,j = +∞ for αt

i,j < 0
cti,j = −αt

i,j for αt
i,j ≥ 0.

The optimal transport quantities Y t
= {yti,j} that allocated to demands Dt

= {dt1, d
t
2, . . . , d

t
2} are the optimal allocation

quantities in period t .

4.2. Searching algorithm for optimal input quantity

Since Π(Q0) is concave in Q0 (based on Lemma 1), an optimal production input quantity Q ∗

0 exists. However, finding
that the optimal production input quantity is a significant computational burden. So a searching algorithm is designed for
the dynamic model. Since PRA is the optimal allocation policy, let ΠP(Q0) be the maximum profit of the system and Q p∗

0
be the optimal input quantity. On the basis of Observation 1, we firstly allocate the products by myopic policy and obtain
the optimal input QM∗

0 . Then, we take QM∗

0 as the initial value of Q p
0 and find the optimal input quantity by PRA policy with

iterative operations. The flowchart of the proposed algorithm is as follows (see Fig. 6):
The basic procedure of the proposed algorithm is as follows:
Step 1. Solve the dynamic model by the myopic allocation policy and obtain the optimal input quantity QM∗

0 .
Step 2. Set the initial input quantity as QM∗

0 , that is, Q P
0 = QM∗

0 .
Step 3. Calculate ΠP(Q P

0 ) and ΠP(Q P
0 + 1).

Step 4. If ΠP(Q P
0 ) ≥ ΠP(Q P

0 + 1), then the optimal input quantity Q P∗

0 is Q P∗

0 = Q P
0 . Otherwise, let Q P

0 = Q P
0 + 1, then go

to step 2.
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Table 4
Calculations by the proposed algorithm.

Parameter Value

Q P
0 93 94 95 96 97 98 99 100 101 102 103

ΠP (Q P
0 ) 396.2128 397.1858 398.0670 398.8012 399.3899 399.8834 400.2531 400.5102 400.6517 400.7018 400.6528

Fig. 7. Computational results by the proposed algorithm.

4.3. Numerical example

A numerical experiment with single input, two outputs and two allocation periods is implemented in order to illustrate
the effectiveness of the proposed algorithm. The yield rate η1 follows the beta distribution. All demands follow the normal
distributions truncated at 0 and rounded to the nearest integer. The given parameters are as follows:

d11 ∼ n(18, 24), d21 ∼ n(18, 24), d12 ∼ n(12, 21),

d22 ∼ n(12, 21), η1 ∼ B(5, 8), η2 = 1 − η1,

p1 = 8, p2 = 4, v1 = 5, v2 = 2, c = 1,
r1 = 0.24, r2 = 0.38, u1 = 1.5, u2 = 1.2.

We firstly compute the optimal production input quantity of the model that is allocated by myopic policy, then we can
obtain the optimal value QM∗

0 = 93 and the corresponding profit is ΠM(93) = 241.0178. Taking Q P
0 = QM∗

0 = 93 as the
initial value for the dynamicmodel, the corresponding initial profit by PRA policy isΠP(93) = 396.2128. Then, the dynamic
model is solved by the proposed algorithm.

The computations by the proposed algorithm are given in Table 4. Since ΠP(Q P
= 102) > ΠP(Q P

= 101) and
ΠP(Q P

= 102) > ΠP(Q P
= 103), the optimal input quantity is Q p∗

0 = 102. The maximum profit of the make-to-stock
system is ΠP(Q P∗

0 ) = Π(102) = 400.7018. Fig. 7 shows that the new algorithm takes only 11 iterations to obtain the
optimal production input quantity, while it will take 103 iterations (see Fig. 8) using the traditional search algorithm that
takes zero as the initial value.

5. Conclusions

This paper is motivated by the high yield variability in semiconductor industry where the quality of the final products
is uncertain and the products are graded into one of several quality levels according to their performances before being
shipped. We study this dynamic multi-period yield management problem of a two-stage make-to-stock system with
substitution faced by a semiconductor manufacturing firm. The objective is to determine the optimal production input
quantity in order to maximize the firm’s total profits. Demand can be classified into multiple classes corresponding to
product levels and be upgraded when one type of product has been depleted. At the same time, products depreciate in
allocation periods, which mainly results from technical progresses. Because the yield rate of each product level and the
corresponding demand are random, the system can be modeled as a stochastic dynamic program. The PRA allocation policy
is proved to be the optimal allocation policy, which states that satisfying as much as the parallel demands, then upgrade
the demands by the one class higher product with the optimal quantities. We also show that the objective function of the
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Fig. 8. Computation results by the traditional algorithm.

stochastic dynamic model is concave in production input quantity, and there exists an optimal production input quantity.
The objective function of the stochastic dynamic model is proved to be concave in production input quantity. Two simple
allocation policies (NV policy and myopic policy) are studied for comparative analysis with the PRA policy. Both model
analysis and numerical experiments show that the optimal value of production input quantity by myopic policy is less than
that by PRA policy and the difference rate is mostly less than 0.1. Based on these findings, a searching algorithm is designed
for the dynamic model to reduce the computational burden. Both theoretical derivations and numerical experiments prove
that the proposed algorithm requires much fewer computations and is effective to solve the proposed dynamic model.
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