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Abstract-A general framework is constructed upon which an explicit parametric formula can 
be derived for state feedback controllers containing all the possible combination of parameters. The 
relation between the parameters is nonlinear in general, and therefore, many different constraint may 
be imposed by the designer to obtain desired performance criteria. A couple of illustrative examples 
are presented. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The parameterizations of state feedback controllers with eigenvalue assignment problem has 

been the subject of many investigators in the last two decades. Different methods of parametric 

eigenvalue assignment for multi-input systems have been proposed [l-9]. Karbassi and Bell [4] 

have introduced a new method for the parameterizations of state feedback controllers. It, has been 

shown that from a simple algorithm based on a vector companion form obtained by elementary 

similarity operations and the properties of Kronecker invariants, a group of parametric controllers 

with linear parameters can be generated. The location of parameters can be specified by a 

state transition graph [5]. In this paper, the method of Karbassi and Bell (2-41 is extended to 

construct a general framework to obtain parameterized controllers with nonlinear parameters. It 

is shown that this controller gain matrix is nonlinear in nature and that the set of controllers with 

linear parameters are a subset of this general parameterized form. A very interesting outcome 

of this study is that the nonlinear system of equations for eigenvalue assignment for a given 

pair of system matrices and a given set of eigenvalues is uniquely determined by the structural 

properties of the system, that is the Kronecker invariants as defined in [2]. Since generically in 

almost all practical systems the Kronecker invariants are regular, in this paper we assume that 

the Kronecker invariants of a given system are regular. The general framework for the case of 

irregular Kronecker invariants [3] is very much similar but each case must be treated individually. 

A couple of examples which illustrate the method of obtaining the nonlinear parametric form are 
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presented and in the first example an extra constraint which makes the inputs proportional to 

each other, as an important application of the case of nonlinear parameters, is further imposed. 

2. PROBLEM STATEMENT 

Consider a controllable linear time-invariant system defined by the state equation 

2(t) = Ax(t) -t- Bzl(t), (1) 

or its discrete-time version 

z(lc + 1) = Ax(k) + Bu(k), (2) 

where z(lc) E lRn, u(k) E lRm, and the matrices A and B are real constant matrices of dimen- 

sions II. x n and II. x nt, respectively, with rank (L?) = m. The aim of eigenvalue assignment 

is to design a state feedback controller, I<, producing a closed-loop system with a satisfactory 

response by shifting controllable poles from undesirable to desirable locations. Karb,assi and 

Bell [Z-4] have introduced an algorithm obtaining an explicit parametric controller matrix K 

by performing three successive transformations T, S, and R which transforms the controllable 

pair (B, A) into standard echelon form, primary vector companion form and parametric vector 

companion form, respectively. This means that K is chosen such that the eigenvalues of the 

closed-loop system 

f = A + BK, (3) 

lie in the self-conjugate eigenvalue spectrum A = {Xl, X2.. . . , A,}. IVow a similar but rather 

different approach is presented in this paper to obtain a controller gain matrix K containing all 

the possible combination of parameters. 

3. SYNTHESIS 

Consider the state transformation 

o(t) = Z-XT), (4) 

where T can be obtained by elementary similarity operations as described in 141. In this way, 

-4 = T- 1 AT and & = T-‘B are in a compact canonical form known as vector companion form 

where Go is an m x n matrix and Do is an nz x nz upper triangular matrix. Note that if the 

Kronecker invariants of the pair (B, A) are regular7 then 2 and B are always in the above form. 

In the case of irregular Kronecker invariants, some rows of I,-,, in A are displaced. We may 

also conclude that if the vector companion form of A obtained from simi1arit.y operations has the 

above structure, then the Kronecker invariants associated with the pair (B, A) are regular. 

The state feedback matrix which assigns all the eigenvalues to zero, for the transformed 

pair (B, A), is then chosen as 
u = -D,‘Goi = &, ((9 

which results in the primary state feedback matrix for the pair (B. A) defined as 

Fp = ET-‘. 

The transformed closed-loop matrix l?o = A + Bp assumes 

eigenvalues 

!& = 
0 

L7nll;;l?n-m.n, . I 

(7) 

a compact Jordan form with zero 

(8) 
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THEOREM. Let & be any matrix in vector companion form, i.e., 

Ax = 
[ 

GA 
1 In-In, on-ln., ’ P-4 

with the eigenvalue spectrum A = {Al, X2,. . . , A,}, a set of self conjugate eigenvalues. Then 

I;- = D,‘(-Go + GA) (10) 

is the feedback matrix which assigns the eigenvalue spectrum to the closed-loop matrix l? = A+B. 

PROOF. Direct substitution yields 

- _- 

* + *I( = Go In--m,On--m.m ] + [Onfl:.m] [&‘(-Go+Gx)] 7 (11) 

or 
F = Go - DoD,'Go + DoD,'Gx 

In-,1 on-,., 1 . (12) 

Clearly, l? = 2~ has the same eigenvalues as &. 

COROLLARY. 1f k is the controller matrix lvhich assigns the set of self-conjugate eigenvalues A = 

{~l>h..., A, } to the transformed pair (8, A)! then 

I< = ET-’ = D;‘(-Go + Gx)T-’ (13) 

is the controller matrix which assigns the same set of eigenvalues to the pair (B, A). 

The above theorem leads to a general framework for obtainin g the parametric controllers in 

general. Thus, let 

det (.& - M) = P,,(A) = 0, (14) 

where 
P,(A) = (-l)n (A” + CJn-1 +. . . +&-1X + G-J, (15) 

is the characteristic polynomial of the closed-loop system. Since it is required that the zeros of 
this polynomial lie in the set A = {Xl, X2,. . . , A,}, it is clear that 

P,(X) = (-l)n(X - X,)(X - A*). . . (A - A,). ( 16) 

By equating these two equations the coefficients ci? (i = 1,2, . . . , n) can be obtained as follows [2]: 

cl = -2(X,) = -trace (AX) 
I=1 

c’2 = 2 (AiAj) = - 
(cl trace (AA) + trace (A:)) 

2 
i.J=l.i#J 

(17) 

( c,-1 trace Ax +cn-2 trace A2, +. . 
c,, = (-1)“fi(Ai)=- ( ) ( ) 

.+cl trace (A;-‘) +trace (AZ)) 

,=l 
11 

It should be noted that when A;, (i = 1,2, . . . , n) are specified, then cl can be calculated easily, 
while for large 7% the above recursive formula will facilitate the computation of cp, cg, . . , c,, using 
t11c fact that [lo] 

trace (Ai) = 2 (Xi’) e 
I=1 

(18) 



where g;, , (i = 1 . * . . , Ill‘, j = 1 , . . . , n), are the elements of GA: 

f1(g11ryl2r...,g1~,921,~22,...,~2n,...,Smlrgm2r...,Smn) =c1, 

f2(~11,Y12r...tSlni921r~22r...rY2n,~~.rSnltSm2,.~.,Smn) =c2, 

(19) 
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Now by direct ~onlputation of det(& - Al) in paranletric form and equating the coefficients of 

the characteristic polynomial with (17), the following nonlinear system of equations is obtained: 

Gx= .,. . . . 1.. . . . . 

[ 

911 Q12 ‘.’ Sin (20) 
Y?nl Lb2 .** gmn I 

In this way, a nonlinear system of n equations with 71 x m unknowns is obtained. By choosing N = 

11(172- 1) unknowns arbitrarily it is then possible to solve the system. Thus, different selections can 

be made to obtain different solutions. Thus, different selections can be made to obtain different 

solutions. Indeed. the Newton’s iterative method, however, if the method does not converge in a 

reasonable number of iterations, the initial values may be updated randomly. It is interesting to 

note that with the total number of free parameters is N = nnz - n and the number of different 

~o~~~l~i~~ations of the parametric state feedback controllers is 

( 

(72rfZ - ?I)! 

P = (n)!(nnz - 2n)! * > 
(21) 

Clearly, some of these choices lead to linear parameters. Therefore, the set of linear parametric 

controllers obtained in [2-51 is the subset of the general nonlinear controller I<. 

It should be noted that since the form of Ax in (9) is only dependent on the Kronecker 

invariants of the pair (B, A) and is unique, then for a specified set of eigenvalues the coefficients 

of the characteristic polynomial, ci, (i = 1,. . . ,?I), are uniquely determined. Intuitively, the 

nonlinear system of equations described in (19) are universal for a prescribed set of eigenvalues 

and known Kronecker invariants and its solutions are independent of the numerical values of 

the pair (B, A). The controller gain matrix for the original pair (B, A) can then be obtained 

by (13), in which D,‘, Ga, and T-’ have a crucial effect. In other words, the nonlinear system 

of equations (19) is uniquely defined for any given pair (B, A) of fixed dimensions and regular 

Kronecker invariants. 

In deriving the nonlinear system of equations, direct computation of det(Ax - AI) with the 

parameters is rather cumbersome for large n and ‘~1. However, elementary column operations on 

this matrix lead to the computation of the determinant of an nz x no matrix rather than an R x n 

matrix [ll]. The following illustrative examples demonstrate these points. 

5. ILLUSTRATIVE EXAMPLES 

Consider the system [d] 

It, is desired to obtain parametric state feedback controllers which assign the eigenvalues A = 

{ - 1, -2, -3) to the closed-loop system. The transformed pair (B, A) in vector companion from 
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and the corresponding transformation matrix are 

Clearly, 

and 

Now. let us consider 
911 912 913 

.Ji, = [ 921 922 923 1 0 0 1 
with the same canonical structure as A. Here 

GA [ 911 912 913 = 921 922 g23 1 
is the parametric controller matrix in the transformed space. 

tions relating these parameters such that the eigenvalues of 

Now 

1061 

Our aim is to obtain the set of equa- 

& are in the set A = (-1, -2, -3). 

+!t Ax - XI ( > = - (x3 - (911 +922)X2 + (911922 - g12g21 - 913 

while 

P + (922913 - 912923)) ? (22) 

IS(X) = (-lf3 (x3 + GA2 + 11x + 6) (23) 

By equating the coefficients of these two equations, we obtain the nonlinear system of equations 

4911 + 922) = 6, (24) 
911922 - 912921 - 913 = 11, (25) 

922913 - 912923 = 6, (26) 

which is universal, that is for any given controllable A and B of dimension n = 3 and rn = 2 with 

regular Kronecker invariants and the prescribed eigenvalues as above is unique. 

Here, there are three equations with six unknowns. The first equation is linear in parameters 

while the other two equations are nonlinear. To obtain explicit solutions, three of these unknowns 

may be selected arbitrarily. For example, suppose 911 = -2 and 922 = -4 then from (25) and 

(26) we obtain 

913 = -3 - 912921 (27) 

a11cl 
g23 = (6 + 49l2921) 

912 * 
633) 

Therefore, 

-2 912 -3 - g12921 
GA = 

921 -4 
(6 + 4912921) . 1 (2% 

912 
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T1xe nor&near parametric controller matrix Ii’ for the pair (B, A) is then 

K = D,‘(-Go + G,,)T-’ 

=[ -20 - -5 22921 + 22921 - 5912921 + 30 - E 9 

--& 

+ -5 912 -12 - -3 13921 + 13921 - 3912921 + - 2 

; 1. (30) 

Here I< is expressed explicitly in terms of two parameters which result in nonlinear terms. 

Instead of specifying three of the parameters, we may impose some constraint on the system 

performance. For example, suppose it is required that the inputs be proportional to each other, 

this means that the rows of the transformed controlfer matrix G = -Ge + GA should be made 

l~rol~ortiollal to each other. For this example, we have 

G= 2+911 4 + 912 -2 + 913 

921 -1 + 922 1 -1+923 
(31) 

If we wish to have us = CUE, where c is a constant, then the second row of G must be proportional 

t,o its first row. Applying this constraint, we obtain three more equations 

921 = 4 + 911), (32) 

922 - 1 = c(4 + 912), (33) 

923 - 1 = 4-2 + 913). (34) 

If we choose c=2 and solve the nonlinear system of six equations thus obtained ((24)-(2(i), and 

(32)-(34)), we will then obtain 

G = 

[ 

0.5385 -2.7G925 0.9235 

1.0770 -5.5385 I 1.8470 ’ (35) 

while for the original system IC is found to be: 

IC = 
[ 

-5.6945 2.7692 -3.3090 1 11.3890 -5.5385 6.6180 * (36) 

It is evident that if this controller gain matrix is applied to the given system, then ~2 = 2211. 

EXharPLE 2. Consider the system [6] 

It is desired to obtain explicit parametric state feedback controllers which cassign the set of 

eigenvalues A = { -0.2, -0.5, -5.0566, -8.6659) to the closed-loop system. The transformed 

pair (2, A) in vector companion form and the corresponding transformation matrix are 

1 0 

fi= [ O l 
0 0 

0 0 1 ’ 

-5.2588 0.2498 -1.2439 2.6983 

-6.4092 -11.0617 19.5403 

0 0 0 

i 

' 
0 10 1 0 

-0.00~0 0.1839 0 -0.0393 

-0.0653 0.0098 -0.3179 0.2687 

-0.0071 -0.0071 0 0.0356 

-0.0473 0 0 0 I. 
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Clearly, 

D-1 = 1 0 
0 [ I 0 1 

AllCl 

Now let us consider 

Go -5.2588 0.2498 -1.2439 

2.6983 

= -1.3832 -6.4092 -11.0617 19.5403 1 
911 912 913 91-i 

2, 921 922 923 924 = 1 0 0 0 1 

with the same conanical structure as _.& Here 

GA = 

[ 

911 912 913 914 

921 922 923 924 1 
is the parametric controller matrix in the transformed space. Our aim is to obtain the set 

of equations relating these parameters such that the eigenvalues of & are in the set A = 

(-0.2, -0.5, -5.0566, -8.6659). Now it can be easily verified that 

det (AX - Xl) = A“ - (911 + g&X3 + (mg22 - grml - zm - 92-S2 

+(922913 - 912923 + 911924 - 914921)~ + (91392‘l - 914923L 

(37) 

while 

Pd(A) = (-1)’ (A” + 14.4225A3 + 53.5257X” + 32.0462X + 4.3820) . (38) 

By equating the coefficients of these two equations, we obtain the nonlinear system of equations 

-(glz + 922) = 14.4225, (39) 

gllgzz - glzgzt - 913 - $24 = 53.5257, (40) 

922913 - 912923 + 911924 - 914921 = 32.04@& (41) 

gzag13 - gldg23 = 4.3820, (42) 

which is universal, that is for any given controllable A and B of dimension ?z = 4 and 17% = 2 

with regular Kronecker invariants and the prescribed eigenvalues as above is unique. Here we 

have four equations with eight unknowns. If we choose gll = -10, g12 = 1, ~2~ = -9.3007, 

and 913 = -~JJ, say, then we will obtain g22 = -4.4225, and 91~ = -(g,“, +4.382O)/g23 where ~23 

is the solution of 

gz3 + (5.5875gz1 + 32.0462)g23 + 9.3007 (g& + 4.3820) = 0. (43) 

Therefore, 
(g& + 4.3820) 

GA = 

[ 

-10 1 -92.4 - 
923 . (44) 

-9.3007 -4.4225 923 924 1 
This will lead to an explicit formula with nonlinear parameters for the controller matrix. With 

g& = 0, it is easy to verify that one possible solution is 

CA = 
-10 1 0 0.1426 

-9.3007 -4.4225 -30.7195 0 1 ’ (45) 
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producing 
Ic = 0.0820 -0.8736 

0.9664 -1.2970 

One of the feedback matrices obtained in (61 is 

Ir’ = [ 0.1028 -0.633 
3 0.8361 0.5270 

Using equation (13) backwards we can obtain GA 

ill fact 

GA = 
-8.8241 0.6232 

1.9336 -5.5983 

-0.2385 0.4319 

-0.6315 1 0.1455 ’ (46) 

-0.1187 
-0.2577 

0.1463 1 0.5427 . (47) 

for this controller matrix and it is found that 

-3.8866 0.7080 
1.7338 -1.4435 1 ’ (48) 

whose elements satisfy the nonlinear system of equations (39)-(42). 

6. CONCLUSION 

The advance the paper presents over the previous work is the development of a method based 

on the structural properties of parametric vector companion forms, a general framework for 

explicit formulas for state feedback controllers with nonlinear parameters in arbitrary eigenvalue 

assignment was presented. Clearly, it is a simple matter to obtain the linear parametric controllers 

from this general form. 

An interesting outcome of this study is that the nonlinear system of equations obtained for a 

given pair of (B, A) and a given set of eigenvalues is not only unique, but is universal and that it 

only clepends on the Kronecker invariants of the system as defined in [2] and the prescribed set of 

eigenvalues. Also, the number of free parameters obtained in this way is much greater than the 

mmrber obtained previously by Amin and Elabdalla [I] or O’Reilly and Fahmy [7]. The general 

framework for the case of irregular Kronecker invariants [3] is very much similar, but each case 

must be considered individually. However, the Kronecker invariants of most practical systems 

are regular. 

The method does not require prior knowledge of the open-loop eigenvalues and the controller 

does not impose any restriction on the position of the desired eigenvalues or their nature and 

multiplicity. 

The problem of minimizing the condition number of the closed-loop eigenvector matrix and 

other measures of robustness [12] using the state feedback matrix with nonlinear parameters and 

extensions to techniques for modifying the locations of the assigned eigenvalues to regions of the 

complex plane are currently being developed. 
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