View metadata, citation and similar papers at core.ac.uk

led by Elsevier - Publish

http://dx.doi.org/10.1016/j.ijid.2016.02.312

Type: Poster Presentation

Final Abstract Number: 41.119 Session: Poster Session I Date: Thursday, March 3, 2016 Time: 12:45-14:15 Room: Hall 3 (Posters & Exhibition)

The sensitivity to antibiotics of nosocomial strains of acinetobacter baumanii isolated in the tertiary hospitals in the Central Kazakhstan

I. Azizov^{1,*}, A. Lavrinenko², D. Babenko¹, N. Bisenova², Y. Zakharova³, A. Cheska⁴, S. Kolesnichenko¹

¹ Karaganda State Medical University, Karaganda, Kazakhstan

² National Scientifical Medical Center, Astana, Kazakhstan


³ Diagnostic Lab, Almaty, Kazakhstan

⁴ Transilvania University, Brasov, Romania

Background: Acinetobacter baumanii are one of main bacterial pathogen caused nosocomial infection according International Guidelines of Infection Control (2015). Last 4 years the part of nosocomial infection caused by Acinetobacter baumanii are dramaticaly grows.

Methods & Materials: In the multicenter study 200 strains of Acinetobacter baumanii were collected in period 2012-2015yy. Strains were collected in 3 tertiary hospitals in the Central Kazakhstan. All strains were identified by MALDI-TOF mass-spectrometry and typed by PCR detection of OXA-51 carbapenemase as A.baumanii specific label. The sensitivity testing were by micro dilution methods with CLSI criteria using. The OXA-23 and OXA-40 carabapenemases genes detection made by PCR with commercial kits (Interlab Service, Russia). The statistical analysis (MIC90, average MIC, 95% Confidential Interval) was made by WhoNet 6.2 database.

Results: All isolated strains are resistance to main part of antimicrobial drug (pic. 1). During fourth years period the resistance to carbapenems were increased: to imipenem 64,5%; 95%CI 45,5-80,2 (2012 year) to 81,2; 95%CI 66,8-90,5 (2015 year). The resistance growth by logarithmyc depence ($y = 12,257\ln(x) + 65,537$; $R^2 = 0,9612$). The testing of general linear hypothesis in regression situation for logarithmic model can predict level of resistance in 2016 at over 85% (pic.2). The dynamic of increasing to meropenem was the same and changed from 61.3% (2012) to 84,5% (2015y). In all cases of resistance to carbapenems the gene blaOXA-23 carbapenemase was detected. The quantitavive characteristics of

Pic 1. The resistance to antibiotics of nosocomial strains A.baumanii isolated in the Central Kazakhstan's tertiary hospitals (2015).

					pro
-					_
50					_
-					-
30					-
20					
-					
•	2012	2013	2014	202	28%

Pic 2. The dynamic of the resistance to imipenem of nosocomial strains A.baumanii isolated in Central Kazakhstan's tertiary hospitals (2012-2015yy).

Table 1

The sensitivity to antimicrobials of nosocomial strains A.baumanii isolated in fourth tertiary hospitals in the Central Kazakhstan (2012-2015yy.)

Antimicrobials	14 202	MIC and	M(30	14 2015	MC and	MON	14 2114	MIC and	MON	168 2025	NVC and	MO
ingenen	64,5	1,10	-	25,8	15,296			14,612	80	12,0	17,418	
Meroponen	41.3	75254	н	. 7.9	17.84			34,761	я	71.9	0.0	
Arquilles/Subsets	95.1	1	2	45.7	25,648	- 04	8.7	34,834	- 54	24.8	80	10
Autoricov	÷.	2.3	16		6,45		2.1	80	ND		45	16
Germanica	41,5	5,841	64	10	4,368	-	45,5	8,656		55,4	44,261	206
Arthurs	25.8	10	NO	35.7	35,877	108	35.8	51.418	328	36.3	46.211	29
Nationida		0,588	1		6.40		73	ND	10		5.494	30
Operference		81,716	+254	34,4	126	1214		10.5	1254	95,7	122,54	124
Collector	67	0.566		1.1	6.52	6.5	1.4	65			0.404	

sensitivity to antimicrobials are present in table 1. The high part of studied strains were sensetivity to aminoglycosides: netilmycin (97,9%), sisomycin (91,3%), tobramycin (100%) and colistine (89,6%) and tigecycline (100%). However all preparations mentioned above are not registered in Kazakhstan so can't using for treatment infections caused A.baumanii.

Conclusion: The resistance to carbapenems in the fourth tertiary hospitals in the Central Kazakhstan are increased during 2012-2015yy. The major cases of resistance to beta-lactams were linked with OXA-23 carbapenemase production. Some part of antibiotics (netilmycin, sisomycin, tobramycin, colistin and tigecycline) has high activity against studied nosocomial strain of A.baumanii but this drug not registered in Kazakhstan.

http://dx.doi.org/10.1016/j.ijid.2016.02.313

Type: Poster Presentation

Final Abstract Number: 41.120 Session: Poster Session I Date: Thursday, March 3, 2016 Time: 12:45-14:15 Room: Hall 3 (Posters & Exhibition)

Computer assisted rational design and synthesis of some novel 2,4-di-substitued thiazole derivatives and their metal complexes (copper, cobalt, and nickel) as inhibitor of bacterial metabolic enzymes

D. Kar Mahapatra^{1,*}, S.K. Bharti²

 ¹ Guru Ghasidas Vishwavidyalaya (A Central University of India), Bilaspur, Chhattisgarh, India
² Guru Ghasidas Vishwavidyalaya (A Central University of India), Bilaspur, India

Background: Recent clinical reports have highlighted the increasing occurrence of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and other antibiotic-resistant human pathogenic microorganisms. Transition metal complexes of heterocyclic moieties or/with Schiff's base components have been reported to show promising nucleolytic activity. In an effort to develop newer generation low molecular