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This paper presents and compares two views of  the theory of  rough sets. The 
operator-oriented view interprets rough set theory as an extension of  set theory with two 
additional unary operators. Under such a view, lower and upper approximations are 
related to the interior and closure operators in topological spaces, the necessity and 
possibility operators in modal logic, and lower and upper approximations in interval 
structures. The set-oriented view focuses on the interpretation and characterization of  
members of  rough sets. Iwinski type rough sets are formed by pairs of  definable 
(composed) sets, which are related to the notion of  interval sets. Pawlak type rough sets 
are defined based on equivalence classes of  an equivalence relation on the power set. 
The relation is defined by the lower and upper approximations. In both cases, rough sets 
may be interpreted by, or related to, families of  subsets of  the universe, i.e., elements of  a 
rough set are subsets of  the universe. Alternatively, rough sets may be interpreted using 
elements of  the universe based on the notion of  rough membership functions. Both 
operator-oriented and set-oriented views are useful in the understanding and application 
of the theory of  rough sets. © 1996 Elsevier  Science Inc. 

K E Y W O R D S "  approximation operators, fuzzy  sets, interval sets, interval 
structures, modal logic, rough membership functions, rough sets, topologi- 
cal spaces, uncertain reasoning 

Address correspondence to Y. Y. Yao, Department of Computer Science, Lakehead University, 
Thunder Bay, Ontario, Canada P7B 5El. E-maih yyao@flash, lakeheadu, ca. 

* The author is grateful for financial support from NSERC Canada and Senate Research 
Committee of Lakehead University, and for suggestions and constructive comments from T. 
Y. Lin. 

Received November 1, 1995; accepted June 1, 1996. 

International Journal of Approximate Reasoning 1996; 15:291-317 
© 1996 Elsevier Science Inc. 0888-613X/96/$15.00 
655 Avenue of the Americas, New York, NY 10010 PII S0888-613X(96)00071-6 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82736987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


292 Y.Y.  Yao 

1. INTRODUCTION 

The theory of rough sets is an extension of set theory for the study of 
intelligent systems characterized by insufficient and incomplete informa- 
tion [38, 39, 43]. The introduction of the notion of rough sets is motivated 
by the practical needs in classification and concept formation with incom- 
plete information [44]. It is different from, and complementary to, other 
generalizations, such as fuzzy sets and multisets [10, 19, 44, 61]. There has 
been fast-growing interest in this new emerging theory. The successful 
applications of rough set models in a variety of problems have amply 
demonstrated their usefulness and versatility [21, 25, 42, 53, 70]. 

In a rough set model, elements of the universe are described in the 
context of available information (knowledge) about them. For example, in 
a medical expert system patients are normally described by their symp- 
toms. In a pattern recognition system, objects may be described by their 
features. When two distinct objects are described by the same description, 
they will be perceived as the same or being indistinguishable. This may be 
formally described by an equivalence relation, i.e., a reflexive, symmetric, 
and transitive relation. Each equivalence class consists of all these ele- 
ments that are indistinguishable. Given an arbitrary subset of the universe, 
one may not be able to describe it precisely using the available informa- 
tion, i.e., equivalence classes of an equivalence relation on the universe. 
Instead, one can form a pair of approximations. The lower approximation 
is the union of all the equivalence classes which are subsets of the set, and 
the upper approximation is the union of all the equivalence classes which 
have a nonempty intersection with the set. The set lies between its lower 
and upper approximations. In this formulation, the notion of binary 
relations, representing relationships between the elements of the universe, 
is the primitive concept. The theory of rough sets is formulated using the 
information, expressed in terms of binary relations, about elements of the 
universe. 

Many different proposals have been made for generalizing and inter- 
preting rough sets [15, 58, 63, 68]. Extensive research has been carried out 
to compare the theory of rough sets with other theories of uncertainty, 
such as fuzzy sets [6, 10, 19, 20, 57, 59, 61], modal logic [23, 27, 33, 35, 67], 
conditional events [29, 30], Dempster-Shafer theory of evidence [51, 52], 
and approximation theory [24]. The results of these studies enhance our 
understanding of rough sets, and provide new problem solving techniques 
in many subareas of artificial intelligence. On the other hand, these studies 
also show that some proposed generalizations are very different from each 
other. There exist many different interpretations of the notion of rough 
sets. 
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In this paper, we argue that two related and distinct views, the 
operator-oriented view and the set-oriented view, may be used for the 
interpretation of the theory of rough sets. A common underlying concept 
for both views is the notion of approximation spaces and the induced lower 
and upper approximations. The difference between these two views lies in 
the ways in which the lower and upper approximations are interpreted. 
The operator-oriented view interprets approximations as a pair of unary 
operators on the power set of the universe. That is, the theory of rough 
sets is an extension of set theory with two approximation operators. With 
the set-oriented view, lower and upper approximations are used to define 
the notion of rough sets. There are two ways for achieving this task: one 
uses subsets of the universe, and the other uses elements of the universe. 
Each of the proposed views captures different and important aspects of the 
concept of rough sets. Using the proposed two views, we present a review 
of existing interpretations of rough sets, and investigate the connections 
between the theory of rough sets and other theories of uncertainty. The 
operator-oriented view is related to topological space, modal logic, Boolean 
algebra with added operators, and interval structures. The set-oriented 
view is related to interval sets and fuzzy sets. 

The main objective of this paper is to give a synthesis of many different 
interpretations of rough sets. Although new results are presented, a major 
part of the paper is devoted to revealing interconnections between differ- 
ent interpretations of rough sets, and between the theory of rough sets and 
other theories of uncertainty. The results of the present study may provide 
a general framework for future research. 

An appendix contains the proofs of several theorems that do not 
immediately follow from the discussion in the text. 

It is important to note that in this paper we only consider finite 
universes. Results obtained for finite universes may not necessarily hold if 
the universe is infinite. 

2. APPROXIMATION SPACES 

The notion of approximation spaces is one of the fundamental concepts 
in the theory of rough sets. This section presents a review of the Pawlak 
approximation space constructed from an equivalence relation and its 
generalization using any binary relations. 

2.1. Pawlak Approximation Space 

Let U denote a finite and nonempty set called the universe. Let 
___ U × U be an equivalence relation on U. The pair apr = (U, ~R) is 
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called a Pawlak approximation space. The equivalence relation ~R parti- 
tions the set U into disjoint subsets. Let U/gt  denote the quotient set 
consisting of equivalence classes of ~R. The empty set O and the elements 
of U/~R are called elementary sets. A finite union of elementary sets, i.e., 
the union of one or more elementary sets, is called a composed set [19]. 
The family of all composed sets is denoted by Com(apr). It is a subalgebra 
of the Boolean algebra 2 t: formed by the power set of U. A set which is a 
union of elementary sets is called a definable set [19]. The family of all 
definable sets is denoted by Def(apr). For a finite universe, the family of 
definable sets is the same as the family of composed sets. A Pawlak 
approximation space defines uniquely a topological space (U, Def(apr)), in 
which Degapr) is the family of all open and dosed sets [38]. 

Given an arbitrary set A _ U, in general it may not be possible to 
describe A precisely in apr = (U, 9t). One may characterize A by a pair of 
lower and upper approximations. The following definitions summarize 
some of the proposals. 

DEFINITION 1 Let ~ be an equivalence relation on a universe U, [x].~ 
the equivalence class containing x, and Def(apr) the family of  all definable 
sets. For any set A c_ U, the lower approximation apr.(A)  and the upper 
approximation apr . (A)  are defined by as follows: 

(i) apr. (A)  is the greatest definable set contained in A, 

apr . (A)  is the least definable set containing A; 
(ii) apr. (A)  = U { X I X  c A ,  X ~ Def(apr)}, 

apr . (A)  = A{XIA c X, X ~ Def(apr)}; 
(iii) apr. (A)  = {x ~ U l[x] ~ c A}, 

apr.(A)  = {x ~ U l[xl~ n A ~ Q}, 
(iv) apr.(A)  = {x ~ Ulfor all y ~ U, x 9~ y implies y ~ A}, 

a p r . ( A )  = ( x ~ U l there  exists a y ~ U such that x ~ y and y ~ A}; 
(v) apr.(A)  = U([x]~ I[x]~ ~ U/gt ,  [x]~ _A}, 

apr. (A)  = U([x]~ [[x]~ ~ U/gt,  [x]~ n A ~ ~}; 
(vi) Apr , (A)  = {[x]~ I[x]~ E U/~R, [x]~ __c_ A}, 

Apr , (A)  = {[x].~ i[x]  u/ t, n A O}. 

It is important to note that the equivalence class [x]~ containing x 
plays dual roles. It is a subset of U if considered in relation to the 
universe, and an element of U/9] if considered in relation to the quotient 
set. Lin [19], following Dubois and Prade [10], explicitly used [x]~ for 
representing a subset of U and Name([x]~) for representing an element of 
U/9]. For simplicity, in this paper we will use the same symbol [x]~. Its 
particular role can be identified from the context. 

Definition l(i) to (vi) have been studied by many authors [1, 3, 12, 16, 17, 
31, 32, 36, 38, 39, 46, 47, 63]. Except the last one, they are indeed 
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equivalent definitions. Each of them captures different aspects of approxi- 
mations and offers various interpretations. The set Def(apr) is the family 
of all open and closed sets in the topological space (U, Def(apr)). Using 
Definition l(i) and (ii), approximations can be viewed as the interior and 
closure operators in a topological space. The power set 2 u is a Boolean 
algebra, and Def(apr) is a sub-Boolean algebra. Definition l(i) and (ii) may 
be generalized to any Boolean algebra. An equivalence relation defines a 
partition uniquely, and vice versa. Thus, Definition l(iv) is essentially a 
restatement of Definition l(iii). It explicitly uses the equivalence relation, 
instead of the induced equivalence classes, which offers a straightforward 
way to generalize a rough set model using different types of binary 
relations [58, 63]. Definition l(v) clearly states the relationships between 
approximations and elementary sets. The lower approximation is the union 
of all the elementary sets which are subsets of A, and the upper approxi- 
mation is the union of all the elementary sets which have a nonempty 
intersection with A. Definition l(vi) defines approximations in terms of the 
elements of the quotient set U / ~ .  They can be transformed into approxi- 
mations consisting of elements of U: 

apr:~(A) = U (X  X ~ Apr.~(A)), 

apr.(A) = U { x l x  ~ Apr~.~(A)}. 

(1) 

They may be considered as a special case of interval structures [56]. 
The lower and upper approximations satisfy the following properties: for 

subsets A, B ~ U, 
(L1) apr.(A) = ~ apr.(~ A), 
(L2) 
(L3) 
(IA) 
(L5) - -  
(L6) 
(L7) 
(L8) 
(L9) 

(L10) 

(U1) 
(U2) 
(U3) 
(U4) 
(US) 
(U6) 

h - ~ ( u )  = u, 
-a-~(A n B) = apr.(A) n apr.(B), 
- ~  ( A U B) 2 fi-fi-im ( A ) u a -~  ( B ), 
A c_ B =~ apr~(A--)--c_ apr~(B--~, 
apr~ (O) =-'-~, 
Yp-?~ (A) _ A, 
A c_ apr.(apr.(A)), 
ap%(A) c_ apr.(apr.(A)), 

apr.~( A) c_ apr,~(apr~( A)), 

apr.(A) = ~ apr.( ~ A), 
apr.~ (O) = 0 ,  
apr~(A U B) = apr.(A) U apr.(B), 
apr~(A n B) c_ apr . (A)  n apr.(B), 
A c_ B ~ apr . (A)  c_ apr,.(B), 
apr.(U) = U, 
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(u7) 
(us) 
(U9) 

(U10) 

(K) 

(LU) 

where ~ 

m 

A___c_ apr.(A) ,  
apr . (apr . (A))  c_ A,  

a_p~(apr~( A)) c_ apr. (A) ,  
apr . (apr . (A))  c_ apr. (A) ,  

apra( ~ A t_) B) c_ ~ apr . (A)  U apr.(B),  

apr . (A)  c_ apr . (A) ,  

A = U -  A denotes the set complement of A. Properties (L1) 
and (U1) state that two approximations are dual to each other. Hence, 
properties with the same number may be regarded as dual properties. 
Properties (L9), (L10), (U9), and (U10) are expressed in terms of set 
inclusion. The standard version using set equality can be derived from 
(L1)-(L10) and (U1)-(U10). For example, it follows from (L7) and (L9) 
that apr . (A)  = apr.(apr.(A)) .  It should also be noted that these proper- 
ties ar-e not indep-e-nde--m. 

With respect to any subset A ___ U, the universe can be divided into 
three disjoint regions using the lower and upper approximations: 

Pos(A) = aprm(A), 

NEG(A) = POS(~ A)  = U - a p r . ( A ) ,  (2) 

BND(A) = apr~t ( A ) - ap__p_~ ( A ). 

An element of the positive region Pos(A) definitely belongs to A, an 
element of the negative region NEG(A) definitely does not belong to A, 
and an element of the boundary region ar, ng(A) only possibly belongs to A. 

2.2. Generalized Approximation Spaces 

Suppose fit is an arbitrary binary relation on U. The pair apr = (U, fit) is 
called a generalized approximation space or simply an approximation 
space. With respect to fit, we can define a mapping r : U ---> 2v: 

r (x )  = {ylx fit y}, (3) 

by collecting all fit-related elements of x. It is an equivalent, and some- 
times more convenient, representation of a binary relation. If fit is indeed 
an equivalence relation, r(x) is the equivalence class containing x. In 
generalizing Definition l(iii)-(vi), one may use r(x) in the place of the 
equivalence class [x]~. By using different types of binary relations, one 
obtains distinct classes of approximation spaces [16, 58, 63, 68]. 

In some studies, approximation spaces are defined using a coveting by 
exploiting the fact that a covering is a generalization of a partition. One 
can generalize Definition l(iii)-(vi), by replacing equivalence classes with 
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elements of a covering and a partition with a covering, to derive approxi- 
mation spaces [68]. Given a reflexive binary relation ~ ,  one may define a 
covering of the universe. For example, if 9t is a reflexive relation, the set 
{r(x) lx ~ U} form a covering of U. Given a covering of U, one may 
construct a binary relation. There does not exist an one-to-one relation- 
ship between coverings and binary relations. In contrast to Pawlak approxi- 
mation space, definitions based on a covering and a particular choice of 
binary relation are not necessarily consistent. This offers many avenues of 
possible extensions. For example, Definition l(iii) and (iv) are equivalent, 
while (v) and (vi) are consistent. They define two distinct types of approxi- 
mations [47, 58]. For clarity and simplicity, in this study we construct 
approximation spaces based on binary relations and Definition l(iii). 

DEFINITION 2 Let ~ be an arbitrary binary relation on a universe U, and 
r( x ) the set of  9~-related elements of  x. For any set A c_ U, a pair of  lower 
and upper approximations, a p r , ( A )  and aprm ( A ), are defined by 

ap__~r~(A) = {x ~ Ulr(x) A } ,  
(4) 

aprm(h)  = {x ~ Ulr (x)  (~ Z ~ Q}. 

By definition, we have x E aprm({y}) ~ r(x)  n {y} 4= 0 ¢* y ~ r(x). 
The binary relation can be reconstructed from upper approximations of 
singleton subsets of U: 

r ( x )  = {yl x ~ apr~({y})}. (5) 

The lower and upper approximations satisfy properties (L1)-(L5), 
(U1)-(U5), and (K). In general, they do not satisfy other properties. Yao et 
al. [63] analyzed a number of different types of approximation spaces based 
on properties of the binary relation. By imposing additional properties on 
the binary relation, one can construct more specific approximation spaces 
in which lower and upper approximations have additional properties. If the 
binary relation is reflexive and symmetric, i.e., 9t is a tolerance relation, 
one obtains the approximation space proposed by Zakowski [47, 58, 68]. 
Additional properties (L6)-(LS), (U6)-(U8), and (LU) hold. If 9~ is 
reflexive and transitive, one derives another approximation space which is 
a topological space [16, 47, 58]. Additional properties (L6), (L7), (L9), (U6), 
(U7), (U9), and (LU) hold. 

3. OPERATOR-ORIENTED VIEW 

In this section, we present an operator-oriented view of rough sets by 
introducing the notion of rough set algebras. Relationships between rough 
set algebras and other mathematical structures are investigated. 



298 Y.Y. Yao 

3.1. Rough Set Algebras 

Given an approximation space apr =___(U, ~tt), it defines a pair of lower 
and upper approximations apr~ and apr,. By viewing them as a pair of 

dual unary operators on 2 t:, one obtains a system R = (2 t:, :~, U , ~ ,  
apr.~, apr.~). We call R a rough set algebra defined by the approximation 
sp--ace apr = (U, ~ ) .  It extends the standard set algebra (2 t:, n ,  u ,  ~)  by 
adding two set-theoretic operators [3, 16, 22, 58, 63]. Propertie__s_s of rough 
set algebras are determined by the unary operators apr~ and apr,,  which 
are determined by properties of the binary relation ~ .  

Lin and Liu [22] considered a reverse process for defining rough set 
algebras. Instead of starting from a binary relation, they took an axiomatic 
approach by stating explicitly the requirements for approximation opera- 
tors. One of their main objectives is to investigate the conditions on 
approximation operators so that they are equivalent to the ones defined by 
a binary relation. However, their formulation is set in the context of 
Pawlak approximation spaces. With respect to generalized approximation 
spaces, we have the following theorem stating the conditions on the 
approximation operators. 

THEOREM 3 Suppose L, H : 2 t: ~ 2 u is a pair of  dual operators, i.e., for 
aU A c_ U, L ( A )  = ~ H ( ~  A). I f  H satisfies the axioms 

(el) H(O) = O, 
(c2) H ( A  U B) = H ( A )  U H(B) ,  

there exists a binary relation ~ on U such that for all A c_ U, L 
( A )  = apr.~(A) and H ( A )  = apr , (A) .  

A constructive proof is given in the Appendix, in which we explicitly 
define a binary relation and show that the binary relation indeed produces 
the same approximation operators as L and H. An important implication 
of this theorem is that one can define the notion of rough set algebras by a 
pair of dual unary set-theoretic operators using axioms (cl) and (c2). If 
additional axioms are used, more specific rough set algebras will be 
derived. Examples of such algebras will be introduced in the following 
subsections. 

3.2. Interior and Closure Operators in Topological Spaces 

A topological space can be described by using a pair of interior and 
closure operators [49]. There may exist some relationships between a 
topological space and a rough set algebra, as the latter can also be 
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described by a pair of operators in a similar manner. In fact, the lower and 
upper approximation operators in a Pawlak approximation space can be 
interpreted as a pair of interior and closure operators in the topological 
space (U, Def(apr)). A rough set model may therefore be considered as a 
method for constructing a topological space using a binary relation on the 
universe. In a reverse process, one can generalize the notion of rough sets 
based on topological spaces by using Definition l(i) and (ii). Definable sets 
are replaced by open sets in defining the lower approximation, and by 
closed sets in defining the upper approximation [32, 55]. 

In general, a pair of interior and closure operators characterized by 
Kuratowski axioms may not satisfy all properties of the Pawlak rough set 
algebra. For instance, property (L10) may not hold. One may use a weaker 
binary relation and still keep the interpretation of approximation opera- 
tors as interior and closure operators. The following theorem states that a 
reflexive and transitive relation is sufficient for the approximation opera- 
tors to be interior and closure operators [16]. 

THEOREM 4 Suppose 3t is a reflexive and transitive relation on U. The 
pair of lower and upper approximations is a pair of  interior and closure 
operators satisfying Kuratowski axioms. 

A rough set algebra constructed from a reflexive and transitive relation is 
referred to as a topological rough set algebra. Based on the axioms for 
closure operators in topological spaces, we may state the axioms for 
approximation operators in rough set algebras. The following two theo- 
rems state that a Pawlak rough algebra can be defined by five axioms, 
while a topological rough algebra can be defined by four axioms. 

THEOREM 5 Suppose L, H : 2 u --, 2 v is a pair of  dual operators. I f  H 
satisfies axioms (cl), (c2) and 

(c3) A c_ H(A) ,  
(c4) H ( H ( A ) )  = H(A) ,  
(c5) A c ~ H ( ~  H(A)) ,  

there exists an equivalence relation_____~ on U such that for aliA c_ U, 
L ( A )  = ap___~r.~(A) and H ( A )  = apr,(A) .  

THEOREM 6 Suppose L, H : 2 v ~ 2 u is a pair of  dual operators. I f  H 
satisfies axioms (cl)-(c4), there exits a reflexive and transitive relation 3~ on 
U such that for all A c_ U, L ( A )  = apr , (A)  and H ( A )  = apr.~(A). 

Axioms (cl)-(c4) are in fact Kuratowski axioms of closure operators 
[49]. Therefore, approximation operators in other types of rough set 
algebras may not be viewed as interior and closure operators as defined by 
Kuratowski axioms. In the above theorems, we used axioms for the 
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operator H. Alternatively, one may also use the following dual axioms of 
(cl)-(c5): 

(il) L ( U )  = U, 
(i2) L ( A  O B) = L (A)  n L(B), 
(D) L (A)  c_A, 
(i4) L(L(A) )  = L(A) ,  
(i5) ~ L ( ~  L ( A ) )  c_ A .  

The operators L and H uniquely determine each other by the relation- 
ships H(A)  = ~ L ( ~  A)  and L(A)  = ~ H ( ~  H). Thus, axioms (c5) and 
(i5) may be more conveniently expressed as A c_ L(H(A))  and H(L(A))  
_ A .  

Lin and Liu [22] proposed an interpretation of approximation operators 
in terms of interior and closure operators in Frechet topology. Let n(x) c_ U 
denote a neighborhood of x. A neighborhood system N(x)  of x is a 
nonempty family of neighborhoods of x. The family of all such neighbor- 
hood systems determines a Frechet topological space (or Frechet space for 
short). A topological space is a Frechet space, but the converse is not true 
[22]. Thus, Frechet space provides a more general framework in which 
rough set algebra may be interpreted. Based on neighborhood systems, a 
pair of approximation operators are defined by 

_F(A) = {xlthere exists an n(x)  ~ N ( x )  such that n(x)  c_ A}, 
(6) 

i f (A) = {x[for all n(x)  ~ N ( x ) ,  n(x)  O A ~ f~}. 

They are referred to as interior and closure operators of neighborhood 
systems. In our formulation, the set r(x) may be considered as the only 
neighborhood of x. This produces a special type of Frechet topology. 
Comparing Equations (4) and (6), it is clear that they are equivalent. 
Therefore, for a serial relation (i.e., an ~R such that for every element 
x E U there exists at least one element y ~ U such that x ~ y), approxi- 
mation operators can be interpreted as interior and closure operators in a 
Frechet topology.. 

3.3. Necessity and Possibility Operators in Modal Logics 

Consider a problem of reasoning about a particular situation. Typically, 
we have a fixed finite and nonempty set of primitive propositions ~,  which 
can be thought of as corresponding to basic events [11]. The set L(cl,) of 
propositional modal formulas is the closure of • under negation (-,), 
conjunction (A), and necessity (D). For convenience, we assume that 
there are two special formulas T and I .  Other connectives such as the 
disjunction ( v ) ,  implication (--,), equivalence ( ~ ) ,  and possibility (<>) can 
be defined in terms of negation, conjunction, and necessity. Let W be a 
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nonempty set of possible worlds and f i  a binary relation, called the 
accessibility relation, on W. The pair (W, f i )  is referred to as a frame. An 
interpretation in (W, fit) is a valuation function v : W x ~ ~ {true, false}, 
which assigns a truth value for each proposition with respect to each 
particular world w. If v(w, p) = true, we say that the proposition p is true 
in the interpretation v at the world w, written w ~ ,  p. The valuation 
function can be extended to formulas in L ( ~ )  recursively as follows: 

(0) f o r p ~ , w ~ . . p i f f w ~ . p ,  
(1) n o t w ~ o .  ± , w ~ . *  T .  
(2) w ~o* (P A q) iff w ~ , .  p and w ~ , . q .  
(3) w ~o* (P v q) iff w ¢ :  p or w ~ , .  q, or both 
(4) w ~ , .  (p  ~ q) iff not w ~o* P or w ~ , .  q. or both 
(5) w ~ . .  -Tp iff not w ~ . .  p, 
(6) w ~ . .  D p  i f f for  all w' ~ W, w f i  w' implies w' ~ . ,  p, 
(7) w ~ . .  ~ p  iff there exists a w' ~ W such that w ~R w' and w' ~ . .  p. 

When the extended valuation function v* is clear from context, we drop it 
by simply writing w ~ p. 

With a valuation function, we can characterize a proposition by the set 
of possible worlds in which the proposition is true. In other words, we can 
define a mapping T : L ( ~ )  ---> 2 w as follows: 

T ( p )  = {w ~ Wlw ~ p}. (7) 

The set T(p )  is referred to as the truth set of the proposition [7]. It is also 
called the incidence of p, and the mapping T is called an incidence 
mapping [4]. It can be easily verified that the logical connectives can be 
interpreted using set-theoretic operators: 

(sO) T ( & ) = ~ , T ( T ) =  W, 
(sl) T(p A q) = T(p)  N T(q), 
(s2) T ( p  v q) = T ( p )  u T(q), 
(s3) T ( p  ~ q) = ~ T (p )  U T(q), 
(s4) T(-1 p)  = ~ T(p),  
(s5) T([3 p)  = aprg~(T(p)) , 

(s6) T ( ~ p )  = apr~(T(p)). 

Such an interpretation was also used by Chakraborty and Banerjee [5], 
Orlowska [34, 35], and Pawlak [41]. Using the truth set representation, a 
relationship between approximation operators and modal operators can be 
established. 

THEOREM 7 Suppose R = (2 w, N ,  U , ~  ,aprm,apr m) is a rough set 
algebra defined by an approximation space apr =-:--(W, f i  ). Suppose a modal 
logic system M = (L(cD), A , V ,  -1, t3, <>) is defined with respect to the 
frame ( W, f i  ). The mapping T is a homomorphism from M to R. 
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Properties of the approximation operators are related to the axioms of 
the modal operators. For example, the axioms corresponding to (K), (LU), 
and (L7)-(L10) are given by 

(K) D ( p ~ q ) ~ ( D p ~  Dq), 
(D) [] p ~ ~p ,  
(T) D p  ~ p ,  
(B) p ~ [] ~p ,  
(4) D p ~  D D p ,  
(5) Op -* DOp. 

By combining these axioms, one can define and classify additional rough 
set algebras [64]. Following the convention of labeling distinct modal logic 
system [7], one may label different types of rough set algebra [64]. These 
axioms are not independent. In labeling various rough set algebras, one 
only needs to list the independent axioms. For example, the Pawlak rough 
set algebra is labeled by KT5, while the topological rough set algebra is 
labeled by KT4. Other rough set algebras have been examined by Yao and 
Lin [64]. 

In the study of modal logic systems, the notion of Boolean algebra has 
been extended by adding new operators [14, 18, 49, 54]. Based on the 
properties of such operators, many classes of extended Boolean algebras 
can be constructed. For example, the topological Boolean algebra is 
characterized by axioms similar to (cl)-(c4) of the topological rough set 
algebra [49]. It is important to realize that such a study of rough sets is 
indeed parallel to the algebraic approach to modal logic. 

3.4. Lower and Upper Approximations in Interval Structures 

In Definition l(vi), the lower and upper approximation operators are 
defined as mappings between two distinct sets, namely, from the power set 
2 v to the power set 2 U/~. The notion of interval structures may be 
considered as a generalization of this definition [56]. 

Let U and W denote two finite universes of interest, and C a binary 
relation which is a subset of the Cartesian product W × U. The relation C 
is called a compatibility relation, reflecting a plausible physical interpreta- 
tion of the binary relation [50, 56]. We call the triplet A p r  = (IV, U, C)  an 
approximation space. Without loss of generality, we may assume that for 
any w ~ W there exists a x ~ U with w C x ,  and vice versa. This assump- 
tion is related to the condition for a serial binary relation if W and U are 
chosen to be the same. Similarly to Equation (3), the relation C can be 
equivalently defined by a mapping r c : W ~ 2u: 

r c ( w )  = {x ~ U l w C x } .  (8) 

That is, re(W) is a subset of U consisting of all elements compatible with 
w. A binary relation on the same universe is a special case of a binary 
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relation on two universes. By extending Definition 1 (iii), for each subset 
A c_ U, we define a pair of lower and approximations using the elements of 
W: 

Aprc(A)  = (w ~ Wlrc(w) c A } ,  

Aprc(A)  = {w ~ W]rc(W) ~ A 4: 0} .  

(9) 

The set Aprc(A)  consists of the elements in W compatible with only those 

elements in A, while the set Aprc(A)  consists of the elements in W 
compatible with at least one element in A. 

The pair of dual mappings given by Equation (9) is called an interval 
structure. An interval structure obey properties similar to (L1)-(L6) and 
(U1)-(U6). We may axiomatize interval structures by a subset of these 
properties [56]. 

THEOREM 8 Suppose L, H : 2 v ~ 2 w is a pair of dual operators. I f  H 
satisfies the axioms 

( u l )  H ( ® )  = ®, 
(u2) H ( A  u B)  = H ( A )  u H(B) ,  
(u3) H ( U ) =  W, 

there exists a relation C c W x U, with rc(W) ~ 0 for all w ~ W, such 
that for aliA c U, L ( A )  = Aprc(A)  and H ( A )  = Apr¢(A). 

Condition (u3) is required so that the binary relation has the property 
rc(W) 4: Q for all w ~ W. If one removes this constraint on the binary 
relation, only axioms (ul) and (u2) are needed. This theorem can be 
considered as a generalization of Theorem 3. 

Consider a Pawlak approximation space. We choose W to be U/g]. A 
compatibility relation between elements of U \  9] and U is defined as 
follows: for E ~ U / ~  and x ~ U, 

E C x  ¢~ E = [x].~. (10) 

It immediately follows that Apr:~(A) = Aprc(A) and A p r , ( A )  = Aprc(A)  
for all A _ U. Using EquatTo--n (1), they-~n be transformed to apr~ and 
apr,. Therefore, Pawlak rough set algebra may be interpreted in terms of 
interval structures. Since interval structures are derived from a binary 
relation on two universes, they may enlarge the application domain of the 
theory of rough sets. Recently, Yao et al. [67] examined various types of 
compatibility relations in the study of nonnumeric approaches to uncertain 
reasoning. 
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4. SET-ORIENTED VIEW 

This section presents several set-oriented interpretations based on two 
distinct definitions of rough sets proposed by Iwinski [15] and Pawlak [38]. 
We only consider the Pawlak approximation space. The argument can be 
extended to other types of approximation spaces. 

4.1. Pairs of  Definable Sets 

Iwinski [15] presented an interpretation of rough sets based on a 
subalgebra of the Boolean algebra 2 e. We choose the subalgebra defined 
by the set of all definable sets Def(apr). Given two elements A 1, A 2 
Deffapr) with A 1 _A2,  Iwinski called the pair ( h i ,  A 2) a rough set [15]. 
In order to distinguish it from other definitions, we call the pair an I-rough 
set. Let R(apr) be the set of all I-rough sets. Set-theoretic operators on 
R(apr) can be defined componentwise using standard set operators. For a 
pair of I-rough sets, we have 

(A1, A 2) n (B1, B 2) = (A 1 n B1, A 2 n B2) , 

(A 1, A 2) u (B1, B 2) = (A 1 u B1, A 2 o B2). 
(11) 

Such operators are well defined because the intersection and union of two 
definable sets are definable sets. That is, the results are also I-rough sets. 
The system (R(apr), n ,  o ) is a complete distributive lattice [15], with 
zero element (0 ,  0 )  and unit element (U, U). The associated order rela- 
tion can be interpreted as I-rough set inclusion, which is defined by: 

(A1, A2) __. (B1, B2) ¢0 A 1 _c B 1 and A 2 __G B 2. (12) 

The difference of I-rough sets can be defined as 

(A1, A2) - (B1, B2) = (A 1 - B2, A2 - B1) , (13) 

which is an I-rough set. Finally, the I-rough set complement is given as 

~ ( Z  1, A 2) = (U, U) - ( Z l ,  A 2) = ( ~ A 2, ~ A1). (14) 

The complement is neither a Boolean complement nor a pseudocomple- 
ment in the lattice (R(apr), n ,  u ). The system (R(apr), N,  U , ~ ,  
(0 ,  O), (U, U)) is called an I-rough set algebra. 

Although such a formulation provides an elegant mathematical model, it 
is not entirely clear what are the members of an 1-rough set. Consequently, 
set-theoretic operators on R(apr) do not have a well-defined semantics. 
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4.2. Interval Sets 

Given two subsets A1, A 2 _ U with A1 _ A2, we define the following 
closed interval set: 

[A1 ,A  2] = { X ~  2VIA1 c _ _ X c A 2 } ,  (15) 

which is a subset of 2 v. The set A 1 is called the lower bound, and A 2 the 
upper bound. That  is, members of an interval set are subsets of the 
universe U. An interval set consists of all those subsets that are bounded 
by two particular elements of the Boolean algebra 2 v. Let  /(2 v) denote 
the set of all closed interval sets. 

Set-theoretic operators on interval sets can be defined based on set 
operators on their members. For  two interval sets ~ = [A1, A 2 ] and 
.~  = [B1, B2], interval set intersection, union, and difference are defined 
by 

s4 n . ~  = { X  n Y I X  E d ,  Y ~ . ~ } ,  

~ l l ~ ,  = {XU Y ] X ~ . ~ , Y ~ , ~ } ,  (16) 

sg \ . ~  = { X - Y] X ~ sg , Y ~ ~ } . 

The above-defined operators are closed on I(2V), namely, a '  N ~ ' ,  .a~ U ~ ' ,  
and ~ \ ~ '  are interval sets. They can be explicitly computed by 

s g ' R , ~  = [A  1 A B1, A 2 NB2] , 

Ag LA._~ = [A 1 t.3 B1, A 2 k3 B2] , (17) 

A¢" \ . . ~  = [A 1 - B 2 ,  A 2 - B 1 ] .  

The interval set complement -~ is defined by [U, U] \ [A 1, A2]. This is 
equivalent to [U - A 2, U - A 1] = [~  A 2, ~ A1]. Clearly, we have 
-~[O,O] = [U, U] and -~[U, U] = [O,O]. 

Degenerate interval sets of the form [A, A] are equivalent to ordinary 
sets. For  degenerate interval sets, the proposed operators R, u ,  \ ,  and 
-~ reduce to set operators. Interval-set operators obey most properties of 
set operators. For  example, idempotence, commutativity, associativity, dis- 
tributivity, and absorption laws hold for R and L]; De Morgan's and 
double negation laws hold for -~. Thus, the system (I(2V), ~ , LA ) is a 
complete distributive lattice [28], with zero element [O, O] and unit ele- 
ment [U, U]. The associated order  relation is called interval set inclusion. 
It can be defined using the set inclusion relation [60, 65]: 

IZ._~ ~=~ A 1 (z B 1 and A 2 _ B 2 . (18) 
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The system (I(2V), [q, U ,  -1, [0 ,  0] ,  [U, U]) is called an interval set alge- 
bra, which may be considered as a set counterpart  of  interval number 
algebra [26, 60]. 

From the above discussion, one can immediately draw a relationship 
between 1-rough set algebra and interval set algebra. 

THEOREM 9 Suppose R = ( R(apr), A ,  U,  ~ , (0,  0), (U, U)) is an I- 
rough set algebra, and I = (I(2V), 17 , u , --1, [0 ,  O], [U, U]) is an interval 
set algebra. The function h : R(apr) -~ I(2V), 

h ( (A  1, A2))  = [A1, A2], (19) 

is a homomorphism from R to I. 

One may also consider a subalgebra of an interval set algebra in which 
lower and upper bounds of interval sets must be definable sets. In this 
case, with respect to the same Pawlak approximation space, an I-rough set 
algebra uniquely determines an interval set subalgebra, and vice versa. 
1-rough sets and interval sets may be considered as equivalent alge- 
braically. Consequently, an I-rough set may be viewed as an interval set, 
which in turn can be viewed as a family of subsets of U. Thus, we associate 
a well-defined semantics to I-rough set operators. They are extensions of 
set operators on the members of interval sets [60]. 

An interval set [A1, A 2 ] is also referred to as a flou set [28]. a I is called 
the sure region, A 2 the maximum region, and A 2 - A  1 the flou region. 
The sure and flou regions of an interval set correspond to the positive and 
boundary regions induced by lower and upper approximations. The notion 
of interval sets was also used in the study of conditional events [13]. 

4.3. Families of  Subsets 

In Pawlak's seminal paper, another set-oriented interpretation of rough 
sets was introduced. Using lower and upper  approximations, we define a 
binary relation on subsets of U: 

m 

X = Y ~ ap__p_~(X) = ap_E.~(Y) and apr . (X )  = apr . (Y) .  (20) 

It is an equivalence relation which induces a partition 2u/--- of 2 v. An 
equivalence class of = is called a P-rough set. The set of all P-rough sets 
is denoted by R = (apr) = 2 v / = .  More specifically, given two sets A 1, A 2 

Def(apr) with A 1 ___ A2, a P-rough set is the following family of subsets 
of U: 

( A a , A  z) = ( X E  2U apr~(X) = A l , a p r ~ ( X )  =AE}. (21) 
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A set X ~ (A1, A2) is said to be a member of the P-rough set. Given a 
member X, a P-rough set can also be more conveniently expressed as 
[ X ] ~ ,  which is the equivalence class containing X. A member is also 
referred to as a generator of the P-rough set [6]. 

Rough set intersection M, union u ,  and complement --1 are defined by 
set operators as follows: for two P-rough sets (A 1, A 2) and (B 1, B2), 

(A1, A 2 )  I-1 (B1, B 2) 

( X  ~ 2" ~ ( X )  = A 1 n BI,ap---~(X) = A 2 n B2) 

--- (A 1 N B1, A 2 n Bz ) ,  

( A m , A 2 )  ii (B1,B2) 

(x 2 U app_~(X) = A 1 U Bl,ap----r~(X) = A 2 U B2) E 

= ( A  l u B  1 , A  2 U B 2 ) ,  

~ ( A 1 , A 2 )  

= { x  a p r . ( X )  = ~ A2,apr (X) = ~ A 1 } ,  

= ( ~A2 ' ,~A1). (22) 

The results are also P-rough sets. The induced system (R~. (apr), M, u ) is 
a complete distributive lattice [2, 48], with zero element [0]= and unit 
element [U]=.  The corresponding order relation is called P-rough-set 
inclusion and is given by 

( A I , A 2 )  _ ( B a , B 2 )  ¢~ A x c_B 1 and A 2 _ B  2. (23) 

The system (R = (apt),  M, U ,  -~,[O]__ ,[U]__) is called a P-rough set alge- 
bra. Follow the same argument, one may define two additional P-rough set 
algebras by using either the lower or the upper approximation [38]. Each 
of them defines an equivalence relation on 2 v. By interpreting an equiva- 
lence class as a P-rough set, the induced algebras have a similar structure. 

Unlike the interval-set-based interpretation, operations on R= (apr) are 
not defined using all members of P-rough sets. Gehrke and Walker [12] 
suggested that one may construct a uniform set {X r [X ~ R_. (apr)} of 
representatives, such that 

apr.~ ( Xr n Y~ ) = ap.p_.~ ( X r) O ap__E.~ ( Y~ ), 

apr.~ ( X r u Yr ) = aprg~ ( Xr ) U aprg~ ( Y~ ) , 

ap--~(X r O ~ )  = ap-'--r~(X r) n ap-'-r~(Yr), 

ap-"-r~(X r U Y~) = ap----r~(X,) U ap---r~(Yr). 
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For any equivalence class E ~ U / ~  with at least two elements, one can 
select a set S E such that O c SE c E. Let S = U e ~ u/~ Se. A representa- 
tive X r of a P-rough set (A1, A 2) ~R~(apr )  is defined by X, = A  1 u 
(A 2 n S). Obviously, X, is a member of (A1, A2). The triplet ({X, IX 
R= (apr)}, n ,  U ) is a sublattice of (2 u, n ,  u ). It is isomorphic to the 
lattice formed by all P-rough sets (R= (apr), lq, u ). Therefore, P-rough 
set operators on R= (apr) are interpreted by set operators on their 
representatives. Interpretations of P-rough-set operators using the notions 
of minimum upper samples are essentially along the same line of argument 
[1, 481. 

With the interpretation of P-rough sets as equivalence classes, one may 
also characterize rough set algebras using other mathematical structures 
[1, 9, 12, 32, 37, 48]. For example, a pseudocomplement on R= (apt) can 
be defined as 

[A]* = [U - h - ~ ( A ) ]  = . (24) 

The induced system (R = (apr), lq, u ,  *, [O]~, [U] _) is a complete, atomic 
Stone algebra [1, 48]. 

4.4. Rough Membership Functions 

In the last two subsections, we have discussed interpretations of rough 
sets in terms of subsets of U. That is, a rough set is viewed as a subset of 
2 v. We now turn our attention to interpretations that use elements of U. 

4.4.1. A ROUGH SET AS THREE ORDINARY SETS A simple and straight- 
forward way for interpreting rough sets is to use three membership 
functions [61]. A rough set is defined, in terms of elements of U, by a 
membership function /z.4 of the reference set A, and a pair of strong and 
weak membership functions ].Lapful(A) and /-~Tp~(A). Let /z~ denote the 
membership function of ~ .  The--~rong and weak membership functions of 
a rough set can be expressed as 

tt~p_e_~(A (x) = min{/zA(y)[y ~ [x]~} 

= min{max(tz4(y), 1 - Iz~(x, y))iy E U}, 
(25) 

/x~Tp~(A,(x) = max{/~A(y)ly ~ [x]~} 

= max{min(/zA(y), g~(x , y ) ) l y  ~ U}. 

For two rough sets ( A, apr,(A), apr,(A)) and (B, apr,(B), apr,(B)), their 
intersection and union are defined by ( A n  B, apr~ ( A 0 B ), apr~ ( A n B ) ) 
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m 
and (A u B, aprgt(A U B) ,apra(A  o B)), with reference sets A n B and 
A u B, respe~vely. The rough set complement is defined by (~  
A,  aprm( ~ A),  aprg~( ~ A)), with reference set ~ A. By definition, rough set 
intersection and union are not truth-functional. For example, it is impossi- 
ble to calculate the weak membership function of rough set intersection 
and the strong membership function of rough set union based merely on 
the membership functions of two rough sets involved. One must also take 
into consideration the interaction between two reference sets, and their 
relationships to equivalence classes of ~ .  This view can be used to 
generalize and combine theories of rough and fuzzy sets [10, 61]. 

4.4.2. AN I-ROUGH SET AS A FUZZY SET Consider an I-rough set algebra 
( R(apr), n , u ,  -1, (0 ,  0) ,  (U, U)). Using the elements of U, we associate 
an I-rough set (Ap A 2) ~ R(apr) with the following membership function 
[40]: 

' l ,  X E A  1, 

]£ (AI ,A2) (X)  = 0 . 5 ,  X E A  2 - A 1 ,  
L0, X E ~ A 2. 

(26) 

With such a membership function, the intersection, union, and comple- 
ment can be expressed componentwise by 

/'L(A1, A2)n(Sl, B2) (x) = IZ(A~ n Sl, A2 n n2)(x) 

= min( I~(A,, A~)(X), ~(S~, S~)(X)), 

]']I(A 1, A2)U (B 1 , B2) ( x )  = ] £ ( A 1 u B , , A 2 U B 2 ) ( X )  

= max(~A,,A~)(X),/.~(S,,B~)(X)), 
(27) 

~ ~ ( A , , A 2 ) ( x )  = g ( ~  A2, ~ A1)(x) 

= 1 - ]&(AI,A2)(X), 

where x ~ U. The membership function ~.~(A1, A2 ) may be regarded as 
defining a fuzzy set. Operators in I-rough set algebra coincide with the 
standard max-min fuzzy set operators [69]. Let ~0.5 denote the set of all 
functions from U to {0, 0.5, 1}. Let /z 0 and /i/, 1 denote, respectively, the 
functions that uniformly take 0 and 1 for all x ~ U. We consider a special 
kind of fuzzy set algebra (~0.5, min, max, - , /x0,  ],gl) , where the operators 
rain, max, and - are defined componentwise similarly to Equation (27). 
The following theorem shows that such a system provides a fuzzy-set-based 
interpretation of I-rough sets. 
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THEOREM 10 Suppose ( R(apr), :7, U ,  ~ , ( 0 , 0 ) ,  (U, U)) is an 1-rough 
set algebra, and (~o.5, min, max, - , /z0 ,  ix 1) a fuzzy set algebra. The func- 
tion defined componentwise by Equation (26) is a homomorphism from the 
set o f  all 1-rough sets R(apr)  to the set o f  fuzzy sets ~o.5. 

In the interpretation of 1-rough sets using a fuzzy sets, every element in 
the universe can only take one of three possible values. Yao and Li [62] 
demonstrated that interval set algebra is related to Kleene's three-valued 
logic. The same connection can also be established between I-rough sets 
and three-valued logic. 

4.4.3. PROBABILISTIC ROUGH SETS Pawlak and Skowron [45], Pawlak et 
al. [46], Wong and Ziarko [57], and Yao and Wong [66] proposed another 
way to characterize a rough set by a single membership function. For any 
A _c U, a rough membership function is defined by 

1.4 n [x]~l 
~A(X) I[X]~I ' (28) 

where [. I denotes the cardinality of a set. By definition, elements in the 
same equivalence class have the same degree of membership. One can see 
the similarity between rough membership function and conditional proba- 
bility. The rough membership value I.~A(X) may be interpreted as the 
probability of x belonging to A given that x belongs to an equivalence 
class. Under this interpretation, one obtains the notion of probabilistic 
rough sets [46, 57]. By the laws of probability, the intersection and union of 
probabilistic rough sets are not truth-functional. Nevertheless, we have 

(ml) I~A(x)  = 1 ¢* x ~ Pos(A), 
(m2) lxA(x) = 0 ** x ~ NEG(A), 
(in3) 0 < IZA(X) < 1 "~' X ~ BND(A), 
(m4) Ix~ A ( X )  = 1 - -  ~ A ( X ) ,  

( m S )  tz A u B ( x )  = ~A(x)  + ~ ( X )  -- ~A n B(X), 
(m6) max(0, tXA(X) + gB(X) -- 1) < /x A n n(x) < min(gA(X), ttn(X)), 
(m7) max(/za(x),/xB(x)) < gA u S(x) < min(1,/za(x) + /xB(x)). 

They follow from the properties of probability. 
With the rough membership function (28), one may view a probabilistic 

rough set as a special type of fuzzy set [57]. By drawing such a link between 
these two theories, the non-truth-functionality of the operators on proba- 
bilistic rough sets may provide more insights into the definition of fuzzy set 
operators. Since the introduction of the theory of fuzzy sets, the definition 
of fuzzy set operators has been a controversial issue. Many different 
proposals have been made, such as the max-min, the probabilistic-like, and 
the bold intersection and union [66]. In the light of probabilistic rough sets, 
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the membership functions of intersection and union must be computed 
based on not only the sets involved, but also their interaction with 
equivalence classes in the approximation space. One may consider the 
approximation space to be the context that provides semantics of the 
operators on probabilistic rough sets. From this observation, we may say 
that a plausible definition of fuzzy set operators must also incorporate 
semantic information about the fuzzy concepts being modeled. The proba- 
bilistic rough set model provides only one of many solutions. In general, it 
seems unreasonable to assume that there is a universal way of defining 
fuzzy set operators. The correct choice of fuzzy set operators depends on 
the nature of the physical problem one attempts to model. It may be 
fruitful to study fuzzy set models with non-truth-functional operators. 

The notion of probabilistic rough sets may be related to P-rough set 
algebra (R~. (apr), [q, t_l, ~,[O]~_ ,[U]=). For two members of the same 
P-rough set, i.e., A---B,  they may not be characterized by the same 
membership function, i.e.,/z A 4=/z s. Let c(/x A) and s(/z A) denote the core 
and support o f /z  A defined by 

c( gA)  = {XlgA(X) = 1}, 

S(gA) = {XlgA(X) > 0}. 

(29) 

By properties (ml) and (m2), one can verify that if A -~ B, then c(/z A) = 
c(/z 8) and s(/zA) = s(/xB). In other words, a P-rough set is a family of 
probabilistic rough sets with the same core and support. 

5. CONCLUSION 

The successful application of the theory of rough sets depends on a clear 
understanding of the various concepts involved. There at least two views 
that can be adopted for interpreting the theory of rough sets. Both of these 
views can be explained using the notion of lower and upper approxima- 
tions in an approximations space. They differ from the way in which these 
approximations are used. If approximations are adopted to construct 
operators, the operator-oriented view is obtained. The theory of rough sets 
is therefore an extension of set theory with two additional unary operators. 
Alternatively, the lower and upper approximations are used to define the 
notion of rough sets. A rough set can be defined by using either subsets of 
the universe or elements of universe. Under this interpretation, no addi- 
tional set-theoretic operators are introduced. Instead, the standard set- 
theoretic operators are modified to capture the new semantics required by 
the theory of rough sets. 
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Each of the proposed views captures different and important aspects of 
the notion of rough sets. Using the proposed views, we have investigated 
the connections between the theory of rough sets and other theories of 
uncertainty. The operator-oriented view is related to topological space, 
modal logics, Boolean algebra with added operators, and interval struc- 
tures. The set-oriented view is related to interval sets, conditional events, 
and fuzzy sets. Both views a r e  useful in many subareas of artificial 
intelligence. The operator-oriented view is more suitable for approximate 
reasoning, while the set-oriented view is more convenient in classification, 
concept formation, and information system analysis. The results of our 
investigation show that the theory of rough sets is very rich and versatile. 
The established connections to many other theories may lead to new 
applications of the theory. 

In this paper, approximation spaces are formulated in the context of set 
theory. The argument can be easily applied to develop more generalized 
theories of rough sets using other mathematical structures, such as Boolean 
algebras and lattices [8, 12, 56]. 

APPENDIX.  PROOFS OF THEOREMS 

Proof of Theorem 3 Suppose the operator H obeys axioms (cl) and 
(c2). Using H, we can construct a binary relation as follows: 

x ~ y  ,0 x ~ H ( { y } ) .  

That is, r (x )  = {y Ix E n({y})}, and conversely H({y}) = {x_.Ly ~ r(x)}. By 
definition and property (cl), for the empty set we have apr~(O) = 0 = 
H(O). For singleton subsets, it follows that 

apr~({y})  = {xlr(x) n {y} ~ 0} 

= { x l y  ~ r (x ) }  

= H ( { y } ) .  

By axiom (c2) and the fact that U is finite, we have 

a p r . ( A )  = U aprg~({y}) 
yEA 

= O H({y}) 
y~A 

= H ( A )  

for all subsets A ___ U. 
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Proof of Theorem 5 In order to prove this theorem, we first state the 
following results. Suppose ~t is a binary relation on a set U. Then for all 
x , y ~ U ,  

is reflexive ** x ~ r(  x ), 

~R is symmetric ~0 [ x ~ r(  y ) = y ~ r (x)] ,  

~R is transitive ~ [ y ~ r(  x ) = r(  y ) c_ r (x)] .  

According to the proof of Theorem 3, axioms (cl) and (c2) guarantee the 
existence of a binary relation ~R such that a p r , ( A )  = H ( A )  for all A ___ U. 

Now we show that 9~ is an equivalence relation. For any element x ~ U, 
by axiom (c3), we have {x} ___ H({x}). That is, x ~ H({x}). From H({x}) = 
{y Ix ~ r(y)}, we have x E r (x ) .  Thus, ~R is reflexive. 

Assume x ~ r ( y )  for two elements x, y E U. By axiom (c5), we have 
{y} _ ~ H( ~ H({y})). It follows that y ~ ~ H ( ~  H({y})), which is equiva- 
lent to y ~ H ( ~  H({y})). Thus, r ( y )  N ~ H({y}) = O, namely, r ( y )  c_ 
H({y}). From the assumption x ~ r (y ) ,  we have x ~ H({y}). By definition, 
y ~ r (x ) .  Therefore, one can conclude that ~R is symmetric. 

Assume y ~ r ( x )  for two elements x, y ~ U. Assume further z E r (y ) .  
By definition, y ~ H({z}), which implies {y} ___ H({z}). Axiom (c2) implies 
that the operator H is monotonic with respect to set inclusion. Thus, 
H({y}) ___ H(H({z} ) ) .  From axiom (c4), we have H({y}) ___ H({z}). The as- 
sumption y ~ r ( x )  implies x ~ H({y}). Hence, x E H({z}), i.e., z ~ r (x ) .  
Therefore, r ( y )  c_ r (x ) .  Therefore, ~R is transitive. • 
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