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WHAT THIS PAPER ADDS

In an era of rapid advancement both in endovascular technique and technology, truly objective assessment of
competence for the purpose of maintaining the highest standards in vascular care has become essential. Existing
methods of assessment involve simulator-based metrics as well as qualitative scoring systems in the live-case
setting. The latter often require time-consuming expert-assessments. This study is, to the author’s knowl-
edge, the first to describe semi-automated motion tracking of endovascular tools, using video fluoroscopy
sequences as a medium for assessment of skill.
Objectives: Accurate assessment and credentialing of physicians is essential.
Objective motion analysis of guide-wire/catheter manipulation to assess proficiency during endovascular
interventions remains unexplored. This study aims to assess its feasibility and its role in evaluation of technical
ability.
Materials and methods: A semi-automated catheter-tracking software was developed which allows for frame-
by-frame motion analysis of fluoroscopic videos and calculation 2D catheter tip path-length. 21
interventionalists (6 cardiologists, 8 interventional radiologists, 7 vascular surgeons; 14/21 had performed
>500 endovascular procedures) performed an identical carotid artery stenting procedure (CAS) on a VIST
simulator (Mentice, Gothenburg, Sweden). Operators were sub-divided into four categories according to CAS
experience: 6 inexperienced (0 CAS-group A), 3 low-volume (1e20 CAS-group B), 5 moderate-volume (21e50
CAS-group C) and 7 high-volume (>50 CAS-group D) CAS experience. Total PL was calculated for each case and
comparisons made between groups. PL was correlated with: quantitative, simulator-derived metrics and
qualitative performance scores (generic and procedure-specific) derived from post-hoc video analysis by three
blinded observers.
Results: Group D used 5160.3 (inter-quartile range- IQR 4046.4e7142.9) pixels of movement, compared to
6856.7 (5914.4e8106.9) for group A (p ¼ 0.046); 10,905.1 (7851.1e14,381.5) for group B (p ¼ 0.017); and
9482.6 (8663.5e13,847.6) for group C (p ¼ 0.003). Statistically significant inverse correlations were seen
between total PL and qualitative performance scores (rho ¼ �0.519 for generic (p ¼ 0.027) rho ¼ �0.567 for
procedure-specific (p ¼ 0.014) scores). PL did not correlate with any of the simulator-derived metrics (errors,
contrast volume, total procedure and fluoroscopy times, cine-loops used).
Conclusion: Endovascular instrument video motion analysis is feasible and may represent a valuable tool for the
objective assessment of endovascular skill.
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INTRODUCTION

In an era of reduced working hours and increased patient
demands it has become necessary not only to offer addi-
tional training opportunities outside the remit of the
traditional surgical apprenticeship model, but also to
provide a means by which surgical performance can be
assessed. Simulation offers the opportunity to train in an
educationally-oriented environment without subjecting
patients to increased risk, whilst also providing the oppor-
tunity for on-going feedback and assessment outside the
demands of clinical case workload. Most high-fidelity
simulators, such as the VIST (Mentice, Gothenburg,
Sweden), provide instantaneous and automated feedback
on metrics such as total procedure and fluoroscopy times
and simulator-recorded errors. The metrics recorded by
a variety of simulators have demonstrated good construct
validity in terms of endovascular training and experience.1e
3 However, such metrics can only be regarded as crude
surrogate markers of technical skill and the overall quality of
endovascular performance. Several qualitative rating scales
have been developed in an attempt to assess endovascular
performance, for example the generic endovascular rating
scale4 and the procedure-specific rating scale.2 Many of
these are derived from the generic Objective Structured
Assessment of Technical Skills (OSATS)5 and incorporate
domains such as knowledge and handling of endovascular
material, pre-planning, clinical decision making, as well as
technical aspects such as catheter/wire manipulation skills.
Whilst many of these qualitative scoring systems demon-
strate construct validity and good inter-observer reliability,
they require time-consuming, video-based post-hoc anal-
yses by at least two experts. In addition, assigning numer-
ical values to qualitative statements exposes these
assessments to a degree of subjectivity.

Motion analysis as a tool to evaluate skill is currently
unexplored in the field of endovascular surgery. The tech-
nology does exist to track hand movements during open
and laparoscopic surgery.6 We hypothesise that surgical
efficiency can be measured by tracking the distal-most tip of
the surgical instrument, and in the case endovascular
intervention; the tip of the guide-wire or catheter. A
reduction of total movement (or path-length) required to
successfully complete an endovascular task, may represent
a reliable measure of skill. The primary objective of this
study was therefore to study a novel endovascular metric e
guide-wire/catheter tip path-length (PL), in order to deter-
mine whether this constitutes an objective and sensitive
discriminator of endovascular skill. The secondary objective
was to correlate PL with existing simulator-derived metrics
and qualitative rating scales.
METHOD

Subjects

Twenty-one endovascular physicians participated in this
study. Each had performed at least 100 general endovas-
cular cases as primary operator. This number was arbitrarily
selected to realistically reflect the minimum endovascular
experience required for carotid artery stenting (CAS)
training. Six interventional cardiologists (IC), eight inter-
ventional radiologists (IR) and seven vascular surgeons (VS)
participated. 66% had performed at least 500 endovascular
interventions as primary operator. They were sub-divided
into four categories according to CAS experience: inexperi-
enced (0 CAS cases performed, 3 IR and 3 IC participants),
low-volume (1e20 CAS cases performed, 2 VS and 1 IC
participants), moderate-volume (21e50 CAS cases per-
formed, 1 VS, 2 IR and 2 IC participants) and high-volume
interventionalists (>50 CAS cases performed, 4 VS and 3
IR participants). The moderate- and high-volume groups had
performed only 1 and 2 previous virtual-reality simulations,
respectively. No one in the inexperienced or low-volume
groups had previous VIST experience.

The vascular intervention simulation trainer (VIST)
simulator

The VIST simulator is a high fidelity endovascular simulator
which consists of a personal computer-based software
interface (Procedicus, Mentice AB, Gothenburg, Sweden)
and two monitors linked to an interface device that allow
the user to insert and manipulate wires, catheters, balloons,
stents and other endovascular tools. The subject begins the
procedure by selecting specific tools that are inserted into
the user interface, which represents the virtual patient. A
fluoroscopic image activated by a foot pedal is displayed
together with the virtual tools. Separate controllers for
simulated stent deployment, balloon inflation, and contrast
material injection are provided. User interface functions
include fluoroscopic C-arm positioning, table movements,
road mapping and cine-loop recording.

Task performed

All subjects received an initial didactic session on the VIST
simulator and were familiarised with the system followed
by a practice session of treating an ipsilateral common iliac
artery stenosis. Prior to study commencement, available
endovascular materials and patient’s records demonstrating
the target lesion were provided. All participants were asked
to treat a proximal right internal carotid artery stenosis
(90%) endovascularly in a type 1 aortic arch. The purpose of
this study was to validate metrics for endovascular skill
assessment rather than knowledge, so for less experienced
subjects in CAS a protocol was available explaining the
different steps of the CAS procedure. Passive assistance was
provided by members of the interventional team
comprising of an assistant, radiographer, and a circulating
nurse.

Catheter tracking software

A software package was created in Cþþ and using the
OpenCV library (http://opencv.willowgarage.com/) to allow
video file editing and frame-accurate analysis of fluoro-
scopic video sequences. A semi-automatic scheme was used
to track the motion of the catheter and guide-wire tip

http://opencv.willowgarage.com/


Figure 1. Animations of known length used to assess inter-
observer reliability.
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during the simulated procedure. The user selects the tip of
the endovascular tool in an initial video frame using the
mouse cursor and the software then estimates the tip’s
position in subsequent video frames. The software gener-
ates pixel co-ordinates based on the catheter tip’s position
on a frame-by-frame basis from which distance in 2D (path-
length) data are obtained.

The initial tracking point was standardised and defined as
the origin of the left subclavian artery. In all procedures the
most distal part of the guide-wire/catheter interface was
tracked (either the guide-wire or catheter tip). Estimation of
each tracker position was performed using a search
template to match the position in subsequent frames.

Pre-processing of video frames was performed for
correction of perspective distortion due to the positioning
of the recording camera with respect to the simulator’s
monitor. The correction was based on the user selecting the
four corners of the simulator screen in any given video
dataset. This allowed a transformation of pixel co-ordinates
to be computed to adjust the data to the observed screen
co-ordinates thus removing any dependence on the
recording camera’s position and viewing orientation. The
dataset of pixel co-ordinates for each individual video can
then be fairly compared to other datasets because intra-
variability of co-ordinates has been removed.

In order to assess inter-observer variability/reproducibility
the video-motion analysis software was applied to anima-
tions of known trace-lengths in order to calculate PL. Each
animation was tracked by five different operators (Fig. 1).
Cronbach’s a was used to test for inter-observer variability.
Table 1. Table containing path-length data for each phase of the proced
analysis of distributions using KruskaleWallis test.

Group A
(0 CAS)

Group B
(1e20 CAS)

Total PL
Median 6856.7 10,905.1
IQR 5914e8107 7851e14,381
Arch. Nav.
Median 1111.7 2178
IQR 887e1858 617e5606
CCA
Median 1358 1790
IQR 959e1587 576e9238
ECA
Median 980 1276
IQR 591e1079 956e1760
ICA
Median 245 729
IQR 214e292 279e1779
Data analysis

Post-hoc video analysis of all procedures was performed by
a blinded assessor using the catheter tracking software
described above. Phases of active movement were tracked,
and tracking was not performed during phases of angiographic
image manipulation (such as C-arm rotation) in order to avoid
incorporation of movement artefact into the final PL analysis.

Each case was segmented into four defined procedural
phases. Arch Navigation was defined as movement from the
left subclavian ostium to a resting position of guide-wire and
catheter at the aortic root. Right common carotid artery
cannulation (CCA) was defined as movement from the aortic
root to a point 1 cm distal to the right CCA ostium. External
carotid artery (ECA) manipulation was defined as movement
from 1 cm within the CCA to a position 2 cm within the ECA.
Internal carotid artery (ICA) manipulation was defined as
movement from within the CCA, across the ICA stenosis to
a point at the distalmost bend of the ICA. For each subject the
wire/catheter tip PL was calculated for the entire procedure
as well as the four different procedure phases. The output
measure is given in number of pixels.

The VR simulator records instantly and automatically the
procedure time, fluoroscopy time, contrast volume used,
number of cine-loops used and simulator-defined errors.
Errors are classified into catheter vessel errors (pressing
catheters against the vessel wall), catheter movement errors
(moving catheters without support of a guide wire), moving
near a lesion (wire and catheter), moving the embolic
protection device (during and after deployment), moving the
stent during deployment (and deploying whilst in the guiding
catheter or sheath) and inflating the balloon inside the
guiding catheter. Qualitative procedural scores were obtained
for comparison with PL; three blinded independent experts
assessed each procedure using a validated general endovas-
cular rating scale and a CAS-specific rating scale;2 a median
score was calculated. Therefore, each performance was
awarded a median CAS- and generic-endovascular rating as
a result of the three assessments. As described in previous
ure according to groups of experience. P values are given following

Group C
(21e50 CAS)

Group D
{>50 CAS}

[p¼]

9482.6 51,603 0.02
8663e13,848 4046e7143

2841 864.7 0.36
1269e4204 764e2106

1063 782 0.83
732e1545 648e1849

1013 661 0.21
670e1310 317e929

449 297 0.047
295e826 278e473 AvC: p ¼ 0.03



Figure 2. Graphical representation of tracked guide-wire trajectories during arch navigation in simulated carotid artery stenting (CAS). Seen
in this format, the greater PL of the inexperienced interventionalist (0 CAS) becomes evident.

Figure 3. Box-plot representing PL (y-axis) taken to complete the
carotid stenting task across groups of varying experience (x-axis)
(KruskaleWallis p ¼ 0.02). The whiskers represent extreme values
and the stars the outliers.
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publications, the generic-endovascular rating scale was
adapted fromOSATS andwas designed to test various aspects
of basic general endovascular skills.4 Descriptive comments
for each of the eight technical domains are given at anchor
points for scores 1 (very poor), 3 and 5 (clearly superior). The
maximum possible score is 40 (Table 1).

The procedure specific rating scale was designed to assess
endovascular skills specifically required to complete CAS
safely; it was developed by five endovascular therapists from
various medical backgrounds.2 Seven categories are defined
entailing the five key tasks of a CAS procedure, quality of final
product and overall performance, each rated on a Likert scale
from 1 to 5. The maximum possible score was 35. The higher
the score on both scales, the better the performance.

Statistical analysis

Data were analysed with the Statistical Package for Social
Sciences 20.0 (SPSS, Chicago, Ill). The data was found to be
not normally distributed and therefore non-parametric tests
were used. Distributions across all four groups of experience
as well as groups according to specialty were compared using
the KruskaleWallis test. Pre-defined post-hoc comparisons of
PL between each group of interventionists with similar CAS
experiencewere performed using theManneWhitneyU test.
Correlations between PL and rating scale procedure scores,
total procedure time, fluoroscopy time, contrast volume,
number of cine-loops and simulator-recorded errors were
performed using Spearman’s rank correlation coefficient. A
level of p< 0.05 was considered to be statistically significant.

RESULTS

It was feasible to track path-length of endovascular tools
using this semi-automated method with minimal manual
adjustment. Typical graphical representations of path
lengths can be seen overlain onto the angiographic image in
Fig. 2. Testing for inter-observer reliability yielded a Cron-
bach a of 1.0.
Path-length differences between groups of experience

Analysis of distribution across all four groups using the
KruskaleWallis test showed statistically significant differ-
ences between groups (p ¼ 0.02). Except for the group with
no prior experience with CAS, there was a decrease in PL
with increasing experience. Post-hoc analysis demonstrated
the PL was significantly reduced in the highly experienced
group D when compared to other groups with CAS experi-
ence (Fig. 3). Group D used 5160.3 (interquartile range- IQR
4046.4e7142.9) pixels of movement compared to 6856.7
(5914.4e8106.9) for group A (p ¼ 0.046); 10,905.1
(7851.1e14,381.5) for group B (p ¼ 0.017) and 9482.6
(8663.5e13,847.6) for group C (p ¼ 0.003).

There was no significant difference in PL across groups
according to specialty (p ¼ 0.5).
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Path-length differences between groups of experience;
procedural breakdown into phases

Absolute median path-length values are given for each
procedural phase according to the previously-defined groups
of experience in Table 1. P values are given for analysis of
distributions, andwhere relevant following post-hoc analysis.
Path-lengths for the different groups of experience are clus-
tered according to procedural phase in Fig. 4.
Figure 5. a) and b): Scatter plots showing PL correlations with Total
CAS score and General Endovascular Rating, respectively. PL is
given on the x-axis and assessment scores on the y-axis. Individual
scores are indicated by the blue diamonds.
Correlation of path-length with rating scales and
simulator-derived metrics

Out of all participants, the median procedure-specific CAS
score (Fig. 5a) achieved was 25/35 (13e33) and correlation
with PL demonstrated a statistically significant inverse
relationship (p ¼ 0.014, rho ¼ �0.567). Correlation of PL
with the general endovascular rating scores (Fig. 5b)
(median: 29/45 (20e40) also demonstrated a significant
inverse relationship (p ¼ 0.027, rho ¼ �0.519)).

Correlations of PL with simulator-recorded errors
(p ¼ 0.097, rho ¼ 0.403), contrast volume used (p ¼ 0.938,
rho ¼ �0.028), total procedure time (p ¼ 0.08, rho ¼ 0.42),
total fluoroscopy time (p ¼ 0.053, rho ¼ 0.463), and
number of cine-loops used (p ¼ 0.578, rho ¼ 0.141) were
not found to be statistically significant.

DISCUSSION

Path-length calculations have previously been employed in
laparoscopic surgery and have been able to discriminate
between levels of experience.7 This study has demonstrated
that it is feasible to track endovascular tools on recorded
angiography screens and determine PL to assess of endo-
vascular skill. To our knowledge, this is the first study to
demonstrate the feasibility of video-based guide-wire
tracking using angiography images, specifically. Other
Figure 4. Cluster box-plot demonstrating procedural phase-
breakdowns. Each phase given on the x-axis is divided into clus-
ters giving PL for that phase according to experience.
tracking tools have employed the use of electro-magnetic,8

ultrasound9 and magnetic-resonance based mechanisms.10

These, however require significant modification of the tip
of the endovascular tool as well as the operating room/
angio suite. The advantages of this technology include the
ability to provide an OBJECTIVE assessment metric that may
be improved to become fully automated, and potentially
provide real-time feedback to trainees and assessors.
Existing qualitative rating scales require time-consuming
live assessment or post-hoc video analysis by experts and
assignment of numerical values to statements which may
introduce an element of subjectivity. It has been observed
previously that edited video assessment appears to reduce
the reliability of this tool and therefore a short cut to
viewing entire procedures seems unreliable.11 Other
methods to track endovascular tools employing position
sensors require direct modification of devices in order to
facilitate tracking. This may cause interference with the
existing mechanical properties of catheters and wires.

This study has shown that guide-wire/catheter tip PL
differs between three groups of experienced endovascular
therapists with varying CAS experience. Total procedure PL
seems to be significantly reduced for the most experienced
operators when compared to those who have performed
less than 50 CAS cases. Path length was also able to
differentiate the highly-experienced (>50 CAS) group from
inexperienced (0 CAS), low-volume (1e20 CAS), and
moderate-volume (21e50 CAS) groups. Of note, the low-
and moderate-volume groups (B and C) exhibited the
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highest PL values for total procedure, arch navigation and
ICA measurements. A similar pattern was observed in these
groups for procedure and fluoroscopy time. These previ-
ously validated metrics are automatically given by the VIST
simulator, and the same pattern has been observed in
a previous publication.1 This pattern was not observed with
the rating scale assessments; both the intermediate and
highly experienced groups attained significantly higher
scores on the generic rating scale than the inexperienced
group. The proposed explanation for this observation may
be that the novice group attempted to perform the simu-
lated task as quickly as possible with few movements
without necessarily appreciating the dangers of such an
approach, whilst the moderately experienced groups
attempted to complete the task in a more exploratory
fashion, moving the guide-wire more frequently when
searching for the optimal cannulation strategy. This also
translates into increased fluoroscopy and longer procedure
times. This theory is supported by a study which evaluated
the performance of junior, intermediate and highly experi-
enced surgeons on a virtual reality iliac stenting model
before and after receiving cognitive skills training.12 The
investigators found that cognitive skills training significantly
increased total procedure and fluoroscopy time, but
reduced percentage of residual stenosis, suggesting that
more attention was paid to quality outcomes rather than
faster task completion.

In the present study, we observed statistically significant
correlations between PL and general endovascular/proce-
dure specific rating scales which strengthens the hypothesis
that PL may be a useful adjunct to endovascular skills
assessment. No significant correlations were seen between
PL and simulator-derived metrics (total procedure and
fluoroscopy time, contrast volume, errors, and number of
cine-loops). It is worth noting that simulator-derived
metrics and error scoring in previous studies have yielded
inconsistent results in terms of construct validity.1,13e15

Motion analysis during the different phases of the CAS
procedure demonstrated that PL during arch navigation, CCA
cannulation and ECA manipulation was lowest in the highly
experienced group, however this did not achieve statistical
significance, most likely due to the small numbers in this sub
group analysis. For CCA cannulation in particular, we observed
a non-significant but step wise reduction in PL with increasing
experience, with the exception of the low-volume group who
had the longest PL. Small numbers in this group may not
accurately reflect this level of experience. For ICA manipula-
tion the most inexperienced group had the shortest PL. A
possible explanation for this relates to the fact that inexpe-
rienced subjects are less aware of the potential hazards of
crossing the lesion with the embolic protection device. With
experience, endovascular manipulation in this phase involves
careful and measured set-up in the CCA before attempting
lesion crossing.The technical challenge presented during CCA
cannulation is another factor to consider; with progressive
expertise lessmovement is required to complete this phase. A
technically less demanding e but no less important-phase of
the procedure such as ICA lesion crossing which involves
simple advancement of the guide-wire/monorail system may
be less discriminatory and therefore doesn’t demonstrate
linear relationship between experience and PL on final anal-
ysis. Further work is required to determine whether CCA
cannulation analysis alone during CAS may be able to
discriminate technical skill more accurately and objectively
compared to other phases of the procedure.

A potential limitation of this study relates to motion
analysis of a three-dimensional (3D) procedure on a two-
dimensional (2D) image. Aspects of the catheter motion
out of the x and y planes will not be captured using our
method. Whilst this clearly produces an error in calculation
of PL, it is balanced by the fact that this method may be
applied to live and simulated cases without the need for
tool modification, but via simple recording of the angiog-
raphy screen. Also one may argue, that the majority of
current endovascular techniques in the clinical setting are
performed utilising 2D fluoroscopy. Furthermore, the
motion/PL output, at present, from the software analysis is
measured in pixels. There is therefore some difficulty in
interpreting these results and the real distances are not
known. In addition, the current software does not account
for changes in image magnification during C-arm manipu-
lation during live cases, and ensuing errors in PL measure-
ment have to be manually corrected. Phases during which
the fluoroscopy view was changed were not tracked in an
attempt to limit “non-operator dependent” PL data being
captured; which may have led to valuable descriptive
motion data. Our group is currently focussing on further
software development to address these limitations. Simu-
lator software errors were also evident and included unin-
tentional endovascular tool movements, removal of
endovascular tools and occasionally tool duplication on the
simulator screen. Such errors were corrected for during final
analysis by removing raw pixel co-ordinate data identified
as being a software-generated error. Lastly, groups were
small and divided arbitrarily according to CAS experience,
which may not necessarily represent actual expertise.

While path-length measurement does not represent the
entirety of endovascular skill assessment, full automation
and further evaluation in a study of live cases will hopefully
result in the refinement of an objective skill metric which
will accurately and efficiently define expert performance in
terms of movement, and will complement existing metrics.
Further development of video-motion analysis in general as
a medium for skills assessment has the potential for iden-
tification of additional motion-descriptive metrics.
CONCLUSION

This pilot study has demonstrated that semi-automated
endovascular tool PL measurement is feasible using fluo-
roscopy images. The motion path-length appears shorter for
highly experienced operators during CAS procedures on the
VIST simulator and there are significant correlations
between PL and qualitative video-based rating scores. Path-
length measurement may represent a useful adjunct to
existing endovascular skills assessment tools.
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