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Summary

Objective: Certain forms of primary osteoarthritis (OA), particularly those affecting hand joints, have a genetic component. Recent studies
have shown suggestive evidence that hand and knee OA are linked with the interleukin-1 (IL-1) region on human chromosome 2q. This study
was undertaken to assess the association of primary OA of the hand (hand OA) with IL-1 region markers.

Methods: Sixty-eight US Caucasoid cases and 51 US Caucasoid controls aged 60 years or older were recruited from the Mid-Atlantic region
of the United States. Hand OA was classified by American College of Rheumatology (ACR) Clinical Criteria, and cases were subjected to
radiographic examination for subgrouping. Genotyping was done for seven previously described single nucleotide polymorphisms (SNPs) of
genes for IL-1α (encoded by IL1A), IL-1β (IL1B), and the IL-1 receptor antagonist (IL1RN), as well as an IL1RN variable number of tandem
repeat (VNTR) marker. Six microsatellite markers on other chromosomes (null loci) were also typed.

Results: The IL1B 5810 G>A SNP genotypes marker were not in Hardy–Weinberg equilibrium (p<0.05 in both non-erosive and erosive hand
OA subgroups). Statistically significant association with the IL1B 5810 AA genotype was found in the erosive hand OA subgroup (relative risk
3.8, p�0.007). This IL1B 5810 AA genotype association was also significant between erosive and non-erosive hand OA subjects (relative risk
4.01, p�0.008). As expected, significant linkage disequilibrium was present between IL1B 5810 SNP and IL1A (−)889 SNP, other IL1B SNPs,
and the nearest IL1RN SNP examined. The IL1B 5810A allele occurs most frequently on haplotypes with the SNP alleles IL1B 1423C, IL1B
1903T, IL1B 5887C, and IL1A (−)889C. Genotypes at null loci failed to show evidence suggesting population stratification that might account
for spurious association.

Conclusion: Statistical evidence shows association between erosive hand OA and a genomic region containing the IL1B 5810 SNP in a US
Caucasoid population. This supports a potential role for IL-1 in the pathogenesis of a severe phenotype of hand OA.
© 2003 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved.
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Introduction

Osteoarthritis (OA), a chronic disorder characterized by
pain, stiffness, and reduced range of motion of the affected
joints, has a major heritable basis. Familial aggregation
is present1, and the intraclass correlation coefficient in
monozygotic twins is higher than in dizygotic twins, 0.64 vs
0.382. However, the heritable OA component is genetically
complex and does not follow a strictly Mendelian pattern.
One such complexity is incomplete penetrance, which is
influenced by sex. OA is generally a late-onset disease,
and OA prevalence increases with age. OA prevalence in
men and women is not remarkably different in the fourth
and fifth decades, but women have a higher prevalence in
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older cohorts. In the population aged 65 and older, 38% of
men and 62% of women had radiographic evidence of hand
OA3. Another complexity is genetic heterogeneity. For
genetic studies, recognizing important variations in clinical
picture that subdivide an illness into genetically more
homogenous subsets is important. OA involving the distal
interphalangeal (DIP) joints of the hands (Heberden’s
nodes) has been described as a distinctly heritable sub-
set4,5. Genomic screens have been undertaken for primary
OA6–8; genomic intervals on human chromosomes 2, 4,
and 16 showed suggestive linkage signals in more than
one scan9.

Recent genetic studies point specifically toward the
interleukin-1 (IL-1) region. A genome-wide screen by
Leppavuori et al. demonstrated suggestive evidence of
linkage of hand OA to the IL-1 region6. Loughlin et al. noted
a case-control association of IL-1 region markers with
end-stage knee OA; although one would expect many
subjects to also have hand OA, the published report did not
include stratification by hand OA presence10. Given the
suggestive linkage and association evidence of certain
primary OA subgroups with the IL-1 region, we sought to
examine association in a population with hand OA.

Subjects and methods

HUMAN SUBJECTS

Control subjects were identified and recruited from
outpatient clinics at the McGuire Veterans Affairs Medical
Center (VAMC), Richmond, VA, and rheumatology offices.
Eligible participants were unrelated individuals aged
60 years and older who did not have evidence of hand
OA, using the American College of Rheumatology (ACR)
Clinical Criteria11. After informed consent, a rheumatologist
(AGS or TPSR) examined each subject’s hands. Exclusion
criteria were any joint examination evidence of primary
hand OA: more than one Heberden’s or Bouchard’s node,
bilateral first carpometacarpal (CMC) disease, any hand
deformity, or the presence of any known inflammatory
arthropathy or clinical evidence of joint inflammation of the
hands. Traumatic injury may lead to hard tissue enlarge-
ment and deformity of a single interphalangeal (IP) joint.
Participating subjects underwent peripheral venous phle-
botomy for DNA purification and filled out a questionnaire
about demographic information and current medica-
tions. Because all but two OA subjects listed ancestry as
Caucasian, only Caucasoid controls were included in this
analysis (Table II).

Hand OA subjects

Unrelated subjects were recruited from primary care and
rheumatology practices, targeted mailings to prospective
subjects, and a newspaper advertisement campaign. After
informed consent, subjects were evaluated at the VAMC or
at a participating site (see Acknowledgements). At the
study visit, the evaluation included a postero-anterior radio-
graph and digital photograph of each hand, venous phle-
botomy, a bone mineral density scan of the lumbar spine
and hip (and distal forearm in a subset of subjects) using
dual energy X-ray absorptiometry (DEXA), and a targeted
rheumatology history and physical examination (TPSR or
AGS). The clinical evaluation addressed symptoms and
signs referable to OA, potential causes of secondary OA,
medications, cigarette smoking history, and examination of
OA joint distribution. It also included an assessment of joint

loading by recording of work history, as well as ethnic and
demographic information. Hand OA was classified utilizing
the ACR Classification for Clinical Hand OA11. In particular,
subjects were required to have physical examination evi-
dence of hard tissue enlargement and/or deformity in three
or more index hand joints as listed in the criteria (first CMC,
second and third proximal (PIP) and DIP joints of each
hand). Subjects with OA of the first CMC but no other
involved hand joints were included if bilateral disease was
present. Subjects participated in the study on one day;
greater than 90% of the examinations were performed by
one rheumatologist (AGS). Therefore, no intra-rater or
inter-rater evaluations were performed for the examination.

One musculoskeletal radiologist (DD) evaluated hand
radiographs according to the Kellgren–Lawrence (K–L)
scale12. For this analysis, radiographic hand OA was
defined as three or more index joints (as in the ACR Clinical
Criteria) with K–L score of 2–4, as well as the absence of
soft-tissue swelling in two or more metacarpophalangeal
(MCP) joints. A radiographic hand OA classification also
required the absence of erosions in the MCPs, carpal
joints, or radio-carpal joint. Intra-rater agreement for the
overall diagnosis of radiographic hand OA was acceptable
(κ�0.76). Additional, intra-rater agreement for K–L scores
of either ‘0–1’, ‘2’, or ‘3–4’ in individual joints was good
(median weighted κ�0.78, range 0.65–0.88). Subjects
were excluded for a previous diagnosis of inflammatory
arthritis, psoriasis, or calcium pyrophosphate deposition
disease (CPPD). Hand radiographs were also used to
subdivide the hand OA subjects into erosive and non-
erosive subgroups. Erosive OA was defined by previously
described criteria, namely, radiographic central erosions
and/or ankylosis in the IP joints of the hand in at least three
digits13, associated with joint-space narrowing, subchon-
dral sclerosis, and/or osteophytes (Fig. 1). Subjects with
OA in other joints typically involved by primary OA, includ-
ing knee, hip, and cervico-lumbar spine were included, as
long as ACR Clinical Criteria for Hand OA were met.

The protocol and all study procedures were approved
and monitored by a local Institutional Review Board.

GENETIC TYPING

DNA was purified from EDTA-anticoagulated venous
blood using a salting-out method (PureGene, Gentra,
Minneapolis, MN).

IL1RN VARIABLE NUMBER OF TANDEM REPEAT (VNTR)
GENOTYPING

The IL1RN VNTR is based on a tandemly repeating
86 bp subunit in the second intron. PCR products14 were
derived by amplication with 50 ng DNA template, 5 µM of
each primer, 2 mM MgCl2, 0.5 mM dNTPs (Applied Biosys-
tems, Inc., Foster City, CA), and AmpliTaq Gold® DNA
polymerase (Applied Biosystems). Annealing temperature
was 59°C. PCR products were then subjected to electro-
phoretic separation in 1.5% Metaphor agarose gel in 1×
TBE (Cambrex, Rockland ME), stained with ethidium
bromide, and visualized under ultraviolet light. Forward and
reverse primers were as follows: 5′ CTCAGCAACACTCC
TAT 3′; 5′ TCCTGGTCTGCAGGTAA 3′. Alleles are conven-
tionally defined as follows: Allele 1 (412 bp, representing
four repeats); Allele 2 (240 bp, two repeats); Allele 3
(498 bp, five repeats); Allele 4 (326 bp, three repeats)14.
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GENOTYPING OF SINGLE NUCLEOTIDE POLYMORPHISMS (SNPS)

SNP genotyping was performed using the TaqMan®

method for allele-specific detection (Applied Biosystems).
The TaqMan® genotyping method involves a real-time PCR
amplification with fluorescence detection15. TaqMan®

probes were designed using Primer Express® version 1.5
(Applied Biosystems). The probes were labeled at the 5′

end with FAM® for each major allele and with TET® for
each minor allele and at the 3′ end with TAMRA®. The
experiments were performed in the ABI Prism® 7900
Sequence Detection System (Applied Biosystems) using
the TaqMan® Universal PCR Master Mix (Applied Biosys-
tems), along with 20 ng genomic DNA template (10 ng/µl).
All samples were tested in duplicate under conditions
recommended by the manufacturer, with an annealing
temperature of 60°C. The PCR reactions and synthesis of
the probes and primers (Table I) were performed in the
Nucleic Acids Research Facilities at Virginia Common-
wealth University (VCU), Richmond, VA. One internal con-
trol sample was repeatedly tested with each grouping of
samples; two additional internal control samples were
tested with one additional batch. No SNP typing errors
were found.

GENOTYPING OF NULL LOCI (POLYMORPHIC MICROSATELLITE
MARKERS DISTANT FROM HUMAN CHROMOSOME 2Q)

The AmpFLSTR® COfiler™ PCR Amplification Kit
(Applied Biosystems) was used to amplify the repeat
regions of six microsatellites (D3S1358, D16S539, THO1,
TPOX, CSF1PO, D7S820) (mean heterozygosity 0.75±SD
0.06, range 0.64–0.81) and also the amelogenin gene for
sex identification. Ten nanograms of genomic DNA in 8 µl
was combined with 12 µl AmpFLSTR® COfiler™ PCR
master mix (8.4 µl PCR reaction mix; 0.4 µl Amplitaq Gold
DNA polymerase; 4.4 µl primer set) and then subjected to
PCR amplification with annealing temperature 59°C. The
PCR products were subjected to electrophoretic separation
in 5% polyacrylamide gel using an ABI Prism® 377 DNA
Sequencer. GeneScan Analysis® 3.1 and Genotyper® 2.1
Software were used for data analysis. Reactions and
genotyping analyses were performed in the Nucleic Acids
Research Facilities at VCU.

STATISTICS

To assess for mistyping (and as noted under SNP
typing), we analyzed an internal control sample with every
batch of samples processed (n�5), and two additional
samples were repeated in an additional analysis. We found

Fig. 1. Radiographic features of erosive OA. Notable for central,
cartilage-based, ‘gull-wing’ erosions (white arrow, typical example).
Multiple IP joints with asymmetric joint-space narrowing, along with
subchondral sclerosis, and osteophytes. There is a relative sparing

of the MCP joints.

Table I
Primers and probes for IL-1 region SNPs

Gene Location Polymorphism Primers/probes Reference

IL 1A Promoter −889C>T† 5′CACAGGAATTATAAAAGCTGAGAAATTC3′; 5′GGAGAAAGGAAGGCATGGATT3′/
5′CCAGGCAACAC/TCATTGAAGGCTCATATG3′

52

IL 1B Exon 5 5887C>T† 5′GGCCTGCCCTTCTGATTTTATA3′; 5′TCGTGCACATAAGCCTCGTTA3′/
5′TTCAGAACCTATCTTCTTC/TGACACATGG3′

23

IL 1B Intron 4 5810G>A† 5′CAGGTGTCCTCCAAGAAATCAAA3′ 5′TGTGGAGCACATGTTGTTTAGGTA3′/
5′TTGCCG/ACCTCGCCTCACGAG3′

5′CCCTTTCCTTTAACTTGATTGTGAAAT3′;

23

IL 1B Promoter 1903T>C† 5′AGGTTTGGTATCTGCCAGTTTCTC3′/
5′CCTCGCTGTTTTTATA/GGCTTTCAAAAGCA3′

23

IL 1B Promoter 1423C>T† 5′CCTCAGAGGCTCCTGCAATT3′; 5′TGAGGGTGTGGGTCTCTACCTT3′/
5′TTCTCTGCCTCG/AGGAGCTCTCTGT3′

53

IL 1RN Exon 2 8006 T>C 5′CTGAGTCCTTTTCCTTTTCAGAATCT3′/5′CAACCACTCACCTTCTAAATTGACA3′/
5′CAACCAACTAGTTGCT/CGGATACTTGCAAG3′

54

IL 1RN Exon 4 11100 T>C 5′CCTGAGCGAGAACAGAAAGCA3′; 5′CAGGCGGCAGACTCAAAACT3′/
5′ATCCGCTCAGACAGT/CGGCCCCA3′

23

Top row for each SNP represent forward/reverse amplimers. Second row represents TaqMan probe, with alternative bases in bold font
representing the polymorphism.

†Seattle SNP designations IL1A5138, IL1B5277, IL1B5200, IL1B1274, and IL1B0794, respectively22.
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identical genotypes at every retyping at each IL1-region
marker. Heterozygosity and Hardy–Weinberg equilibrium
were assessed using linkage utility software16. Case-
control association studies may sometimes be subject to
interference by minor deviations from Hardy–Weinberg
equilibrium in controls, and thus relative risks may vary
among studies. To address this possibility, allele and geno-
type frequencies, as well as genotype relative-risk ratio,
were analyzed using the Lathrop method17; this adjusts
control genotype frequencies to conform to Hardy–
Weinberg equilibrium. Regarding correction for multiple
comparisons, the IL-1 region markers represent the first OA
markers we typed in a genomic region with some previ-
ously reported linkage evidence and substantial biological
evidence supporting a candidate gene. Several typed
markers are in linkage disequilibrium, so testing one
marker in tight linkage disequilibrium with another is nearly
the same as testing the second. Thus, a strict Bonferroni
adjustment by numbers of markers is not reasonable. For
this reason, the p-values reported are not adjusted for
number of comparisons; instead, a conservative correction
would allow for multiplying our reported p-values by the
three loci represented. Linkage disequilibrium was
analyzed using an expectation-maximization algorithm (the
GOLD software procedure ldmax)18. As is true with other
late-onset diseases, OA subjects typically do not have
parents available for study. For that reason, one cannot
easily establish haplotypes by family studies but must
reconstruct haplotypes from population genotype data. We
used a Markov-chain method for haplotype assignments
(PHASE19). The validity of case-control studies for disease
association may sometimes be threatened by population
stratification. We used the stratification χ2 statistic to test
empirically for this potential problem20. We also examined
the best-fit probabilities with a model-based clustering
method among models assuming one to five clusters
(STRUCTURE21). This method is based on fitting models
postulating one or more groups to actual null locus
genotypes; if the best-fitting model posits more than
one empirical cluster, it is consistent with population
stratification.

Results

PHENOTYPE

Cases and controls were similar in age and of US
Caucasoid ethnicity. Cases were 79.4% female; controls

were 88.2% male (Table II). Sixty-one of the 68 cases
identified by ACR Clinical Criteria also fulfilled K–L radio-
graphic criteria. When the subgroup with radiographically
erosive OA was compared with non-erosive OA, the female
erosive hand OA subgroup was slightly, though significantly
older (p�0.031). In general, the erosive subgroup had
more extensive hand OA, whether measured by radio-
graphic joint count, number of nodes, or number of
deformities (Table II).

ABSENCE OF POPULATION STRATIFICATION

Allele frequencies for six null loci matched those for the
US Caucasian population (according to manufacturer’s
literature). The null loci showed no significant evidence of
population stratification across groups defined by presence
or absence of ACR Clinical Criteria for Hand OA (stratifica-
tion χ2�48.0, df�38, p�0.13). Modeling null locus geno-
type frequencies for one to five clusters showed that we
were unable to reject the hypothesis that only one cluster
(population) existed among the subjects. Thus, the
analyses failed to show population structure or admixture.

IL-1 REGION MARKERS

Genotype frequencies for all groups are presented in
Table III. Control frequencies matched those reported in
previous studies for US subjects of European descent22.
Among all SNP markers other than (IL1B) 5810 in OA
subjects, there was no departure from Hardy–Weinberg
equilibrium in either OA or control groups. The sole excep-
tion to Hardy–Weinberg equilibrium was the IL1B 5810
SNP in erosive and non-erosive OA subjects (among all
hand OA, χ2 11.994, p�0.000537; among erosive OA
subgroup, χ2 3.846, p�0.05; in the non-erosive hand OA
subgroup, χ2 7.433, p�0.006419). As with all other SNP
assays, these samples were typed at this SNP in duplicate
in parallel with controls. We had no basis to suspect
selective mistyping of OA subjects at this one marker
and found identical genotypes with retyping in three
subjects.

To compare genotype frequencies at each IL1-region
marker, we estimated genotype-associated risks after
adjusting control frequencies to achieve Hardy–Weinberg
equilibrium. Statistically significant results are given in
Table IV. IL1B 5810 genotype AA was associated with a
modestly elevated risk for all hand OA subjects compared

Table II
Subject characteristics

Erosive hand OA Non-erosive hand OA Controls

Number 26 42 51
Sex 21 females, 5 males 33 females, 9 males 6 females, 45 males
Age (years)
Male (mean±SD) 73±6.6 69±6.4 72±6.7
Female (mean±SD) 71±7.1† 65±10.8 69±10.0

Joint count‡§
Radiographi 15.9±4.1 7.5±5.4 N/A
Nodes 15.0±4.0 9.6±4.2 N/A
Deformities¶ 5.7±3.7 1.3±1.3 N/A

†p=0.031 female erosive OA vs female non-erosive OA.
‡First CMC, all IP joints bilaterally, maximum n=20.
§p<0.0001 for all comparisons, erosive vs non-erosive groups.
iNumber of joints with a K–L radiographic score of 2, 3, or 4.
¶Horizontal or fixed flexion deformities.
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with controls. However, in the erosive OA subgroup, the
IL1B 5810 AA genotype association was present, when
comparing with either controls or the non-erosive hand OA
subjects. In comparing the erosive hand OA with the other
OA subjects, as well as with the controls, other significant
genotypic associations were noted.

LINKAGE DISEQUILIBRIUM AMONG IL-1 REGION MARKERS

Utilizing an expectation-maximization method, we
assessed for linkage disequilibrium (Fig. 2). Significant
linkage disequilibrium extends from the IL1B 5810 SNP to
flanking IL1B SNP markers as well as centromeric to IL1A
(−)889 and telomeric to IL1RN 8006. The genomic interval
in linkage disequilibrium with the IL1B 5810 SNP (IL1A to
IL1RN) is over 300 kb long.

IL-1 REGION HAPLOTYPES

Statistical reconstruction of haplotypes using population
genotype data was performed. Among the subjects, the
most common haplotype bearing the IL1B 5810 A allele
occurred with the major alleles at the other SNP markers:
IL1A (−)889C, IL1B 1423C, and IL1B 5887T. This haplotype
represented 81 haplotypes among 240 total haplotypes for
all cases and controls, 49 in cases and 32 in controls. Two
other haplotypes bearing the IL1B 5810A allele were found,
accounting for 11 haplotypes in total, seven in cases, four in
controls. While no significant association of IL1B 5810A-
bearing haplotype with OA was noted, the numbers exam-
ined did not allow adequate power to demonstrate this
difference.

Table III
IL-1 region genotype frequencies among cases and controls*

Locus Genotype Non-erosive OA subjects (n=42) Erosive OA subjects (n=26) Control Subjects (n=51)

IL1A-889 C>T CC 27 (27.5) 8 (9.8) 28 (28.3)
CT 14 (13.0) 16 (12.3) 20 (19.4)
TT 1 (1.5) 2 (3.8) 3 (3.3)

IL1B 5887 C>T CC 30 (30.0) 15 (14.6) 33 (32.2)
CT 11 (11.0) 9 (9.8) 15 (16.7)
TT 1 (1.0) 2 (1.6) 3 (2.2)

IL1B 5810 G>A GG 22 (18.0) 9 (6.5) 21 (21.4)
GA 11 (19.0) 8 (13.0) 24 (23.3)
AA 9 (5.0) 9 (6.5) 6 (6.4)

IL1B 1903 T>C TT 15 (14.3) 17 (15.4) 17 (18.2)
TC 19 (20.4) 6 (9.2) 27 (24.5)
CC 8 (7.3) 3 (1.4) 7 (8.2)

IL1B 1423 C>T CC 15 (14.3) 17 (15.4) 17 (18.2)
CT 19 (20.4) 6 (9.2) 27 (24.5)
TT 8 (7.3) 3 (1.4) 7 (8.2)

IL1RN 8006 T>C TT 17 (15.5) 19 (17.8) 23 (24.0)
TC 17 (20.0) 5 (7.4) 24 (22.0)
CC 8 (6.5) 2 (0.8) 4 (5.0)

IL1RN VNTR† 1,1 16 (14.3) 17 (16.2) 22 (22.4)
1,2 16 (19.3) 5 (7.1) 22 (20.8)
2,2 8 (6.5) 2 (0.8) 4 (4.8)
1,3 1 (1.2) 2 (1.6) 1 (1.3)
2,3 1 (0.8) 0 (0.3) 1 (0.6)

IL1RN 11100 T>C TT 27 (26.7) 11 (12.1) 34 (33.0)
TC 13 (13.6) 14 (11.1) 14 (16.1)
CC 2 (1.7) 1 (2.5) 3 (2.0)

*Values in parentheses represent genotype frequencies expected under the assumption of Hardy–Weinberg equilibrium.
†n�50 for control VNTR (insufficient DNA available for one sample).

Table IV
Genotype risks for hand OA and erosive hand OA for IL-1 region

markers

Group/marker Genotype Risk p-value*

All OA vs. controls
IL1B 5810 G>A GG 1.14 0.713

GA 0.49 0.012 (0.036)
AA 2.53 0.023 (0.069)

Erosive OA vs. controls
IL1B 1423 C>T CC 3.31 0.011 (0.033)

CT 0.34 0.016 (0.048)
TT 0.77 0.674

IL1B 5810 G>A GG 0.75 0.546
GA 0.55 0.150
AA 3.82 0.007 (0.021)

IL1RN 8006 T>C TT 2.92 0.028 (0.084)
TC 0.34 0.024 (0.072)
CC 0.94 0.922

IL1RN 11100 T>C TT 0.41 0.056
TC 2.52 0.035 (0.105)
CC 1.47 0.647

Erosive OA vs non-erosive hand OA
IL1A-889 C>T CC 0.24 0.005 (0.015)

CT 3.52 0.006 (0.018)
TT 2.71 0.195

IL1B 1423 C>T CC 3.57 0.008 (0.024)
CT 0.34 0.013 (0.039)
TT 0.71 0.581

IL1B 5810 G>A GG 0.72 0.502
GA 0.56 0.168
AA 4.01 0.008 (0.024)

IL1RN 8006 T>C TT 4.45 0.003 (0.009)
TC 0.28 0.007 (0.021)
CC 0.56 0.400

*Values in parentheses represent significant p-values corrected
for multiple comparisons.
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Discussion
Taken as a whole, the data support the notion that the

IL-1 region contains a candidate gene for hand OA, par-
ticularly in the erosive OA subset. We considered potential
problems related to sex differences, phenotype classifica-
tion, and spurious associations. Because cases were pre-
dominantly female and controls were largely male, one
might consider the sex influence on hand OA penetrance3.
The control allelic frequencies at the IL1B 5810 marker
were similar to those in previous studies22,23. The direction
of bias from the sex difference is likely to reduce differences
in genotype frequencies of OA candidate genes. At the
subject age in this study, the incompletely penetrant frac-
tion, that is, those subjects who bear a disease-associated
genotype without the clinical manifestation, will be larger in
males than in females. This means, because of diminished
male penetrance, the disease-associated markers would
be more frequent in the largely male controls than would be
true if there was complete penetrance. Thus, the sex
difference between cases and controls represents a con-
servative bias, one that would tend to hide rather than
exaggerate a true difference in genotype frequencies. This
interpretation is bolstered by the IL1B 5810 AA genotype
difference between erosive and non-erosive OA, both
largely female groups.

One might consider also the influence of using ACR
Clinical Criteria for Hand OA to choose whether to do a
hand radiograph. Control individuals were examined and
classified as lacking ACR Clinical Criteria but not subjected
to a radiograph. A negative examination typically indicates
low prevalence of radiographic OA. In the absence of
hand complaints, the clinical observation of no hard tissue
enlargement has a moderate to high negative predictive
value for radiographic OA24. Additionally, the absence of a
Heberden’s node has a good negative predictive value for
radiographic osteophyte in the corresponding joint25. In our
study, the cases classified as having ACR Clinical Criteria
for Hand OA had some hand joints that were clinically
normal. These joints with normal examination were unlikely
to show radiographic OA features (median negative predic-
tive value was 82.58 for IP joints with a range 68.29–100.00

(data not shown)). Yet another consideration is spurious
associations due to population stratification, such as ethnic
admixture, consanguinity, or other undetected genetic
influences. Our analyses of null loci do not support the
assertion that our recruitment strategy led to population
stratification, so that cause of spurious association seems
unlikely. Additionally, we have reasoned that it would not be
appropriate in this study to adjust results for every marker
comparison; however, even if one utilized the conservative
Bonferroni method to adjust for three loci this study’s major
association still appears significant. Finally, given linkage
disequilibrium between the IL1B 5887 major allele and IL1B
5810 minor allele, one might wonder why association of the
IL1B 5887 with erosive hand OA was not found. Indeed, the
high frequency of the IL1B 5887 major allele (approxi-
mately 0.80) suggests that the number of subjects exam-
ined did not provide sufficient power to detect an
association at this locus. Therefore, the statistical support
for an IL-1 region candidate gene seems believable.

An IL-1 effect in OA pathogenesis seems similarly
credible. Over two decades ago, Saklatvala and Dingle
described a polypeptide substance catabolin that stimu-
lated chondrocytes to resorb their surrounding matrix with-
out the aid of extrinsic enzymes. From various biological
activities, this catabolin was later found to be IL-126. With
availability of cloned and purified IL-1, many research
groups have found that IL-1 affects cartilage. Local injection
of IL-1 into rabbit knee joints induces a neutrophilic synovial
fluid infiltrate and augments proteoglycan catabolism.
In vitro, IL-1 causes cartilage breakdown and stimulates
arachidonic acid release from cell membranes and subse-
quent production of prostanoids and eicosanoids27. Thus,
because IL-1 stimulates cartilage degradation and induces
production of other substances that also serve to foster
cartilage breakdown, an IL-1-related locus represents a
biologically reasonable candidate gene for OA. The IL-1
network may be important in OA progression and thus
severity. Pelletier et al.28 have noted that IL1B is the
predominant cytokine involved in the stimulation of metallo-
proteinase production within OA synovium. Furthermore,
Martel-Pelletier and colleagues have demonstrated that OA

Fig. 2. IL-1 region linkage disequilibrium. Schematic representation of selected IL-1 region loci on human chromosome 2q, drawn from the
draft sequence, June 2002 freeze of the Human Genome Project (http://www.genome.ucsc.edu). Distances between loci are not to scale;
that between IL1A and IL1B is approximately 52 kb, between IL1B and IL1RN is nearly 300 kb. Individual SNP and VNTR markers are
represented as vertical lines, exons are boxes. Each arrow represents the direction of transcription for the individual locus. Numbers and
lines below map represent disequilibrium statistics: the D′ value (pairwise standardized disequilibrium coefficient) is shown at the end of each
line; statistically significant linkage disequilibrium (p<0.05) between IL1B 5810 SNP and other nearby markers and IL1B 5810 SNP is

depicted with solid lines and p>0.05 is represented by dashed lines.
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chondrocytes elaborated significantly more metalloprotein-
ases with in vitro IL-1 stimulation than do chondrocytes
from normal controls29. Exposing cartilage explants, either
OA or normal, to IL-1 causes accelerated proteoglycan
release30. Also, Martel-Pelletier et al.29 have found that the
IL-1 receptor type 1 density on the surface of chondrocytes
from OA-affected subjects was twice that present on the
chondrocytes from normal controls. Taken as a whole, this
body of evidence regarding IL-1 effects on cartilage sug-
gests that OA may stem from a self-destructive process
involving IL-1 and chondrocytes. For these reasons, this
study’s statistical support for an IL-1 region candidate gene
in OA is biologically plausible.

Exactly which gene is the candidate is unknown. The
SNP marker most closely tied to erosive OA in this study
was IL1B 5810. The IL1B 5810 SNP’s location in the
fourth intron does not suggest an obvious effect on mRNA
splicing; while the IL1B 5810 SNP could influence mRNA
stability, it is more likely a haplotype marker for a more
important polymorphism in linkage disequilibrium. The
region in linkage disequilibrium with this SNP is fairly large,
several hundred kilobases, extending telomerically to
IL1RN and centromerically at least to IL1A. Some genetic
polymorphisms of the IL-1 region have functional differ-
ences. IL1RN VNTR allele 2 is associated with several
inflammatory diseases, including inflammatory bowel dis-
eases, psoriasis, and multiple sclerosis31; the influence of
IL1RN VNTR allele 2 on protein levels of IL-1Ra has been
examined, but various studies have conflicting results32–37.
The IL1RN VNTR allele 2 is associated with increased in
vitro IL1B production from stimulated mononuclear cells38.
In addition, the TT genotype of IL1B 5887 C>T SNP
(recognized as presence/absence of a TaqI restriction site
polymorphism) correlates with significantly higher in vitro
IL1B secretion39. Finally, the TT genotype of the IL1A-889
C>T SNP has been associated with an increase in IL1-α
production by LPS-stimulated peripheral blood mono-
nuclear cells from healthy volunteers40. Thus, genetic poly-
morphisms exist, some of which may be of functional
significance in some cell lineages, but the influence on cells
important to OA (i.e., chondrocytes) is unknown.

Erosive hand OA is likely a more severe hand OA
phenotype, and this case-control study seems to support
genetic heterogeneity. Whether erosive OA stems from a
different etiology from non-erosive, nodal OA, or whether it
is simply a more severe disease phenotype is unknown.
Indeed, erosive OA, initially termed interphalangeal OA by
Crain41, has been described as a distinct clinical subset of
hand OA. In addition to typical nodal features, subjects
have recurrent inflammatory episodes, often present even
early in the disease course, with deformity and ankylosis
potentially ensuing42. A marked female predominance has
been noted43. Furthermore, two studies have examined
specific genetic markers. In one study, the MZ genotype of
α1-antitrypsin was significantly associated with erosive
OA compared with non-erosive OA or with controls44. In
another more recent study from Argentina, no significant
differences were noted in frequencies of a matrillin-1 gene
polymorphism compared with controls, either for the nodal
or erosive phenotype45. In view of the role IL-1 plays in
rheumatoid arthritis, association of IL-1 region markers with
erosive OA makes sense. Indeed, IL-1 has been shown
to be an important mediator of erosions in rheumatoid
arthritis46, and studies have noted a suggestive linkage of
a severe rheumatoid arthritis phenotype to the IL-1
region47,48. Horai et al.49 highlighted the importance of IL-1
network regulation by describing the IL1RN knockout

mouse phenotype to include an erosive arthritis. Finally,
treatment of rheumatoid arthritis with recombinant human
IL-1Ra results in amelioration of clinical symptoms and
reduction of erosions50. Therefore, IL-1 may be associated
with the more severe spectrum of OA phenotype, as well as
more severe rheumatoid arthritis. One may speculate that
the character and distribution of IL-1-related erosions may
be partly explained by the specific cell lineage important for
the disease (i.e., rheumatoid arthritis with synovial tissue
and mononuclear cells, and OA with chondrocytes).

In conclusion, we note a significant association between
markers on the IL-1 region and erosive hand OA. Because
this case-control association is supported by a relatively
low p-value generated by the first set of candidate-gene
markers typed, and the associated genomic region bears
not only linkage evidence but also biological plausibility for
OA, we find the support for an IL-1 region candidate gene
in OA persuasive. However, as with other case-control
studies, this statistical observation must be reproduced to
be regarded as true. If the finding is reproducible, one may
do further genetic studies to pinpoint a disease-related
gene. Studies to establish mechanism might include
assays of chondrocyte and nonchondrocyte production of
IL-1 region proteins and correlation between protein levels
and IL-1 region genetic polymorphisms in diseased and
control individuals. In the future, clinicians might examine
specific IL1-β inhibitors51 in subjects with a genetic
predisposition to erosive hand OA.
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