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AbstractmDecl ines  in species richness or population are primarily attributed to habitat destruc- 
tion and fragmentation. Can we avoid the local extinction of species with stage-structure in some 
patches by building some corridors between the patches and controlling the dispersal rates? A con- 
servation strategy is put forward by introducing and analyzing the asymptotic behavior of some 
autonomous and time-varying population models. Biological implications of these results are dis- 
cussed briefly. (~) 1999 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

In order to understand the effect of dispersal on the permanence and extinction of some species, 

the familiar dispersal model of Kolmogorov type 

~i = xi fdt ,  xi) + ~ Dii(t) (xj - xi), 
j=l 

(i, j = 1, 2 , . . . ,  n) (1) 

has been well studied [1-9]. 

In the natural world, however, there are many species whose individual members have a life 

history that  takes them through two stages, immature and mature. In particular, we have in 

mind mammalian populations and some amphibious animals, which exhibit these two stages. 
These species do not seem to be usefully modeled by system (1). Some authors have focused 

their attention on the permanence and stability of some autonomous stage-structure population 

models with or without time delays [10-13]. 
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Recently, Wang and others [14] studied the living habits and characteristics of the rana chensi- 
nensis. Rana chensinensis, distributed mainly in the north and east of China, particularly in 
Jilin, is a well-known rare species that has important medical value. Normally, the adults of 
rana chensinensis live in forests, and they migrate to water fields for reproduction. However, 
water fields or moist habitats are necessary for the young rana chensinensis growing into mature 
individuals. 

Because of the ecological effects of the human activities and industry, e.g., the location of 
manufacturing industries, the pollution of rivers, soil, etc., more and more living habitats of 
rana chensinensis were broken into patches and the breeding areas were damaged in some of 
these patches. Finally, in these patches, the adults of rana chensinensis will become extinct 
without contributions from other patches. In fact, many endangered and rare species--Chinese 
sturgeon [15], alligator sinensis [16], nipponia nippon [17], for example, face analogous problems 
because of the destruction and fragmentation of their habitats. In order to protect these species, 
we put forward the following problem. 

Can we avoid the local extinction of species in some patches by building some corridors between 
the patches and controlling the dispersal rates? 

In this paper, we try to solve this problem through advancing and analyzing some stage- 
structure population models. 

The organization of this paper is as follows. In the next section, we introduce some models, 
agree on some notations, and state three lemmas which will be essential to our proofs and 
discussions. In Section 3, we analyze the effect of dispersal on the autonomous system (2) of 
single species growth with stage structure. The autonomous system corresponds to the dynamics 
of the species in a temporally uniform environment. We find that dispersal can make the species 
permanent, though it may become extinct in one patch without the contribution from other 
patches. In Section 4, we consider the effect of dispersal on the nonautonomous system (4) which 
corresponds to the dynamics of the species in a temporally nonuniform environment. Under 
some conditions, we show that the number of species changes periodically. Finally, the biological 
meaning of the results obtained in this paper are discussed briefly in Section 5. 

2. MODELS A N D  PRELIMINARIES 

To solve the problem that was put forward in Section 1, we suppose that the ecosystem is 
composed of two isolated patches and occupied by a single species whose individual members 
have a life history that takes them through two stages, immature and mature. Further, the 
breeding areas are damaged in Patch 2. Let I i( t)  and Mi( t ) ( i  = 1, 2) denote the density of 
immature and mature populations in the ith patch, respectively. Let I1(0), MI(0), and/142(0) be 
the observed value of I i( t) ,  M l ( t ) ,  and M2(t)  at initial time t = 0, respectively. To derive our 
model equations, we make the following assumptions. 

HYPOTHESIS H 1. The birth rate into the immature population in Patch 1 is proportional to the 
existing mature population with proportionality constant a. 

HYPOTHESIS H2. The death rate of the immature population in Patch 1 is proportional both to 
the existing immature population and to the square of it with proportionality constants c and b, 
respectively. 

HYPOTHESIS H3. The death rate of the mature population in the ith patch is of a logistic nature, 
i.e., proportional to the square of the population with proportionality constant ~i > 0, i -- 1, 2. 

HYPOTHESIS H4. The rate of transition from immature individuals to mature individuals is 
proportional to the existing immature population with proportionality constant c~ (see [12,13]). 

Under the above assumptions, we propose a model to describe the growth of a single species 
population living in an isolated two patch environments where individual members of the popu- 
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lation have a two-stage structure as follows: 

] l ( t )  = a M l ( t )  - bI2(t) - CIl(t) - -  c~Ii(t), 

-h;/l(t) = a l l ( t )  - f l lM?( t ) ,  (2) 

lt;/2(t) = - f l2M~( t ) .  

Obviously, Ms(t) --* 0 as t --* c~. 
If we build some corridors between the two patches, then the mature individuals can move 

from one patch to another. 
Assume further, the following. 

HYPOTHESIS H5. The net exchange of the mature population from Patch j to Patch i is pro- 
portional to the difference of the concentrations Mj (t) - Mi( t )  with proportionality constants 
D~j >_ O, i , j  = 1,2, i ~ t j .  

The dispersal "model of single species growth with stage structure now are given by the follow 
equations: 

i l  (t) = a M l  (t) - bI21(t) - cll(t) - a l l  (t), 

2~/1 (t) = Odl(t) - f l lM2( t )  + Dis (Ms(t) - Ml( t ) ) ,  (3) 

J~/s(t) = -f12M22(t) + D21 (Ml ( t )  - M2( t ) ) .  

If the population's physical environment fluctuates periodically, then the coefficients in sys- 
tems (2) and (3) are all positive and periodic functions with common period w. Hence, we 
obtain the following systems (4) and (5) that  correspond to systems (2) and (3), respectively. 

i l  (t) = a(t)M1 (t) - b(t)I2(t)  - c(t)I1 (t) - a( t )I1 (t), 

M1 (t) = a(t)I1 (t) - fll (t)M? (t), 

~12(t) = - f l2 ( t )M~( t ) .  

]l(t)  = a ( t ) M l ( t )  - b(t)I~(t)  - c ( t ) I i ( t )  - a ( t ) l f f t ) ,  

/~/l(t) = a ( t ) I i ( t )  - f l l ( t )M•(t)  + D12(t)(M2(t) - Ml( t ) ) ,  

tfl2(t) = - f l s ( t ) M ~ ( t )  + Dsff t ) (Ml( t )  - M2(t ) )  . 

(4) 

(5) 

Throughout this paper, we assume that  these functions a(t),  b(t), c(t), a( t ) ,  ill(t), fl2(t), D12(t), 
and D2x(t) are all positive and continuous periodic functions with common period w. To simplify 
our writing, we introduce the following notations: if f ( t )  is a continuous w-periodic function 
defined on [0, c¢), we set 

fO ~ 
AM(f )  = w -1 f ( t )  dr, f M  = max  f ( t ) ,  f L  = min f ( t ) .  t t 

To prove the main results of this paper, we need the following lemmas. 

LEMMA 1. (See [5,18].) I[ the cooperative system 

~ i = H i ( x ) ,  H i ( O ) = O ,  i = l , . . . , n  (6) 

has the following three properties: 

(i) DH(x)  is irreducible for any x >_ O, 
(ii) D H ( x )  < D H ( y )  for any x > y >_ 0, 

(iii) all solutions are bounded, 
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where D H ( x )  is the variational matrix of fci = Hi(x),  Hi(O) = O, i = 1, . . .  ,n, then either the 
origin is globally stable or else there exists a unique positive equilibrium and all the trajectories 
in R~ \ {0} tend to it. 

The above result can be found in [5,18]. 

DEFINITION. Let A = (aij)nxn be an n x n matrix, and let P1 , . . . ,  Pn be distinct points of the 

complex plane. For each nonzero element aij of A, connect Pi to Pj with a directed line PiPj. 
The resulting figure in the complex plane is a directed graph for A. We say that a directed graph 
is strongly connected if, for each pair of nodes Pi, Pj with i ¢ j,  there is a directed path 

P~Pk, , Pk,  Pk~ , . . . , Pk ,_ ,  P# 

connecting Pi to Pj. Here, the path consists of r directed lines. 

LEMMA 2. (See [19].) A square matrix is irreducible if and only i f  its directed graph is strongly 
connected. 

LEMMA 3. I f  
(c +.') - <0, (7) 

then the system 
t l ( t )  = a L M l ( t )  - bM I~( t )  - cM X~(t) - ~ M  Zl( t )  = P,  

(8) 
M l ( t )  = ~LZ~(t )  - Z ~  M ~ ( t )  - D ~ M ~ ( t )  = Q 

has a unique positive equilibrium, which is globally asymptotically stable. 

PROOF. The equilibria for system (8) are determined by setting [l(t)  = .~/l(t) = 0 and solving 
the intersection points of the parabola s : aLM1 = bM[21 -b (c M + oLM)I1 with parabola l : ctLI1 = 
~MM2 "[- DMM1. Under assumption (7), the tangent slope of I at O(0, 0) is larger than that of s 
at the same point, hence, (8) has two equilibria, O(0, 0) and E(I~, M~), where I~ and M~ are 
positive constants. By checking the characteristic roots of (8) at O(0, 0) and E(I[ ,  M~), we know 
that O(0, 0) is unstable and E(I[ ,  M~) is asymptotically stable. Next we want to construct an 
outer boundary of a positively invariant region which contains E(I~, M~). 

Let AB and BC be the line segments of L1 : M1 = q and L2 : /1 = p, respectively, where 
A(0, q), B(p, q), and C(p, 0), and p, q are any positive constants such that 

p • I~ ,  2~  M ( q < 

p (bMp + c ~ + ~ )  
a L 

Since 

and 

/~f l  AB ---- O~LI1 -- ~Mq2  _ DMq o<Ii<p < 0 

I1 BC = aLM1 -- bMp2 -- (cM + OlM) p O<_Ml<_q <~ O, 

AB and BC are transversals of (8). Obviously, OA and OC are also transversals of (8), and any 
trajectory that  intersects the rectangle OABC crosses from its exterior to interior as shown in 
Figure 1. 

Note that  

OP OQ 
+ - -  = -2b  MI1 - 2/~ MM1 - c M - o ~  M - D M < 0, for (I1, M1) E R2+, 

Oil OMi 

the Bendixson criterion (see Edelstein-keshet [20]) holds and there are no limit cycles in R~. 
Global stability follows from the Poincard~Bendixson Theorem. This completes the proof. 
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Figure 1. 
interior. 

C 
All trajectories which intersect the boundary OABC from exterior to 

LEMMA 4.. (See [21].) Let x(t)  and y(t) be solutions of 

& = F(t ,  x) 

and 

9 = G(t, y), 

respectively, where both systems are assumed to have the uniqueness property for initied value 
problems. Assume both x(t) and y(t) belong to a domain D E_ R n for [to, tl] in which one of the 
two systems is cooperative and 

F(t ,  z) < G(t, z), (t, z) e [to, tl] X D. 

I f  x(to) < y(to), then x(tl)  < y(tl).  I f  F = G and x(to) < y(to), then x( t l )  < y(tl).  

The above result can be found in [21]. 

LEMMA 5. (See [22].) Suppose that a continuous operator U maps a closed bounded convex set 
f~ C R n into itself. Then f~ contains at least one fixed point of U; that is there exists at least one 
z E f~ for which Uz = z holds. 

3.  E F F E C T  O F  D I S P E R S A L  O N  S P E C I E S  O B E Y I N G  S Y S T E M  (2 )  

In this section, we consider the asymptotic behavior of systems (2) and (3), respectively. 
Further, we analyze the effect of dispersal on the permanence of the species. 

3.1. W i t h o u t  Dispersal  

Obviously, M2(t) --~ 0 as t -+ c¢ in (2). To analyze the asymptotic behavior of (2), we need 
only to consider its subsystem 

I I ( t )  = a M 1  ( t )  - b I  2 ( t )  - cI1  ( t )  - a I 1  (t), 

f41 (t) = (~I1 (t) - /~1M~ (t). 
(9) 

Similar to the proof of Lemma 3, we obtain following result. 

THEOREM 1. System (9) has a unique positive equilibrium which is globally asymptotically 
stable. 

3.2. W i t h  D i s p e r s a l  

THEOREM 2. System (3) has a unique positive equilibrium and all the trajectories in R3+ \ {O} 
tend to it. 
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PROOF. To prove this theorem, we need only to show that (3) satisfies the assumptions of 
Lemma 1 and that the origin is unstable. The variational matrix of (3) takes the form 

D H  (I1, M1,  Ms )  --- oL - (D12 q- 2 ~ l M 1 )  D12 • 

0 D21 -- (2f~2Ms + D21) 

By Lemma 2, DH(I1 ,  M1, Ms) is irreducible. For any x >_ y >_ O, D H ( x )  <_ D H ( y )  is obviously 
satisfied. The characteristic equation of DH(I1 ,  M1, Ms) at O(0, 0, 0) is 

A 3 q- (C q- Ot + D12 q- D21) A 2 + [(c + a) (D12 q- DSl)  - aa ]  A - aoLD21 ----- 0. (10) 

Cubic equation (10) has at least one positive root, and so O(0, 0, 0) is unstable. 
Now we consider the boundedness of the positive solution of system (3). Choose the function 

p(t) = I i ( t )  + Ml(t)  + Ms(t)  

and calculate the derivative of p(t) along solutions of (3), we have 

/~ = -c i1  + (a + D21 - D12) M1 + (D12 - D21) Ms - bI~ - f l lM~ - /32M~.  

For a positive constant e (e < c), we have 

/~ + ep _< (c - e)I1 + ]a + D21 - D12 + e[ M1 + [Dlz - DSl + el M2 - bI~ - I~1M21 - I~2M~. 

Because b,/31, and/32 are all positive constants, there exists a positive number Cl such that 

~5 + ep < cl. 

Further, 

p(t) < + 
e 

Here we obtain the boundedness of the positive solutions of system (3). This completes the proof 
of Lemma 1. 

By Theorems 1 and 2, we can avoid the local extinction of species in Patch 2 by building some 
corridors between Patch 1 and Patch 2 and controlling the dispersal rates. 

4 .  E F F E C T  O F  D I S P E R S A L  O N  S P E C I E S  O B E Y I N G  S Y S T E M  (4 )  

4.1. W i t h o u t  D i s p e r s a l  

Obviously, M2(t) --* 0 as t --* oo in system (4). To analyze the asymptotic behavior of (4), we 
need only to consider its subsystem 

]l( t)  = a ( t ) i l ( t )  - b(t)I~(t) - c ( t ) I i ( t )  - a ( t ) I i ( t )  = fl  (t, I1, M1), 
(ii) 

-~/l(t) = a( t ) I I ( t )  - /31( t )M~( t )  = f2 (t, 11, M1). 

THEOREM 3. There exist positive constants Pl, P2, ql, and qs(Pl < P2, ql < q2) such that  
the solution of (11) with positive initial values ultimately enter the rectangular region ~'~1 = 

{(I1, M1) [ pl ~_ 11 _~ PS, ql <-M1 <_ q2}, and hence, the population is permanent.  

PROOF. Obviously, R~_ is positively invariant with respect to system (11). For any positive 
solution (Ii(t),  Ml(t))  of (11), we have 

~fl(t) _> aLMl( t )  -- bM I21(t ) -- cM II( t )  -- otM Il (t), 

Ml(t) > aL l(t) 
and 
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/~fl(t) <_ otM Il(t) -- ~LI M~(t). 
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By Theorem 1, the following systems 

11(t) = aL M1 (t) -- bM I 2 (t) - cM I ,  (t) -- a M  l l ( t ) ,  

-h)/1 (t) = aL Il (t) - j3M M21(t) 
(12) 

and 

]~Ii (t) = aU Il (t) - 13L M~(t) (13) 

have globally stable positive equilibria EI(I1, M1) and E2(I1, M1), respectively. 
Next we want to construct a positively invariant region for system (11). 
Let Ax(Pl, q2), BI(P2, q2), C1(P2, qx), DI(pl, ql) be the four vertices of a rectangle A,B1C1D1, 

where Pl, P2, ql, and q2 are positive constants satisfying 

PI < min {~ , [1}  Pl (bMpl +C M -{ "-O~M) < ql < rain / V -~-IM ' 
' a L 

p2 > max {~ ,  [1} and max V ---~-IL,/~1,/~f, < q 2 <  aM 

Since 

and 

J~I[A,BI <-- olM I1 L 2 - ~31 M1 IAlth 
aMI1 L 2 

= -- ~1 q2[pl<Ii<_p 2 
< O, 

i I I B 1 C ,  _< aMM,-b I  - (c L 1 

= aMM1--bLp 2 --(C L +o~L) p21q,<Ma<_q2 

< O, 

J~/l[ClOx > aLI1 - -  ~ MM2 
- -  1 1 C 1 D 1  

>_ _ Zyq  

> 0, 

IIID1A1 ~-- a L M 1 - b M I 2  - ( c  M +c~M)  Il lD,A~ 

>--- aLql -- bMp 2 - ( cM "4- oIM) Pl 

> O, 

any trajectory that intersects the rectangle AIBIC1D1 crosses from its exterior to interior. So the 
set fh  = {(I1, M1) [ (I1, M1) e A1BIC1D1} is positively invariant with respect to system (11). 
121 lies in the interior of the nonnegative cone R~_ = {(I1, M1) I I1 >_ 0, MI >_ 0}. 

By the choice of the constants Pl, P2, ql, and q2, the equilibra EI(I1, M1) and E2(il,  ~q)  are 
located in the interior of the rectangle A1B1C1D1. By Lemma 4 and the global stability of E1 
and E2 with respect to R~, for any positive solution of (11) with positive initial condition, there 
exists positive constant T = T(II(O), MI(0)) such that (Ii(t), Ml(t)) e f~l for t >_ T. Hence, the 
population is permanent. This completes the proof. 
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Next we consider the existence of positive periodic solution of (11) and its global stability. 
Let us consider system (11) in R 2 with the norm in R 2 being defined by 

II(I1, M1)[[ = max {lllh [M~I}, (I1, M1) • R 2. 

We know that there exists a unique solution of (11) corresponding to every initial value X0 = 
(I1 (0), M1 (0)) = (11 (0, X0), MI(0, X0)) E R2; let such a solution be denoted by 

X (t, Xo) = (I1 (t, X0), M1 (t, X0)), 
X(0, X0) = X0. 

t > O ,  

We define a Poincard period mapping .4 : R 2 --. R 2 by the formula 

AXo = X (w, Xo).  

If we can show that the operator `4 has a fixed point, then the periodic system (11) exists an 
w-periodic solution. 

THEOREM 4. System (11) has a unique positive w-periodic solution which is globally asymptot- 
ically stable. 

PROOF. Consider the set ftl that defined in Theorem 3. fh  is a bounded, closed, and convex 
set in the interior of R 2 and the operator ,4 maps ftl into itself, since f~l is positively invariant 
with respect to (11), this means that 

X ° = ( I ° , M  °) E fly ~ (I1 ( t ,X  °) ,M1 ( t ,X°) )  E fh ,  

for all t _> 0, and hence, (h  (w, X°), M1 (w, X °)) e f l  1, which implies that `4~1 C ~ 1. The solution 
of (11) is continuous function of their initial values, from which the continuity of the operator .4 
follows. Now, by Lemma 5, the existence of at least one fixed point of .4 in fh  follows. Since 
such a fixed point has positive coordinates, the corresponding w-periodic solution (I~ (t), M~ (t)) 
is strictly positive by the positive invariance of ftl. 

Now we consider its uniqueness and stability. 

f l  (t,O, M1) = a(t)M1 > O, 

f2 (t, fl ,  O) = a(t)I1 > O, 

for M1 > O, 

for I1 > O. 

The functions F~ (i = 1, 2) defined by 

ofx of~ = b(t)I21 F1 (t, I t ,Mt )  = f t  (t, I1,M1) - I t ' ~ l  - M I - ~ I  

and 

, a.f2 o f  2 
F2 (t, I1, M1) = f2 (t, I1, M1) - -1 ~ 1  - M1 ~ 1 1  = ~1 ( t )M 2 

are strictly positive for M1 > 0, It > 0, and t _> 0. Thus, the operator A is monotonic, strongly 
positive and strongly concave follows from Theorem 10.2 and Lemma 10.1 of [22]. 

Moreover, it is known by Theorem 10.1 of [22] that operator `4 has exactly one positive fixed 
point in R~, and hence, the periodic solution (I~ (t), M~(t)) corresponding to the fixed point of 
A is unique. The globally asymptotically stability of (I~(t), M~(t)) follows from Theorem 10.6 
of [22] and limt--.oo(II(t), Ml(t)) = (I~(t), M~(t)) for every solution of (11) with (I1(0), MI(0)) e 
R2\(0, 0) [22, p. 213]. This completes the proof. 
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4.2. W i t h  D i s p e r s a l  

THEOREM 5. I f  D1M2(c M + Ot M)  -- aLol L < O, then there exist positive constants n and N (n < N)  
such that the solution of (5) with positive initial Iralues ultimately enters the rectangular region 
f~2 = {(I1, M1, M2) In  <_ I1, M1,M2 <_ N} ,  and hence, the population is permanent. 

PROOF. Obviously, R~_ = {(I1,M1,M2) [ I1 >_ O, M1 >_ O, M2 >_ O} is positively invariant with 
respect to system (5). Suppose (Ii(t), Ml(t) ,  M2(t)) is a positive solution of (5). Then we have 

]l(t)  >_ aLMl(t)  -- bMI2(t) - (c M + a M) Ii(t) ,  

lt;/i (t) >_ aLia(t) -- 13M M2(t) -- DM MI(t).  

By the results of Lemmas 3 and 4, there exist positive constants I ° and M ° such that 

lim inf 11 (t) ~ I10' lim inf M1 (t) >_ M °. 
t---*OO t--*OO 

Further, for every given e > 0 (e < M°),  there exists To = To(Ii(O), Ml(0)) > 0 such that 

M~ > - Z ~ U ~ - D ~ M :  + D~, ( i  ° - ~ )  = f (U~),  

for all t > To. The algebraic equation 

]3 M M~ + D M M2 - DL1 (M1 ° - e )  = 0 

- D  M + v/ (DM) 2 + 4~MDL 1 (M[ - e) 

Clearly, f (M2) > 0 for every positive number 11//2(0 <_ /1//2 < /1:/2). Choose M°(0 < M ° < 
/Q2), 1VI21M2=M o >-- f l (M °) > 0. If M2(To) k M °, then it also holds for t > To. If M2(To) < M °, 
then 

/I;/2 (To) >_ inf { f  (M2) I 0 _< M2 < M ° } > 0, 

there must exist 7'1(>_ To) such that M2(t) >_ M~ for t _> T1. 
Next we will show that the positive solution of (5) is also ultimately bounded above. Choose 

the function 
p(t) = II(t) + Ml(t)  + M2(t), 

and calculate the derivative of p(t) along the solution of (5), we have 

D + e p S ( c  L . . . .  e ) I I + I a M + D M _ D L 2 + e I M I + I D M  D L I + e l M 2  bLI21 131LM12_132LM~,2 

for some positive constant e(e < cL). Because b L, ~L, and/3 L are all positive constants, there 
exists a positive number c2 such that ~ + ep < c2. So 

p(t) < - -  + p(O) - e -(t .  
e 

Hence, there exist positive numbers T2 and N such that Ii(t),  Ml(t) ,  and M2(t) less than N for 
t > T2. Denoting T max{T1,T2}, n min{I °, 0 0 _ = = M 1 , M ~ } , w e h a v e n < _ I i ( t ) , M l ( t ) , M 2 ( t ) < _ Y  
for t >__ T. This completes the proof. 

THEOREM 6. /1 ¢ Dll~(c M + O~ M)  -- aL~ L <~ O, then system (5) has a unique positive w-periodic 
solution which is globally asymptotically stable. 

gives us one positive root 
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PROOF. First, we construct a positively invariant set for system i5). From the assumption of 
this theorem and Lemma 3, the following system: 

II(t) = a L M l i  t) -- bM I2( t )  - cM I l ( t )  -- I l  (t) ,  

(t) = oLLI1 i t) -- ~M M2(t) -- DM M1 (t) 

has a unique positive equilibrium (I1 °, M1 °) which is globally asymptotically stable. Choosing 
fixed positive constants P3, q3, and r3 which satisfy 

P3 < I[,p3.bMp3"4-cMn ( +0l M) < q3 < -- D ~ + + 4(~L ~IM p3 
a L 2~1M ' 

- D  M + v / (DM) 2 + 4~MDL2q 3 
r3 < 

we define four plane regions ¢1, ¢2, ¢3, and ¢4, where ¢1 : ~rl : p3(M1 _> q3, M2 _> r3), 

¢2 : M1 = q3(I1 _> P3, M2 _> r3), ¢3 : M2 = r3(I1 _> P3, M1 _> q3), ¢4 : P = (c2/e), p, c2, and e are 
defined in the proof of Theorem 5 and (c2/e) > P3 + q3 + r3. These planes ¢1, ¢2, ¢3, Ca enclose 
a set 123(C int R3).  

Since 

i l  J¢1 ~ aLM1 -- DMp 2 -- (c M -~- ol M) p31 M1 _> q3 

> O, 

/~1J¢2 --> o~L I1 - -  ~lM q32 __ D M  q3JI1 --> P3 

[ 
>- J3 M (q3 + 

k 
O, > 

M 2 1 ¢ 3 >  
> 

2f~M --q3 + 
- D  M -4- v/(DM) 22~V -4- 40IL~Vp3 ) 

M 2 DMr3 DLlq3 - - ~  r 3 -- + 
. 

From the proof of Theorem 5, there exist positive constants e and c2 such that  ~ + ep < c2, we 
have 

~ J ¢ 4 < 0 .  

Then gt3 is positively invariant with respect to (5). 
Define a Poincar~ period mapping B : R~_ ~ R~_ by the formula 

BP0 = Y(w, Po), 

where Y(t ,  Po) = (Ii(t ,  P0), Ml(t ,  Po), M2(t, Po)) is the solution of (5) with Y(0, P0) -- P0 = 
(11(0, Po), MI(0, P0), M2(0, Po)). Similar to the discussion in the proof of Theorem 4, we can 
obtain a fixed point in the interior of 123. Since such a fixed point has positive coordinates, the 
corresponding w-periodic solution F(t) = (I~*(t), M~*(t), M~*(t)) of (5) is strictly positive. We 
rewrite system (5) in the form 

]I : gl(t,/1, M1, M2), 
/~/1 ---- g2(t, I1, U l ,  U2), 

M2 ---- g3(t,/1, U l , / 2 ) .  
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Denote by gij (t, ~) the values of the function gi(t, ~1, ~2, ~3) for ~j -- ~, ~k = 0 (k = 1,2, 3; k ¢ j ) .  
There exists a sequence of indices {1, 2, 3, 2, 1} such that  

(~;, I1, M1, M2) = g12 (t, M1) g23 (t, M2) g32 (t, M1) g21 (t, 11) = a( t )a ( t )D12( t )D21( t ) I1M2M2 

is strongly positive for any t with positive I1, M1, and M2. In addition, the following functions Gi 

defined by 

r Ogl ~ 091 Ogl = b(t)i2 ' 
c 1  (t, xl, M1, M2) = gl (t, I1, M1, M2) -  1-5i:  - ,v, lF- l - M2-y   

- O g 2  ~Ar Og2 ~Ar Og2 
G 2 ( t ,  ~1, M1, M2) = g2 (t, 11, M1, M2) - 1 1 ~ 1 1  - , V , l ~ - ~ -  1 - ,v,2 ~ ' - ~ 2  = f l l ( t ) M  2, 

r oqg3 a% 093 _ M 093 : f~2(t)M22 

are strictly positive in the sense that  Gi(t,  I 1 , M 1 , M 2 )  > 0 for all positive 11, M1, M2, and 
t > 0. Thus, the operator B is monotonic, strongly positive and strongly concave follows from 

Theorem 10.2 and Lemma 10.2 of [22]. 
Moreover, it is known by Theorem 10.1 of [22] that operator B has exactly one positive 

fixed point in R~_, and hence, the periodic solution F(t) corresponding to the fixed point of 
B is unique. The globally asymptotic stability of F(t) follows from Theorem 10.6 of [22] and 
l im~- ,oo( I i ( t ) , i l ( t ) ,M2( t ) )  = ( I~*( t ) ,M~*( t ) ,M~*( t ) )  for every solution of (11) with (h(0) ,  
MI(0), M3(0)) E R3 \ (0 ,0 ,0 )  [22, p. 213]. This completes the proof. 

5. D I S C U S S I O N  

Because of the ecological effects of human activities and industry, the location of manufacturing 
industries, the pollution of the atmosphere, rivers, soil, etc., more and more habitats are broken 
into patches and some of the patches are polluted. In some of these patches, the species will 
become extinct without contributions from other patches, and hence, the species live in a weak 
patchy environment. 

In this paper, we considered the effects of dispersal on the permanence of some single species 
models with stage structure. Within the context of these models (2)-(5) used here, the results of 
this paper imply that  the species will become extinct in Patch 2 if the two patches are isolated 
from each other. But we can build some corridors between Patch 1 and Patch 2 to allow the adults 
species to move from one patch to another for reproduction and other behavior. By controlling 
the dispersal rates between the patches, we can avoid the local extinction of species in Patch 2. 
Hence, corridors between patches and controlling of dispersal rates play an important  role on 

population growth. 
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