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Abstract

Let X be a complex Banach space and letI = (a, b) be an open interval. In this paper, we w
prove the generalized Hyers–Ulam stability of the differential equationty′(t)+αy(t)+βtrx0 = 0 for
the class of continuously differentiable functionsf : I → X, whereα, β andr are complex constant
andx0 is an element ofX. By applying this result, we also prove the Hyers–Ulam stability of
Euler differential equation of second order.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In 1940, S.M. Ulam gave a wide ranging talk before the Mathematics Club of the
versity of Wisconsin in which he discussed a number of important unsolved problem
Among those was the question concerning the stability of homomorphisms: letG1 be a
group and letG2 be a metric group with a metricd(·,·). Given anyε > 0, does there exis
a δ > 0 such that if a functionh :G1 → G2 satisfies the inequalityd(h(xy),h(x)h(y)) < δ
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for all x, y ∈ G1, then there exists a homomorphismH :G1 → G2 with d(h(x),H(x)) < ε

for all x ∈ G1?
In the following year, D.H. Hyers affirmatively answered in his paper [6] the ques

of Ulam for the case whereG1 and G2 are Banach spaces. Furthermore, the resu
Hyers has been generalized by Th.M. Rassias ([17]; see also [2]). Since then, the s
problems of various functional equations have been investigated by many authors (
5,7–9,18]).

Let X be a normed space and letI be an open interval. Assume that for any funct
f : I → X satisfying the differential inequality∥∥an(t)y

(n)(t) + an−1(t)y
(n−1)(t) + · · · + a1(t)y

′(t) + a0(t)y(t) + h(t)
∥∥ � ε

for all t ∈ I and for someε � 0, there exists a solutionf0 : I → X of the differential
equation

an(t)y
(n)(t) + an−1(t)y

(n−1)(t) + · · · + a1(t)y
′(t) + a0(t)y(t) + h(t) = 0

such that‖f (t) − f0(t)‖ � K(ε) for any t ∈ I , whereK(ε) is an expression ofε only.
Then, we say that the above differential equation has the Hyers–Ulam stability.

If the above statement is also true when we replaceε andK(ε) by ϕ(t) andΦ(t), where
ϕ, Φ : I → [0,∞) are functions not dependent onf andf0 explicitly, then we say tha
the corresponding differential equation has the generalized Hyers–Ulam stability (
Hyers–Ulam–Rassias stability).

We may apply these terminologies for other (linear or nonlinear) differential equa
For more detailed definitions of the Hyers–Ulam stability and the generalized Hyers–
stability, we refer the reader to [3,7–9].

C. Alsina and R. Ger were the first authors who investigated the Hyers–Ulam sta
of differential equations: they proved in [1] that if a differentiable functionf : I → R is
a solution of the differential inequality|y′(t) − y(t)| � ε, whereI is an open subinterva
of R, then there exists a solutionf0 : I → R of the differential equationy′(t) = y(t) such
that |f (t) − f0(t)| � 3ε for any t ∈ I .

This result of Alsina and Ger has been generalized by S.-E. Takahasi, T. Miur
S. Miyajima: they proved in [19] that the Hyers–Ulam stability holds true for the Ban
space valued differential equationy′(t) = λy(t) (see also [12,13]).

Recently, T. Miura, S. Miyajima and S.-E. Takahasi [14] investigated the Hyers–
stability of linear differential equations ofnth order,any

(n)(t) + an−1y
(n−1)(t) + · · · +

a1y
′(t) + a0 = 0, with complex coefficients.

In [15], T. Miura, S. Miyajima and S.-E. Takahasi also proved the Hyers–Ulam sta
of linear differential equations of first order,y′(t) + g(t)y(t) = 0, whereg(t) is a continu-
ous function. Indeed, they dealt with the differential inequality‖y′(t) + g(t)y(t)‖ � ε for
someε > 0.

Recently, the author [10] proved the Hyers–Ulam stability of differential equation
the forma(t)y′(t) = y(t) as follows: assume that eithera(t) > 0 for all t ∈ I or a(t) < 0
for all t ∈ I , whereI ⊂ R is an open interval. If a continuously differentiable functi
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f : I → R satisfies the inequality|a(t)f ′(t) − f (t)| � ε for all t ∈ I , then there exists
real numberc such that∣∣∣∣∣f (t) − c exp

{ t∫
a

du

a(u)

}∣∣∣∣∣ � ε

for any t ∈ I .

The aim of this paper is to investigate the generalized Hyers–Ulam stability of th
lowing nonhomogeneous linear differential equation of first order,

ty′(t) + αy(t) + βtrx0 = 0. (1)

We assume thatX is a complex Banach space andI = (a, b) is an arbitrary interval with
either 0< a < b � ∞ or −∞ < a < b < 0. Letα, β andr be complex constants. Suppo
ϕ : I → [0,∞) is a function with which bothtα+r−1 andtα−1ϕ(t) are integrable on(a, c)

for arbitraryc (a < c � b).
We prove in Theorem 1 that if a continuously differentiable functionf : I → X satisfies

the differential inequality∥∥ty′(t) + αy(t) + βtrx0
∥∥ � ϕ(t) (2)

for all t ∈ I , wherex0 is a fixed element ofX, then there exists a solutionf0(t) of the
differential equation (1) such that

∥∥f (t) − f0(t)
∥∥ � |t−α|

∣∣∣∣∣
b∫

t

vα−1ϕ(v)dv

∣∣∣∣∣
for all t ∈ I . We also apply this result to the investigation of the Hyers–Ulam stabilit
the Euler (Cauchy) differential equation.

2. Hyers–Ulam stability of the differential equation (1)

Throughout this section, letI = (a, b) be an open interval with either 0< a < b � ∞
or −∞ < a < b < 0.

If we setx0 = 1 in the differential equation (1), then the function

y(t) =
{

c
tα

− β
α+r

t r (for α + r �= 0),

c−β ln |t |
tα

(for α + r = 0),

wherec is an arbitrary real number, is the general solution of (1) in the class of real-v
functions defined onI .

Following the idea of the paper [11] (see also [1,12,13,16,19]), we will prove
generalized Hyers–Ulam stability of the linear differential equation (1). More prec
we investigate the solutions of the differential inequality (2) for the class of func
f : I → X.
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Theorem 1. Let X be a complex Banach space and letI = (a, b) be an open interval a
above. Assume that a functionϕ : I → [0,∞) is given, thatα, β, r are complex constants
and thatx0 is a fixed element ofX. Furthermore, suppose a continuously differentia
functionf : I → X satisfies the differential inequality(2) for all t ∈ I . If both tα+r−1 and
tα−1ϕ(t) are integrable on(a, c) for any c with a < c � b, then there exists a uniqu
solutionf0 : I → X of the differential equation(1) such that

∥∥f (t) − f0(t)
∥∥ � |t−α|

∣∣∣∣∣
b∫

t

vα−1ϕ(v)dv

∣∣∣∣∣ (3)

for any t ∈ I .

Proof. (a) First, we will prove our theorem for the case ofα + r �= 0. LetX∗ be the dual
space ofX, i.e., the set of all continuous linear functionalsλ :X → C. For eachλ ∈ X∗ we
associate the functionfλ : I → C defined byfλ(t) = λ(f (t)) for all t ∈ I .

For anyλ ∈ X∗, it holds that(fλ)
′(t) = λ(f ′(t)) for everyt ∈ I . Hence, it follows from

(2) that∣∣t (fλ)
′(t) + αfλ(t) + λ(βtrx0)

∣∣ = ∣∣λ(
tf ′(t) + αf (t) + βtrx0

)∣∣
� ‖λ‖∥∥tf ′(t) + αf (t) + βtrx0

∥∥
� ‖λ‖ϕ(t) (4)

for all t ∈ I .
For simplicity, we use the following notation:

z(t) :=
(

t

a

)α

f (t) + β

(α + r)aα
(tα+r − aα+r )x0

for eacht ∈ I . By making use of this notation and by (4), we get

∣∣λ(
z(t) − z(s)

)∣∣ =
∣∣∣∣
(

t

a

)α

fλ(t) −
(

s

a

)α

fλ(s) + β

(α + r)aα
(tα+r − sα+r )λ(x0)

∣∣∣∣
=

∣∣∣∣∣
t∫

s

d

dv

[(
v

a

)α

fλ(v)

]
dv +

t∫
s

λ

(
β

aα
vα+r−1x0

)
dv

∣∣∣∣∣
=

∣∣∣∣∣
t∫

s

(
v

a

)α{
(fλ)

′(v) + α

v
fλ(v) + λ(βvr−1x0)

}
dv

∣∣∣∣∣
=

∣∣∣∣∣
t∫

s

vα−1

aα

{
v(fλ)

′(v) + αfλ(v) + λ(βvrx0)
}
dv

∣∣∣∣∣
� ‖λ‖

∣∣∣∣∣
t∫

s

vα−1

aα
ϕ(v) dv

∣∣∣∣∣
for anys, t ∈ I .
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Sinceλ ∈ X∗ was selected arbitrarily, we may deduce from the above inequality th

∥∥z(t) − z(s)
∥∥ �

∣∣∣∣∣
t∫

s

vα−1

aα
ϕ(v) dv

∣∣∣∣∣ (5)

for all s, t ∈ I . Since tα−1ϕ(t) is assumed to be integrable on(a, c) for any c with
a < c � b, we may selectt0 ∈ I , for any given ε > 0, such thats, t � t0 implies
‖z(t) − z(s)‖ < ε. That is, {z(s)}s∈I is a Cauchy net and hence there exists anx ∈ X

such thatz(s) converges tox ass → b, sinceX is complete.
Hence, by the definition ofz(t), we get∥∥∥∥f (t) −

(
a

t

)α

x + β

α + r

1

tα
(tα+r − aα+r )x0

∥∥∥∥
= ∥∥aαt−α

(
z(t) − x

)∥∥
� |aαt−α|∥∥z(t) − z(s)

∥∥ + |aαt−α|∥∥z(s) − x
∥∥

for all s, t ∈ I . If we set

f0(t) =
(

a

t

)α

x − β

α + r

1

tα
(tα+r − aα+r )x0 (6)

in the last inequality, and if we consider the fact thatz(s) → x ass → b, it then follows
from (5) that

∥∥f (t) − f0(t)
∥∥ � |t−α|

∣∣∣∣∣
t∫

b

vα−1ϕ(v)dv

∣∣∣∣∣
for any t ∈ I , which proves the validity of inequality (3). We can easily verify thatf0 is a
solution of the differential equation (1).

Finally, we prove the uniqueness off0. If there exists another solution

f1(t) =
(

a

t

)α

x1 − β

α + r

1

tα
(tα+r − aα+r )x0

of the differential equation (1) which satisfies the inequality (3), wherex1 is another ele
ment ofX, then it follows from (3) that

‖x1 − x‖ � 2

|aα|

∣∣∣∣∣
b∫

t

vα−1ϕ(v)dv

∣∣∣∣∣
for eacht ∈ I . If we let t → b in the above inequality, then the integrability hypothe
implies thatx1 = x, i.e., there exists a unique solutionf0 of the differential equation (1
which satisfies the inequality (3) because every solution of (1) has the form (6).

(b) We will now prove our theorem forα + r = 0. If we set

z(t) =
(

t

a

)α

f (t) + β

aα

(
ln |t | − ln |a|)x0,

then we get the inequality (5) by using a similar argument as we presented in (a).
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Furthermore, we obtain the inequality (3), for anyt ∈ I , with

f0(t) =
(

a

t

)α

x − β

tα

(
ln |t | − ln |a|)x0,

which is a solution of the differential equation (1). By applying a similar argument a
used in (a), we can also prove the uniqueness off0. �

3. Hyers–Ulam stability of Euler equation

In this section, we will investigate the Hyers–Ulam stability of the second order E
equation

t2y′′(t) + αty′(t) + βy(t) = 0, (7)

which is sometimes called the Cauchy equation.
Let I = (a, b) be an open interval with either 0< a < b � ∞ or −∞ < a < b < 0.

Assume thatα, β are real constants satisfying eitherβ < 0 orβ > 0, α < 1 and(1−α)2 −
4β > 0. Set

c = α − 1− √
(1− α)2 − 4β

2
and d = α − 1+ √

(1− α)2 − 4β

2
.

We here remark that the function

y(t) = c1

tc
+ c2

td
(c1 andc2 are arbitrary real numbers) (8

is the general solution of the Euler differential equation (7).

Theorem 2. If a twice continuously differentiable functionf : I → R satisfies the differen
tial inequality∣∣t2f ′′(t) + αtf ′(t) + βf (t)

∣∣ � ε (9)

for all t ∈ I and for someε > 0, then there exists a solutionf0 : I → R of the Euler
equation(7) such that

∣∣f (t) − f0(t)
∣∣ � ε

|β|
∣∣∣∣
(

b

t

)c

− 1

∣∣∣∣ (10)

for any t ∈ I . In particular, if I = (a,∞) with ana > 0, then∣∣f (t) − f0(t)
∣∣ � ε

|β| (11)

for all t > a.

Proof. If we defineg(t) = tf ′(t) + cf (t) for any t ∈ I , then the inequality (9) yields∣∣tg′(t) + dg(t)
∣∣ = ∣∣t2f ′′(t) + αtf ′(t) + βf (t)

∣∣ � ε
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for eacht ∈ I . Further, if we seth(t) = −dg(t) in the last inequality, then we get∣∣∣∣− t

d
h′(t) − h(t)

∣∣∣∣ � ε

for all t ∈ I .
According to [10, Theorem 3], there exists a real numberc0 such that∣∣∣∣h(t) − c0

(
a

t

)d ∣∣∣∣ � ε,

i.e., ∣∣∣∣tf ′(t) + cf (t) + c0a
d

d
t−d

∣∣∣∣ � ε

|d|
for everyt ∈ I , wherec < 0 andc < d .

In view of Theorem 1, there exists a solutionf0 : I → R of the differential equation,

ty′(t) + cy(t) + c0a
d

d
t−d = 0,

such that the inequality (10) holds for anyt ∈ I . Indeed, due to (6), there exists a re
numberc3 such that thef0 has the following form

f0(t) =
(

c3 + c0

d(c − d)

)
ac

tc
− c0

d(c − d)

ad

td
.

In view of (8),f0(t) is certainly a solution of the Euler equation (7).
In particular, sincec is a negative real number, if we assumeI = (a,∞) with ana > 0,

then the inequality (10) is transformed into the inequality (11).�
Strictly speaking, the Hyers–Ulam stability holds for the second order Euler equ

(7) defined on an open interval(a,∞) with a > 0.
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