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a b s t r a c t

Let K be a valued field of characteristic p > 0 with non-p-divisible value group. We show
that every finite embedding problem for K whose kernel is a p-group is properly solvable.
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1. Introduction

In the proof that every finite solvable group occurs as a Galois group over the rationals, Shafarevich studies the solvability
of embedding problems with nilpotent kernel and solvable cokernel. The study of the absolute Galois group Gal(K) of a field
K via embedding problems continues to be central in recent papers, e.g. [1,9,10,15,17]. See also the upcoming book [11] and
the references therein.

In this work we consider a field K of characteristic p > 0 and the finite embedding problems for K whose kernels
are p-groups which we call finite p-embedding problems. An obvious necessary condition to have a proper solution is
to have a weak solution (see Section 3 for definitions). This latter condition is automatically satisfied in our case, since
cdp(Gal(K)) ≤ 1, for a field of characteristic p > 0. We obtain a mild sufficient condition on K to have a proper solution of
any finite p-embedding problem.

Theorem 1.1. Let K be a field of characteristic p admitting a non-p-divisible valuation. Then every finite p-embedding problem
for K is solvable.

Some examples of fields satisfying this condition are the following. If R is a Noetherian domain or a Krull domain
of characteristic p > 0, then its fraction field K satisfies the hypothesis of Theorem 1.1. If R is an arbitrary domain of
characteristic p > 0, then the fraction fields of the ring R[x1, . . . , xn] of polynomials and of the ring of formal Taylor series
R[[x1, . . . , xn]] satisfy the hypothesis of Theorem 1.1, for any n ≥ 1.

The proof of Theorem 1.1 is based on the following cohomological criterion of Harbater. A profinite group Π is called
strongly p-dominating if H1(Π, P) is infinite for every nontrivial finite elementary p-group P on which Π acts.1

Theorem 1.2 ([8, Theorem 1b]). LetΠ be a profinite group. Assume thatΠ is strongly p-dominating and that cdp(Π) ≤ 1. Then
every finite p-embedding problem for Π is properly solvable.

∗ Corresponding author.
E-mail addresses: lior.bary-soroker@uni-due.de (L. Bary-Soroker), duy-tan.nguyen@uni-due.de (N. Duy Tân).

1 All actions, homomorphism, etc., in this work are assumed to be continuous.
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Harbater’s motivation for Theorem 1.2 is to show that every finite p-embedding problem for the étale fundamental group
Π := π1(X) of an affine variety X over an arbitrary field K of characteristic p > 0 has a proper solution [7].

We show that the converse of Theorem1.2 also holds true; see Theorem4.2.Moreover, to get the assertion of Theorem1.2,
one may suspect that the infinitude of H1(Π, Z/pZ) suffices, where Π acts trivially on Z/pZ. This is true if both the kernel
and cokernel are p-groups, but in general it fails; see [8].

By Theorem 1.2, to prove Theorem 1.1 it suffices to show that Gal(K) is strongly p-dominating. This is carried out by
using that for every nontrivial finite elementary p-group P on which Π acts we have H1(K , P) = K/f (K), for some additive
polynomial f (Lemma 3.1). Then using the non-p-divisible valuation of K we construct infinitelymany a ∈ K that are distinct
modulo f .

We conclude the introduction with an example. Let K0 be a field of characteristic p > 0 and K = K0((x)) the field of
formal Laurent series. Then by Theorem 1.1 every finite p-embedding problem is properly solvable. When K0 is algebraically
closed, Harbater proves this in [8, Example 5] using a similar method. However, when K0 is arbitrary Harbater invokes a
theorem of Katz–Gabber in order to complete his proof (see [8, Proposition 6]).

2. Valuation-theoretic lemmas

Let A be a commutative ring. By a valuation of A we shall mean a map v : x → v(x) of A onto a totally ordered
commutative group Γ (written additively), together with an extra element ∞, such that

(1) α + ∞ = ∞ and α < ∞ for all α ∈ Γ .
(2) v(x) = ∞ if and only if x = 0.
(3) v(xy) = v(x) + v(y) for all x, y ∈ A.
(4) v(x + y) ≥ min{v(x), v(y)}.

If A is a ring with a valuation v on A, we shall also say simply that A is a valued ring. The group Γ is called the value
group.

Lemma 2.1. Let Γ be a nontrivial totally ordered commutative group

(1) For any element γ in Γ , there exists β ∈ Γ such that β < γ .
(2) Let γ1, . . . , γr be elements in Γ and let n1, . . . , nr be positive numbers. Then there exists an element γ0 in Γ such that for all

elements γ < γ0, γ ∈ Γ , we have niγ < γi for all i.

Proof. (1) If γ ≥ 0, then let β < 0 ≤ γ (such an element exists since Γ is nontrivial).
If γ < 0, one can takes β = 2γ < γ .

(2) We set

γ0 := min{γ1, . . . , γr , 0}.

Now let γ be an arbitrary element such that γ < γ0. Since γ < γi, γ < 0, it follows that niγ < γi, for all i. �

Let A be a commutative ring of characteristic p. We say that a polynomial in one variable f (T ) with coefficients in A is
p-polynomial if f (T ) =

∑m
i=0 aiT

pi , ai ∈ A. Note that a p-polynomial f induces a homomorphism of the additive group.

Lemma 2.2. Let A be a valued ring of characteristic p > 0 with nontrivial value group Γ . Let f (T ) = b0T + · · · + bmT pm be
a p-polynomial in one variable with coefficients in A. Then there exists an element γ0 ∈ Γ such that if a = f (a1), a1 ∈ A and
v(a) < γ0 then v(a) = v(bm) + pmv(a1).

Proof. By Lemma 2.1, there exists an element α ∈ Γ such that for all γ < α in Γ , we have

(pm − pi)γ < v(bi) − v(bm), ∀ 0 ≤ i < m.

We set

β := min{v(bi) + αpi | 0 ≤ i ≤ m}.

Let γ0 be any element with γ0 < β . Now assume that a = f (a1) such that v(a) < γ0 (a1 ∈ A). Let s be an index such that

v(bsa
ps
1 ) = min{v(bia

pi
1 ) | 0 ≤ i ≤ m}).

Then

v(bs) + psα > γ0 > v(f (a1)) ≥ v(bs) + psv(a1).

Thus 0 < ps(α − v(a1)) and hence v(a1) < α. By the choice of α, we have

v(bia
pi
1 ) = v(bi) + piv(a1) > v(bm) + pmv(a1) = v(bma

pm
1 ), ∀i < m.

Therefore v(a) = v(bm) + pmv(a1) as required. �
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Lemma 2.3. LetΓ be a non-p-divisible totally ordered commutative group. Letα0, γ0 be elements inΓ . Then there exist infinitely
many elements γi ∈ Γ such that

γ0 > γ1 > · · · > γi > · · ·

and γi ∉ α0 + pΓ , for all i > 0.

Proof. We first consider the case α0 = 0. Since Γ is not p-divisible, there is an element a0 ∈ Γ such that a0 ∉ pΓ . By
Lemma 2.1 part (2), there exists an element δ0 such that for all δ < δ0, we have pδ < γ0 = a0. By Lemma 2.1 part (1), there
exists an infinite sequence

δ0 > δ1 > · · · > δi > · · · .

Set γi := a0 + pδi, for all i > 0. Then γi ∉ pΓ , for all i > 0 and γ0 > γ1 > · · · > γi > · · · .
For the general case, applying the previous argument for γ ′

0 := γ0 − α0, we get an infinite sequence γ ′

0 > γ ′

1 > · · · >
γ ′

i > · · · with γ ′

i ∈ Γ but γ ′

i ∉ pΓ . Setting γi := γ ′

i + α0, we get a desired sequence of elements. �

Proposition 2.4. Let A be a valued ring of characteristic p > 0 with non-p-divisible value group Γ . Let f (T ) = b0T + b1T p
+

· · · + bmT pm be a p-polynomial in one variable with coefficients in A with m ≥ 1 and bm ≠ 0. Then A/f (A) is infinite.

Proof. Let γ0 be as in Lemma 2.2. For any a in A such that v(a) < γ0 and v(a) ∉ v(bm) + pΓ , Lemma 2.2 implies that a is
not in f (A). By Lemma 2.3 and noting that the valuation map v is onto, we may choose a sequence {ai} of elements from A
such that v(ai) ∉ v(bm) + pΓ for all i, and γ0 > v(a1) > v(a2) > · · · > v(ai) > · · · . For every i < j, one has

v(ai − aj) = v(ai) ∉ v(bm) + pΓ ,

so ai − aj ∉ f (A) and hence ai, aj have different images in A/f (A). Therefore, A/f (A) is infinite. �

3. Proof of Theorem 1.1 and a corollary

An embedding problem E for a profinite group Π is a diagram

Π

α

��
Γ

f // G

which consists of a pair of profinite groups Γ and G and epimorphisms α : Π → G, f : Γ → G.
A weak solution of E is a homomorphism β : Π → Γ such that f β = α. If such a β is surjective, then it is called a

proper solution. We will call E weakly (resp. properly) solvable if it has a weak (resp. proper) solution.
We call E a finite embedding problem if the group Γ is finite.
The kernel of E is defined to be N := ker(f ). We call E a p-embedding problem if N is a p-group.
We say E is a split embedding problem if f : Γ → G has a group theoretical section, i.e., f ′

: G → Γ such that ff ′ is the
identity map on G.

In this note, by a K -group, where K is a field, wemean an algebraic affine group schemewhich is smooth [19]. This notion
is equivalent to the notion of a linear algebraic group defined over K in the sense of [3].

First we need the following lemma.

Lemma 3.1. Let K be an infinite field of characteristic p > 0. Let P be a nontrivial finite commutative K-group which is
annihilated by p. Then P is K-isomorphic to a K-subgroup of the additive group Ga, of the form {x | f (x) = 0}, where
f (T ) = T + b1T p

+ · · · + bmT pm is a p-polynomial with coefficients in K , m ≥ 1 and bm ≠ 0.

Proof. This is well known; see e.g. [4, Proposition B.1.13] or [14, Chapter V, Proposition 4.1 and Subsection 6.1]. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We have cdp(Gal(K)) ≤ 1 (see, e.g., [18, Chapter II, Proposition 3]). By Theorem 1.2 it suffices to
prove that Gal(K) is strongly p-dominating.

Indeed, let P be a nontrivial elementary p-group on which Gal(K) acts. Consider P as a finite K -group. Then P is
commutative and annihilated by p. Hence by Lemma 3.1, P is K -isomorphic to a subgroup of Ga defined as the kernel of
f : Ga → Ga, where f (T ) = T + · · · + bmT pm is a p-polynomial in one variable with coefficients in K with m ≥ 1 and
bm ≠ 0. We have the following exact sequence of K -groups

0 → P → Ga
f

→ Ga → 0.

From this exact sequence we get the following exact sequence of Galois cohomology groups

H0(K , Ga)
f

→ H0(K , Ga) → H1(K , P) → H1(K , Ga).
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By Hilbert 90 H1(K , Ga) = 0 (see e.g. [18, Chapter II, Proposition 1]), hence

H1(K , P) ≃ H0(K , Ga)/im(f ) = K/f (K).

The latter is infinite by Proposition 2.4. So we conclude that H1(K , P) is infinite, and hence Gal(K) is strongly
p-dominating. �

Werecall that aHilbertian field is a fieldK having the irreducible specialization property: for every irreducible polynomial
f (T , X) ∈ k[T , X] that is separable in X , there exists a ∈ K such that f (a, X) is irreducible in k[X] (we refer readers to
[6, Chapters 12, 13] for more details about Hilbertian fields). In [5], Dèbes and Deschamps give the following conjecture.

Conjecture 3.2 ([5, 2.1.2]). Let K be aHilbertian field. Then every finite split embedding problem forGal(K) has a proper solution.

An easy consequence of Theorem 1.1 is a simple proof of [12, Theorem 8.3] which asserts that Conjecture 3.2 holds true
whenever K is of characteristic p > 0 and if the kernel of the embedding problem is a p-group. Namely, we have

Corollary 3.3. Let K be a Hilbertian field of characteristic p > 0. Then every finite p-embedding problem for Gal(K) is properly
solvable.

Proof. Let E = (α : Gal(K) → A, f : B → A) be a finite p-embedding problem for Gal(K). Consider the finite p-embedding
problem Et := (α ◦ prt : Gal(K(t)) → A, f : B → A) for Gal(K(t)) obtained by composition with the restriction map
Gal(K(t)) → Gal(K). Since K(t) has discrete valuations, Theorem 1.1 gives a proper solution of Et , say θt : Gal(K(t)) → B.
By the irreducible specialization property (applied to a polynomial a root of which generates the solution field of θt over
K(t)) θt specializes to a proper solution θ of E (see [6, Lemma 16.4.2]). �

Remark 3.4. (1) Let G be a finite p-group, K a Hilbertian field of characteristic p > 0. By considering the finite (split)
p-embedding problem (Gal(K) → {1},G → {1}), Corollary 3.3 implies that G is realizable over K . In other words, this
proposition shows that every finite p-group is realizable over an arbitrary Hilbertian field of characteristic p > 0. This
last statement is a special case of a theorem of Shafarevich, [6, Theorem 16.4.7].

(2) Corollary 3.3 can also be derived from Ikeda’s theorem [6, Proposition 16.4.5]. Here we sketch the proof: one starts with
a finite embedding problem for K corresponding to an exact sequence 1 → P → B → A → 1, where P is a p-group
and B = Gal(L/K). We use the usual trick of decomposing this embedding problem to a series of embedding problems
in order to assume that P is a minimal normal subgroup of B. In particular P is abelian. Since cdp(K) ≤ 1 we can replace
this embedding problem by a bigger split embedding problemwith the same kernel by taking the fiber product of B and
the image of a weak solution. Now we use Ikeda’s result that gives a regular solution over K , i.e., a solution over K(t)
with the extra condition that the solution field is regular over L. Then one uses Hilbertianity to reduce the solution to a
solution over K .

Unfortunately, we do not know whether any finite p-embedding problem over a field of characteristic p > 0 has a
regular solution.

(3) For recent results concerning Conjecture 3.2, we refer readers to [2,15–17].

4. Embedding problems with p-kernel

In this section we show that the converse of Theorem 1.1 also holds true; see Theorem 4.2.
Let

E := Π

α

��
1 // P // Γ

f // G // 1

be an embedding problem for Π with abelian kernel P . Since P is abelian, there is an induced conjugation action of G on P
by choosing representatives in Γ . This in turn yields an action of Π on P via α : Π → G. Let H1(Π, P) be the corresponding
Galois cohomology group.

Twoweak solutions β and β ′
: Π → Γ of E are defined to be equivalent, and denoted by β ∼ β ′, if there is an element p

in P such that β ′
= inn(p)◦β . (Here inn(p) ∈ Aut(Γ ) denotes left conjugation by p.) One can check that∼ is an equivalence

on the set of weak solutions to E . Denote by WS(E) the set of weak solutions of E modulo the equivalence relation ∼. We
have a cohomological description of WS(E).

Lemma 4.1. With notation as above, assume that E is weakly solvable. ThenWS(E) is a H1(Π, P)-torsor. In particular, any weak
solution θ of E induces a bijection

WS(E) ∼= H1(Π, P).

Proof. See [13, Proposition 9.4.4]. �

Next we prove the converse of Theorem 1.2. For future reference we formulate it as an if and only if theorem.
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Theorem 4.2. Let Π be a profinite group. Then every finite p-embedding problem for Π has a proper solution if and only if
cdp(Π) ≤ 1 and Π is strongly p-dominating.

Proof. (⇐): This is Theorem 1.2.
(⇒): It suffices to prove that Π is strongly p-dominating. Let P be a nontrivial elementary abelian p-group on which Π acts
continuously. We have to show that H1(Π, P) is infinite.

Since the action of Π on P is continuous, it factors via a finite quotient. I.e., there is a map α : Π → G and an action of
G on P that induces the action of Π on P . Let Γ be the semidirect product of P and G. We get the following split embedding
problem with elementary abelian p-kernel

E := Π

α

��
1 // P // Γ

f // G // 1

For any n > 0 let Γ n
G be the nth fold fiber product of Γ over G, i.e.,

Γ n
G = {(γ1, . . . , γn), γi ∈ Γ , and f (γ1) = · · · = f (γn) ∈ G}.

We have a map fn : Γ n
G → G, defined by fn((γi)

n
i=1) = f (γ1).

We have an embedding problem En for Π corresponding to the exact sequence

1 //Pn //Γ n
G

fn //G //1.

By assumption, there is a proper solution β to En. By composing β with the projections pri : Γ n
G → Γ , we get n proper

solutions β1, . . . , βn.
We show that these βi are pairwise non-equivalent (and in particular distinct). Indeed, if βi ∼ βj, for some 1 ≤ i < j ≤ n,

then there is a element p ∈ P such thatβi(s) = pβj(s)p−1, for all s ∈ Π . Since P is a nontrivial group,we can take twodifferent
elements q, q′ from P . Set x = (1, . . . , q, . . . , q′, . . . , 1) ∈ Γ n, where q, q′ are in ith and jth entry, respectively and 1 is in all
other entries. Then x ∈ Γ n

G . Since β is a proper solution, there exists s in Π such that β(s) = x. We then have

q = βi(s) = pβj(s)p−1
= pq′p−1

= q′,

a contradiction.
Therefore, we get that WS(E) is infinite, and by Lemma 4.1, H1(Π, P) is infinite, as needed. �
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