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Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
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Abstract

We prove geometric and homological properties of modules in the additive categories of generalized
standard almost cyclic coherent components in the Auslander–Reiten quivers of finite-dimensional algebras.
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1. Introduction and the main results

Throughout the paper K will denote a fixed algebraically closed field. By an algebra is meant
an associative finite-dimensional K-algebra with an identity, which we shall assume (without
loss of generality) to be basic. Then such an algebra has a presentation A ∼= KQA/I , where
QA = (Q0,Q1) is the ordinary quiver of A with the set of vertices Q0 and the set of arrows
Q1 and I is an admissible ideal in the path algebra KQA of QA (see [1]). If the quiver QA

has no oriented cycles, the algebra A is said to be triangular. We shall denote by mod A the
category of finite-dimensional right A-modules and by indA the full subcategory of mod A

formed by all indecomposable modules. By an A-module is always meant an object of mod A.
The Jacobson radical rad(mod A) of mod A is the ideal of mod A generated by all noninvertible
morphisms in indA. Then the infinite radical rad∞(mod A) of mod A is the intersection of
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all powers radi (mod A), i � 1, of rad(mod A). We denote by ΓA the Auslander–Reiten quiver
of A, and by τA the Auslander–Reiten translation D Tr. We shall identify an indecomposable
A-module with the vertex of ΓA corresponding to it. Following [31] a family C of components
of ΓA is said to be generalized standard if rad∞(X,Y ) = 0 for all modules X and Y from C.
We note that different components in a generalized standard family C are orthogonal, and all but
finitely many τA-orbits in C are τA-periodic (see [31, (2.3)]). Examples of generalized standard
components are preprojective components, preinjective components, connecting components of
tilted algebras, and tubes over tame tilted, tubular and canonical algebras [29]. The structure of
arbitrary generalized standard components is not yet well understood.

In the representation theory of algebras a prominent role is played by the algebras with a
separating family of components in the following sense. A family C = (Ci )i∈I of components of
the Auslander–Reiten quiver ΓA of an algebra A is said to be separating if the modules in indA

split into three disjoint classes PA, CA = C and QA such that:

(S1) CA is sincere and generalized standard;
(S2) HomA(QA,PA) = 0, HomA(QA,CA) = 0, HomA(CA,PA) = 0;
(S3) any morphism from PA to QA factors through addCA.

We then say that CA separates PA from QA and write indA=PA ∨ CA ∨ QA. We also note
that then PA and QA are uniquely determined by CA (see [2, (2.1)] or [29, (3.1)]). Moreover,
CA is called sincere if any simple A-module occurs as a composition factor of a module in CA.
Frequently, we may recover A completely from the shape and categorical behaviour of the sepa-
rating family CA of components of ΓA. For example, the tilted algebras [14,29], or more generally
double tilted algebras [28], are determined by their (separating) connecting components. Further,
it was proved in [18] (see also [32]) that the class of algebras with a separating family of sta-
ble tubes coincides with the class of concealed canonical algebras. This was extended in [19] to
a characterization of all quasitilted algebras of canonical type, for which the Auslander–Reiten
quiver admits a separating family of semiregular tubes. Recently the latter has been extended in
[23] to a characterization algebras with a separating family of almost cyclic coherent Auslander–
Reiten components. Recall that a component Γ of an Auslander–Reiten quiver ΓA is called
almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely
in Γ . Moreover, a component Γ of ΓA is said to be coherent if the following two conditions are
satisfied:

(C1) For each projective module P in Γ there is an infinite sectional path P = X1 → X2 →
·· · → Xi → Xi+1 → Xi+2 → ·· · (that is, Xi �= τAXi+2 for any i � 1) in Γ .

(C2) For each injective module I in Γ there is an infinite sectional path · · · → Yj+2 → Yj+1 →
Yj → ·· · → Y2 → Y1 = I (that is, Yj+2 �= τAYj for any j � 1) in Γ .

The authors proved in [23, Theorem A] that the Auslander–Reiten quiver ΓA of an algebra A

admits a separating family of almost cyclic coherent components if and only if A is a generalized
multicoil enlargement of a (possibly decomposable) concealed canonical algebra C. Moreover,
for such an algebra A, we have that A is triangular, gl dimA � 3, and pdA X � 2 or idA X � 2
for any module X in indA (see [23, Corollary B and Theorem E]).

One of the aims of the paper is to establish some geometric properties of modules from the ad-
ditive categories of separating families of almost cyclic coherent Auslander–Reiten components.
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Assume A = KQ/I is a triangular algebra. For an A-module X, we denote by dimX the
dimension vector of X, being the image of X in the Grothendieck group K0(A) = Z

Q0 of A. For
d = (di) ∈ N

Q0 , we denote by modA(d) the affine variety of A-modules of dimension vector d.
Then the algebraic group G(d) = ∏

i∈Q0
GL(di) acts on modA(d) in such a way that the G(d)-

orbits in mod A(d) correspond to the isomorphism classes of A-modules of dimension vector d.
We shall identify a point of modA(d) with the A-module of dimension vector d corresponding to
it. For a module M in modA(d) we denote by dimM modA(d) the local dimension of modA(d)

at M , that is the maximal dimension of the irreducible components of modA(d) containing M .
Then a module M in modA(d) is said to be nonsingular if dimM modA(d) coincides with the di-
mension dimK TM(modA(d)) of the tangent space TM(modA(d)) of modA(d) at M . We note that
if M is a nonsingular module in modA(d), then M belongs to exactly one irreducible component
of modA(d). Following [8] the Tits quadratic form qA : ZQ0 → Z is defined by

qA(x) =
∑
i∈Q0

x2
i −

∑
(i→j)∈Q1

xixj +
∑

i,j∈Q0

rij xixj ,

where x = (xi)i∈Q0 ∈ Z
Q0 and rij is the number of relations from i to j in a minimal admissible

set of relations generating the ideal I . Moreover, following [29], we denote by χA : ZQ0 → Z the
Euler quadratic form such that

χA(dimM) =
∞∑
i=0

(−1)i dimA ExtiA(M,M)

for any A-module M . It is known that qA and χA coincide if gl dimA � 2 (see [8]) but in general
they are different (see [27, Section 5]). While the Euler form χA reflects the homological behav-
iour of the module category mod A, the Tits form qA is related to the geometry of A-modules.

The study of the module varieties is an important and interesting research direction of the
modern representation theory of algebras. In particular, the geometry of module varieties with
separating families of tubes, or more generally coils, has attracted much attention (see [4–7,26,
27] for some results in this direction).

The following theorem is the first main result of the paper.

Theorem A. Let A be an algebra with a separating family C of almost cyclic coherent compo-
nents in ΓA, M be a module in addC, and d = dimM . Then the following statements hold:

(i) M is a nonsingular point of modA(d).
(ii) qA(d) � χA(d) = dimK EndA(M) − dimK Ext1A(M,M) � 0.

(iii) dimM modA(d) = dimG(d) − χA(d).

We note that for a separating family C of almost cyclic coherent components we may have
(even indecomposable) modules M in addC with arbitrary large χA(dimM) (see [27, (5.3)]).

From Drozd’s Tame and Wild theorem [10] the class of algebras may be divided into two
disjoint classes. One class consists of the tame algebras for which the indecomposable modules
occur, in each dimension d , in a finite number of discrete and a finite number of one-parameter
families. The second class is formed by the wild algebras whose representation theory comprises
the representation theories of all finite-dimensional algebras over K . Hence, a classification of
the finite-dimensional modules is only feasible for tame algebras.
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As an application of Theorem A and results of [23,26,33] we obtain also the following geo-
metric and homological characterization of the tame algebras with separating families of almost
cyclic coherent Auslander–Reiten components.

Theorem B. Let A be an algebra with a separating family of almost cyclic coherent components
in ΓA. The following conditions are equivalent:

(i) A is tame.
(ii) χA(dimM) � 0 for any indecomposable A-module M .

(iii) dimG(dimM) � dimM modA(dimM) for any indecomposable A-module M .
(iv) dimK Ext1A(M,M) � dimK EndA(M) and ExtrA(M,M) = 0 for any r � 2 and any inde-

composable A-module M .

The following result on arbitrary generalized standard almost cyclic coherent Auslander–
Reiten components is the third main result of the paper.

Theorem C. Let A be an algebra, C a generalized standard almost cyclic coherent component
of ΓA, and M a module in addC. Then dimK Ext1A(M,M) � dimK EndA(M).

We stress that the class of algebras with generalized standard almost cyclic coherent
Auslander–Reiten components is large (see Proposition 2.9 and the following comments).

For basic background from the representation theory we refer to the books [1,3,29] and on
the geometric methods in representation theory to [11,16] (see also [13,30] for basic algebraic
geometry).

2. Generalized standard almost cyclic coherent components

Let A be an algebra and C a family of components in ΓA. Following [9] the family C is said
to be standard if the full subcategory of mod A formed by the modules from C is equivalent to
the mesh category K(C) of C. It is known [20] that every standard family of components of ΓA

is generalized standard but the converse implication is not true in general. A component in ΓA of
the form ZA∞/(τ r ), r � 1, is said to be a stable tube of rank r . Therefore, a stable tube of rank
r in ΓA is an infinite component consisting of τA-periodic indecomposable A-modules having
period r . A stable tube of rank 1 is said to be homogeneous. Moreover, a stable tube T of ΓA

admits a distinguished τA-orbit, called the mouth of T , consisting of modules having exactly one
direct predecessor and exactly one direct successor in T . An indecomposable A-module X with
EndA(X) ∼= K is said to be a brick. We have the following characterization of standard stable
tubes established in [34, (1.3)].

Lemma 2.1. Let A be an algebra and T a stable tube of ΓA. The following conditions are
equivalent:

(i) T is standard.
(ii) The mouth of T consists of pairwise orthogonal bricks.

(iii) rad∞(Z,Z) = 0 for all modules Z in T .
(iv) T is generalized standard.
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An important role in our considerations is played by the concealed canonical algebras. We
exhibit first the class of canonical algebras introduced by Ringel [29, (3.7)]. Let t � 2 be a
positive integer, p = (p1, . . . , pt ) be a t-tuple of positive integers, and λ = (λ1, . . . , λt ) be a t-
tuple of pairwise different elements of P1(K) = K ∪{∞}, normalized such that λ1 = ∞, λ2 = 0,
λ3 = 1. Denote by Δ(p) the quiver of the form

◦
α11

◦α12 · · · ◦ ◦α1p1−1

◦ ◦α21 ◦α22 · · · ◦ ◦α2p2−1 ◦α2p2

α1p1

αtpt

◦
αt1

◦
αt2

· · · ◦ ◦
αtpt −1

For t = 2, put Λ(p,λ) = KΔ(p). For t � 3, assume that p consists of integers pi � 2, consider
the ideal I (p,λ) in KΔ(p) generated by the elements

αipi
. . . αi2αi1 + α2p2 . . . α22α21 + λiα1p1 . . . α12α11, i = 3, . . . , t,

and the bound quiver algebra Λ(p,λ) = KΔ(p)/I (p,λ). Then Λ(p,λ) is called the canonical
algebra of type (p,λ), p the weight sequence of Λ(p,λ), and λ the parameter sequence of
Λ(p,λ). It has been shown in [29, (3.7)] that Auslander–Reiten quiver ΓΛ of Λ = Λ(p,λ) admits
a canonical separating family TΛ = (T λ

Λ)λ∈P1(K) of pairwise orthogonal standard stable tubes
of tubular type p, and hence indΛ = PΛ ∨ TΛ ∨ QΛ for the corresponding subcategories PΛ

and QΛ of indΛ. Following [17], by a concealed canonical algebra (of type (p,λ)) we mean
an algebra of the form C = EndΛ(T ), where T is a tilting module from the additive category
addPΛ of PΛ and Λ = Λ(p,λ). Then again we have a decomposition

indC = PC ∨ TC ∨QC,

where TC = HomΛ(T ,TΛ) is the family T λ
C = HomΛ(T ,T λ

Λ), λ ∈ P1(K), of pairwise orthogonal
standard stable tubes of tubular type p, separating PC from QC . The representation type of a
concealed canonical algebra C of type (p,λ) is controlled by the genus g(C) of C defined as

g(C) = 1 + 1

2

(
(t − 2)p −

t∑
i=1

p

pi

)
,

where p = l.c.m.(p1, . . . , pt ). It has been shown in [18, (7.1)] that a concealed canonical algebra
C is tame if and only if g(C) � 1. We also note that if g(C) �= 1 then TC is the unique separating
family of stable tubes in ΓC .

The following theorem proved in [18] (see also [32]) shows importance of concealed canoni-
cal algebras.

Theorem 2.2. Let A be a connected algebra. Then ΓA admits a separating family of stable tubes
if and only if A is a concealed canonical algebra.
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The indecomposable modules in the canonical family TΛ of stable tubes of a canonical al-
gebra Λ = Λ(p,λ) have a rather simple structure: the dimension vectors of all indecomposable
modules forming the mouth of the tubes in TΛ have coordinates 0 or 1. The following conse-
quence of [15, Theorem 3] shows that there are many concealed canonical algebras C with a
separating family of stable tubes in ΓC consisting of complicated indecomposable modules.

Proposition 2.3. Let Λ = Λ(p,λ) be a canonical algebra of wild type and m be a positive integer.
Then there exist infinitely many pairwise nonisomorphic concealed canonical algebras C of the
form C = EndΛ(T ), for a tilting module T in addPΛ, such that the coordinates of the dimension
vectors of all indecomposable C-modules in TC are at least m.

The authors proved in [22, Theorem A] that a component Γ of the Auslander–Reiten quiver
ΓA of an algebra A is almost cyclic and coherent if and only if Γ is generalized multicoil, that
is, can be obtained (as a translation quiver) from a finite family of stable tubes by a sequence of
admissible operations. In [23, Section 3] we introduced admissible operations (ad 1)–(ad 5) and
their duals (ad 1∗)–(ad 5∗) on an arbitrary algebra and a generalized standard family Γ of infinite
components of ΓA. Let now B be a (not necessarily connected) algebra and T a (generalized)
standard family of stable tubes in ΓB . Following [23] by a generalized multicoil enlargement
of B , using modules from T , we mean an algebra A obtained from B by an iteration of admissible
operations of types (ad 1)–(ad 5) and (ad 1∗)–(ad 5∗) performed either on stable tubes of T or
on generalized multicoils obtained from stable tubes of T by means of operations done so far.
Then ΓA admits a (generalized) standard family C of generalized multicoils obtained from the
family T of stable tubes of ΓB by a sequence of admissible operations of types (ad 1)–(ad 5)
and (ad 1∗)–(ad 5∗) corresponding to the admissible operations leading from B to A (compare
[23, (3.7)]). In particular, the class of tubular extensions (respectively, tubular coextensions) of
B using modules from T in the sense of [29, (4.7)] coincides with the class of generalized
multicoil enlargements of B involving only admissible operations of type (ad 1) (respectively,
(ad 1∗)). From now on by a concealed canonical algebra we mean a finite product of connected
concealed canonical algebras.

The following theorem, proved in [23, Theorem A], will be crucial for our further considera-
tions.

Theorem 2.4. Let A be an algebra. The following statements are equivalent:

(i) ΓA admits a separating family of almost cyclic coherent components.
(ii) A is a generalized multicoil enlargement of a concealed canonical algebra C.

We also note that the class of tubular extension (respectively, tubular coextension) of con-
cealed canonical algebras coincides with the class of algebras having a separating family of ray
tubes (respectively, coray tubes) in their Auslander–Reiten quiver (see [17,19]). Moreover, these
algebras are quasitilted algebras of canonical type.

We recall also the following theorem on the structure of the module category of a generalized
multicoil enlargement of a concealed canonical algebra proved in [23, Theorems C and F].

Theorem 2.5. Let A be a generalized multicoil enlargement of a concealed canonical algebra C,
CA the associated separating family of generalized multicoils, and indA = PA ∨ CA ∨QA. Then
the following statements hold:
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(i) There is a unique factor algebra Al of A which is a tubular coextension of C such that
indAl = PAl ∨ TAl ∨QAl for a separating family TAl of coray tubes in ΓAl , and PA = PAl .

(ii) There is a unique factor algebra Ar of A which is a tubular extension of C such that indAr =
PAr ∨ TAr ∨QAr , for a separating family TAr of ray tubes in ΓAr , and QA = QAr .

(iii) A is tame if and only if Al and Ar are tame.

In the above notation, the algebras Al and Ar are called the left and right quasitilted algebras
of A. Moreover, the algebras Al and Ar are tame if and only if Al and Ar are products of tilted
algebras of Euclidean type or tubular algebras. Recall that an algebra Λ is called quasitilted if
gl dimΛ � 2 and for any indecomposable Λ-module X we have pdΛ X � 1 or idΛ X � 1 [12].

The following proposition describes homological properties of modules in the additive cate-
gories of separating families of almost cyclic coherent Auslander–Reiten components.

Proposition 2.6. Let A be an algebra with a separating family CA of almost cyclic coherent
components in ΓA and M be a module in addCA. Then the following statements hold:

(i) pdA M � 2 and idA M � 2.
(ii) ExtrA(M,M) = 0 for r � 2.

Proof. The statement (i) is proved in [23, Theorem E]. Moreover, (i) implies ExtrA(M,M) = 0
for r � 3. We prove that also Ext2A(M,M) = 0. Let indA = PA ∨CA ∨QA. Consider the projec-
tive cover π :P(M) → M of M in mod A and Ω(M) = Kerπ . Then we have an exact sequence

0 → Ω(M) → P(M) → M → 0

and consequently Ext2A(M,M) ∼= Ext1A(Ω(M),M). Further, in the proof of [23, Theorem E], we
showed that Ω(M) = M1 ⊕M2, where M1 is a projective module and M2 is a module in addPA.
Moreover, we have HomA(CA,PA) = 0, because CA separates PA from QA. Applying now the
Auslander–Reiten formula, we obtain

Ext1A
(
Ω(M),M

) ∼= DHomA

(
M,τAΩ(M)

) ∼= DHomA(M,τAM2) = 0.

Therefore, we obtain Ext2A(M,M) = 0, and (ii) holds. �
We need also the following extension of Lemma 2.1.

Proposition 2.7. Let A be an algebra and C an almost cyclic coherent component of ΓA. The
following two statements are equivalent:

(i) C is standard.
(ii) C is generalized standard.

Proof. The implication (i) ⇒ (ii) follows from the general result proved in [20]. Assume that
C is generalized standard in mod A. Denote by annC the annihilator of C in A, that is, the
intersection of the annihilators annM of all modules M in C. Then annC is a two-sided ideal
of A and C is a component of the Auslander–Reiten quiver ΓB of B = A/ annC. Moreover, C is
generalized standard in mod B . Because C is an almost cyclic and coherent component of ΓB ,
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applying [22, Theorem A], we conclude that, as a translation quiver, C is a generalized multicoil,
and hence can be obtained from a finite family T of stable tubes by an iteration of admissible
operations of types (ad 1)–(ad 5) and (ad 1∗)–(ad 5∗). Let T ∗ be the family of indecomposable
B-modules in C corresponding to the vertices of the family T . We note that T ∗ is usually not a
translation subquiver of C. Let J = annT ∗ be the annihilator of the family T ∗ in B and C = B/J .
Because C is a generalized standard generalized multicoil, we obtain that T ∗ is a family of stable
tubes in ΓC , and isomorphic to T as a translation quiver. Further, T ∗ is a generalized standard
family of stable tubes in ΓC , and is sincere. Moreover, different tubes of T ∗ are orthogonal in
mod C. Applying now Lemma 2.1 we obtain that T ∗ is a finite family of pairwise orthogonal
standard stable tubes of ΓC . By construction, B is a generalized multicoil enlargement of C,
using modules from T ∗ and the admissible operations of types (ad 1)–(ad 5) and (ad 1∗)–(ad 5∗),
corresponding to the admissible operations leading from T to C. Finally, applying [29, (4.7)(1)],
[2, (2.5), (2.6)] and [21, (2.1)], we conclude that C is a standard almost cyclic and coherent
component of ΓB , and hence of ΓA. �

The following proposition will be also applied.

Proposition 2.8. Let R be an algebra and Γ be an almost cyclic coherent component of ΓR . Then
there exists a tame algebra A with a separating family CA of almost cyclic coherent components
such that the translation quiver Γ is isomorphic to a component of CA.

Proof. For a positive integer n, denote by Λ(n) the path algebra KΔ(n) of the quiver Δ(n) of
the form

◦ ◦

βn

α

◦
β1

◦
β2

· · · ◦ ◦
βn−1

Observe that Λ(n) is the canonical algebra Λ(p) with p = (1, n). Moreover, the separating family
TΛ(n) of stable tubes of ΓΛ(n) consists of a stable tube T (n) of rank n and a family of homoge-
neous tubes indexed by the elements of K .

It follows from [22, Theorem A] that the translation quiver Γ can be obtained from a finite
family Γ1,Γ2, . . . ,Γm of stable tubes by an iteration of admissible operations of types (ad 1)–
(ad 5) and (ad 1∗)–(ad 5∗), described in [22, Section 2]. Let r1, r2, . . . , rm be the ranks of the
stable tubes Γ1,Γ2, . . . ,Γm, respectively. Consider the algebra

Λ = Λ(r1) × Λ(r2) × · · · × Λ(rm).

Clearly, then ΓΛ admits a separating family TΛ of stable tubes containing the stable tubes T (r1),
T (r2), . . . , T (rm) of ranks r1, r2, . . . , rm. Take now the generalized multicoil enlargement A

of the concealed canonical algebra Λ using modules from the tubes T (r1),T (r2), . . . ,T (rm)

of TΛ and the admissible operations of types (ad 1)–(ad 5) and (ad 1∗)–(ad 5∗) corresponding
the admissible operations leading from the stable tubes Γ1,Γ2, . . . ,Γm, isomorphic to the tubes
T (r1),T (r2), . . . ,T (rm), to the translation quiver Γ . Then by Theorem 2.4, the Auslander–
Reiten quiver ΓA admits a separating family CA of components consisting of an almost cyclic
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coherent component (generalized multicoil) C, isomorphic to Γ as a translation quiver, and
homogeneous tubes. Moreover, the left quasitilted part Al of A is a product of tubular co-
extensions of the algebras Λ(r1),Λ(r2), . . . ,Λ(rm) using only modules from the stable tubes
T (r1),T (r2), . . . ,T (rm), and consequently is a product of tilted algebras of Euclidean types
Ãs1, Ãs2, . . . , Ãsm with all indecomposable projective modules in the preprojective components.
Similarly, the right quasitilted part Ar of A is a product of tilted algebras of Euclidean types
Ãt1, Ãt2, . . . , Ãtm with all indecomposable injective modules in the preinjective components.
Therefore, applying Theorem 2.4 and [29, (4.9)], we obtain that A is tame. �

Our next aim is to show that the class of algebras A having (generalized) standard almost
cyclic coherent components in ΓA is very large. We recall that, by [23, Theorem E], any algebra
A with a separating family of almost cyclic coherent components in Γ is of global dimension
at most 3. The second named author introduced in [34] a wide class of generalized canonical
algebras, containing the class of all canonical algebras. This allows to construct complicated
algebras of arbitrary high global dimension whose Auslander–Reiten quivers contain an infinite
family of generalized standard stable tubes. The final result of this section is an application of
this idea.

Proposition 2.9. Let R be an algebra and Γ be an almost cyclic coherent component of ΓR , and
let B be an algebra. Then there exists an algebra A such that the following statements hold:

(i) B is a factor algebra of A.
(ii) ΓA admits a generalized standard almost cyclic coherent component C such that C ∼= Γ as

translation quivers.
(iii) Every simple B-module occurs as a composition factor of infinitely many indecomposable

modules in C.

Proof. Applying again [22, Theorem A], we conclude that the translation quiver Γ can be
obtained from a finite family Γ1,Γ2, . . . ,Γm of stable tubes by an iteration of admissible op-
erations of types (ad 1)–(ad 5) and (ad 1∗)–(ad 5∗). Let r1, r2, . . . , rm be the ranks of the tubes
Γ1,Γ2, . . . ,Γm. Combining Theorem 2.1 and Corollary 2.5 in [34], we obtain that there is a
generalized canonical algebra C such that the following statements hold:

(1) B is a factor algebra of C.
(2) ΓC admits a (generalized) standard family T1,T2, . . . ,Tm of stable tubes of ranks r1, r2,

. . . , rm, respectively.
(3) Every simple B-module occurs as a composition factor of infinitely many indecomposable

modules of each of the tubes T1,T2, . . . ,Tm.

Let A be the generalized multicoil enlargement of C using modules from the tubes
T1,T2, . . . ,Tm and the admissible operations of types (ad 1)–(ad 5) and (ad 1∗)–(ad 5∗) cor-
responding to the admissible operations leading from the family of stable tubes Γ1,Γ2, . . . ,Γm

to the translation quiver Γ . Then ΓA admits a generalized standard component C, isomorphic
to Γ as a translation quivers, and containing all indecomposable C-modules from the tubes
T1,T2, . . . ,Tm. Hence, every simple B-module occurs as a composition factor of infinitely many
indecomposable modules in C. Moreover, C is a factor algebra of A, and hence B is a factor
algebra of A. �
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A wider class of algebras for which the Auslander–Reiten quiver admits (generalized) stan-
dard almost cyclic coherent components is formed by the generalized multicoil enlargements of
concealed generalized canonical algebras introduced in [24].

We end this section with the following general result proved in [35, Theorem 1].

Proposition 2.10. Let A be an algebra and C a generalized standard family of components of ΓA.
Then addC is closed under extensions.

3. Geometry of module varieties

In this section we collect geometric facts needed in the proofs of the main theorems of the
paper.

Let A = KQ/I be a triangular algebra. For d ∈ N
Q0 , we denote by modA(d) the scheme of

A-modules with dimension vector d. Then the set modA(d)(K) of rational points of modA(d)

forms the affine module variety modA(d). The group scheme G(d) = ∏
i∈Q0

GL
di

acts also on

modA(d) such that the orbits of the group G(d) = G(d)(K) of rational points in the affine variety
modA(d) form the isoclasses of A-modules of dimension vector d. For a module X in modA(d),
we denote by TX(modA(d)) the tangent space to the scheme modA(d) at X and by TX(O(X))

the tangent space to the G(d)-orbit O(X) of X at X. Then we have the following useful result
proved by Voigt in [36] (see also [11, (1.1)]).

Proposition 3.1. For a module X ∈ modA(d), we have an isomorphism of K-vector spaces

Ext1A(X,X) ∼= TX

(
modA(d)

)
/TX

(
O(X)

)
.

Let X be a module in modA(d). The local dimension dimX modA(d) (respectively,
dimX modA(d)) is the maximal dimension of the irreducible components of modA(d) (respec-
tively, modA(d)) containing X. It is known that dimX modA(d) = dimX modA(d). The module
X is said to be a nonsingular point of the scheme modA(d) (respectively, the variety modA(d)) if
dimX modA(d) = dimK TX(modA(d)) (respectively, dimX modA(d) = dimK TX(modA(d))). If
X is a nonsingular point of modA(d) then X is a nonsingular point of modA(d) and belongs to
exactly one irreducible component of modA(d) [30, (II.2.6)]. The following result is well known
(see [26, (2.2)] for a proof).

Proposition 3.2. Let X be a module in modA(d) with Ext2A(X,X) = 0. Then X is a nonsingular
point of modA(d).

For a module X in modA(d), denote by O(X) the G(d)-orbit of X in modA(d). Then X is a
nonsingular point of O(X), and hence we have dimO(X) = dimK TX(O(X)). We also note that
dimG(d) = dimG(d), dimO(X) = dimO(X) and dimK TX(O(X)) = dimK TXO(X). More-
over, we have also the following fact (see [16]).

Lemma 3.3. Let X be a module in modA(d). Then

dimK EndA(X) = dimG(d) − dimO(X).
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Proposition 3.4. Let X be an A-module, d = dimX, and assume that X is a nonsingular point
of modA(d). Then

dimG(d) − dimX modA(d) = dimK EndA(X) − dimK Ext1A(X,X).

Proof. We have dimX modA(d) = dimK TX(modA(d)), because X is nonsingular in modA(d).
Then applying Proposition 3.1 and Lemma 3.3, we obtain the equalities

dimG(d) − dimX modA(d)

= dimK EndA(X) + dimO(X) − dimX modA(d)

= dimK EndA(X) + dimO(X) − dimX modA(d)

= dimK EndA(X) + dimK TX

(
O(X)

) − dimK TX

(
modA(d)

)
= dimK EndA(X) − dimK Ext1A(X,X). �

We end this section with the following theorem proved by de la Peña [25, (1.2)].

Theorem 3.5. Let A = KQ/I be a tame triangular algebra. Then, for any d ∈ N
Q0 , we have

dimG(d) − dim modA(d) � 0.

4. Proof of Theorem C

Let A be an algebra, C be a generalized standard almost cyclic coherent component of ΓA and
M be a module in addC. Then it follows from Proposition 2.7 that C is a standard component
of ΓA, and consequently addC is isomorphic, as a K-category, to the additive category addK(C)

of the mesh category K(C) of C.
It follows from Proposition 2.8 that there exists a tame algebra B with a separating family

CB of almost cyclic coherent components in ΓB such that the translation quiver C is isomorphic
to a component Γ of CB . Since CB is a generalized standard family of almost cyclic coher-
ent components, applying again Proposition 2.8, we conclude that CB is a family of pairwise
orthogonal standard components, and hence Γ is a standard component of ΓB . In particular,
addΓ is isomorphic to addK(Γ ) as a K-category. Observe also that the K-categories addK(C)

and addK(Γ ) are isomorphic, because C ∼= Γ as translation quivers. It follows from Propo-
sition 2.10 that addC is closed under extensions in mod A and addΓ is closed under exten-
sions in mod B . Therefore, there exists a module N ∈ addΓ such that dimK Ext1A(M,M) =
dimK Ext1B(N,N) and dimK EndA(M) = dimK EndB(N). Moreover, it follows from Proposi-
tion 2.6 that Ext2B(N,N) = 0. In particular, if d = dimN , then N is a nonsingular module of the
scheme modB(d). Applying Proposition 3.4, we obtain

dimK EndB(N) − dimK Ext1B(N,N) = dimG(d) − dimN modB(d).

Further, B is a triangular tame algebra, and hence, applying Theorem 3.5, we obtain

dimG(d) − dimN modB(d) � dimG(d) − dim modB(d) � 0.
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Summing up, we have dimK Ext1B(N,N) � dimK EndB(N), and hence the required inequality
dimK Ext1A(M,M) � dimK EndA(M) holds.

5. Proof of Theorem A

Let A be an algebra with a separating family C = CA of almost cyclic coherent components
in ΓA, M be a module in addC, and d = dimM . Since, by [23, Corollary B], A is a triangular
algebra, the Tits form qA and the Euler form χA are well defined. It follows from Proposition 2.6
that ExtrA(M,M) = 0 for r � 2, and hence

χA(d) = χA(dimM) = dimK EndA(M) − dimK Ext1A(M,M).

Because C is a separating family of components of ΓA, it is a generalized standard fam-
ily of components of ΓA, and hence C consists of pairwise orthogonal generalized stan-
dard almost cyclic coherent components. Therefore, applying Theorem C, we conclude that
dimK EndA(M)−dimK Ext1A(M,M) � 0. Further, by Proposition 3.2, Ext2A(M,M) = 0 implies
that M is a nonsingular module of modA(d), and so M is also a nonsingular module of modA(d).
Moreover, by Proposition 3.4, we then obtain dimMmodA(d) = dimG(d) − χA(d). Finally, let
A = KQ/I , where Q = (Q0,Q1) is the quiver of A and I is an admissible ideal of KQ. The
module variety modA(d) is a closed subset of the affine space

∏
(i→j)∈Q1

Kdidj . Then, applying
Krull’s Generalized Principal Ideal theorem, we get the inequality

dimM modA(d) �
∑

(i→j)∈Q1

didj −
∑

i,j∈Q0

rij didj

where rij is the number of relations from i to j in a minimal admissible set of relations generating
the ideal I . Since dimG(d) = ∑

i∈Q0
d2
i , we then obtain qA(d) � dimG(d)− dimM modA(d) =

χA(d).

6. Proof of Theorem B

Let A be an algebra with a separating family CA of almost cyclic coherent components of ΓA,
and indA = PA ∨CA ∨QA. Then, by Theorem 2.5, there are the left quasitilted factor algebra Al
of A and the right quasitilted factor algebra Ar of A such that ΓAl admits a separating family TAl

of coray tubes, ΓAr admits a separating family TAr of ray tubes, and indAl = PAl ∨ TAl ∨ QAl ,
indAr = PAr ∨ TAr ∨QAr , and PA = PAl , QA = QAr . Moreover, A is tame if and only if Al and
Ar are tame. Recall also from [12] that an algebra Λ is quasitilted if and only if gl dimΛ � 2
and for any indecomposable Λ-module X we have pdΛ X � 1 or idΛ X � 1. Therefore, applying
Proposition 2.6, we conclude that ExtrA(M,M) = 0 for any indecomposable A-module M and
r � 2. Then, by Propositions 3.2 and 3.4, for any indecomposable A-module M we have

χA(dimM) = dimK EndA(M) − dimK Ext1A(M,M)

= dimG(dimM) − dimM modA(dimM).

Moreover, by Theorem A, we have χA(dimM) � 0 for any indecomposable module M in CA.
Finally, it follows from [33, Theorem A] that a quasitilted algebra Λ is tame if and only if
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dimK Ext1Λ(X,X) � dimK EndΛ(X) for any module X in indΛ. Therefore, the required equiva-
lences of (i)–(iv) hold.
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[1] I. Assem, D. Simson, A. Skowroński, Elements of the Representation Theory of Associative Algebras 1: Techniques
of Representation Theory, London Math. Soc. Stud. Texts, vol. 65, Cambridge Univ. Press, Cambridge, 2006.

[2] I. Assem, A. Skowroński, B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19 (1995) 453–479.
[3] M. Auslander, I. Reiten, S.O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. in Adv. Math.,

vol. 36, Cambridge Univ. Press, Cambridge, 1995.
[4] M. Barot, J. Schröer, Module varieties over canonical algebras, J. Algebra 246 (2001) 175–192.
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[27] J.A. de la Peña, A. Skowroński, The Tits and Euler forms of a tame algebra, Math. Ann. 315 (1999) 37–59.
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[31] A. Skowroński, Generalized standard Auslander–Reiten components, J. Math. Soc. Japan 46 (1994) 517–543.
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