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Introduction

Consider the group G = GLn(Fq) of invertible matrices over the finite field Fq . Denote by B its
subgroup of upper triangular matrices, and by T its subgroup of diagonal matrices. Set ε = 1

|B|
∑

b∈B
b

in C[G]. The quotient group NG(T)/T is isomorphic to the symmetric group Sn . Moreover, the Iwa-
hori–Hecke C-algebra H(G,B) = εC[G]ε is isomorphic to ⊕w∈Sn Cw as a C-vector space, and the
structure constants in the multiplicative table lie in Z[q]. More generally, if G is a finite reductive
group over Fq , B is a Borel subgroup of G , and T is a maximal torus included in B , then NG(T )/T
is a Weyl group and the above results extend to the Hecke algebra H(G, B). Now, consider a finite
reductive monoid M over Fq as defined by Renner in [24]. Such a monoid is a unit regular monoid and
its unit group is a finite reductive group G . In [26], Solomon introduced the notion of a Iwahori–Hecke
algebra H(M, B) of a finite reductive monoid M , where B is a Borel subgroup of G . This C-algebra
is defined by H(M, B) = εC[M]ε where ε = 1

|B|
∑

b∈B b in C[M] as before. In this framework, the
Weyl group is replaced by an inverse monoid R , which is called the Renner monoid of M . Hecke al-
gebras of reductive monoids are related to Kazhdan–Lusztig theory and intersection cohomology. This
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aspect of the theory has been introduced in [30] and has been further embraced in [1]. Its turns
out that H(M, B) is isomorphic to ⊕r∈RCr as a C-vector space. An explicit isomorphism is given by
r �→ T̃r = ∑

x∈BrB x. It is therefore natural to address the question of the existence of a normalisa-
tion Tr = ar T̃r of the basis (T̃r)r∈R such that in this new basis (Tr)r∈R , the structure constants in the
multiplicative table lie in Z[q] as in the case of finite reductive groups. Solomon considered this ques-
tion in [26] and gave a positive answer in the specific case where M = Mn(Fq). In [27], he announced
that in a forthcoming paper, he would extend his result and its proof to every finite reductive monoid
that arises as the set of fixed points of a reductive monoid over F q (see Section 2.1 for a definition)
by the Frobenius map σ defined by σ(xi, j) = xq

i, j . Actually, he almost proved his claim in [27], except
that he need that his length function is sub-additive. In [22] Putcha proves that for every finite reduc-
tive monoid, one can normalise the basis (T̃r)r∈R so that the structure constants become rational in q.
Finally, in [17], Pennell Putcha and Renner proved that Solomon’s length function is sub-additive, and
therefore provided the final argument to Solomon’s proof. In this article we obtain a positive answer
to Solomon’s question for every finite reductive monoid. We prove:

Theorem 0.1. Let M be a finite reductive monoid over Fq. Denote by R the associated Renner monoid. There
exists a normalisation of the basis (T̃r)r∈R of the Iwahori–Hecke algebra H(M, B) such that the structure
constants in the multiplicative table lie in Z[q]. Moreover, the coefficients of the polynomials only depend
on R.

In Section 2, we provide explicit formulae (see Theorem 1.27), which are related to the existence
of a length function on R . Moreover, we deduce a finite presentation of H(M, B) in the spirit of the
classical presentation of H(G, B) (see Corollary 2.22 in Section 2.3).

We suspect that Solomon’s argument can been extended to every finite reductive monoid. However
we choose another approach for the following reason. Mokler, Renner and Putcha consider families of
monoids that are close to reductive monoids. One of these families is the one of the so-called monoids
of Lie type [20,19,21,23] introduced by Putcha in [19] (by the name of regular split monoids), and classi-
fied in [20]. Another family is the one of face monoids [13–15] introduced and investigated by Mokler.
Indeed, finite reductive monoids are special cases of monoids of Lie type. To each of these monoids
one may associate a so-called Renner monoid, whose properties are close to Renner monoids of (finite)
reductive monoids (see Examples 1.8 and 1.9 below). This explains why these monoids are also called
Renner monoids in [13–15,19,21,23]. However, there is some differences between these monoids (see
Remark 1.10 for a discussion). One of the objective of the article is to introduce a convenient notion
of a generalised Renner monoid that plays for Renner monoids the role of the notion of a Coxeter sys-
tem for Weyl group. We show that all various Renner monoids are examples of generalised Renner
monoids and that all the properties shared by Renner monoids hold for generalised Renner monoids.
We also remarks that our definition is definitely more general that the notion of a Renner monoid of
Lie type. Indeed, the unit group can be an infinite Coxeter group (this is the case for face monoids)
and a generalised Renner monoid may not contain a zero element.

It is well known that one can associate a generic Hecke algebra to each Coxeter group, so that in
the case of a Weyl group the Iwahori–Hecke algebra arises as a specialisation of the generic Hecke
algebra. This is one of the ways to prove that the structure constants in the multiplicative table of the
Iwahori–Hecke algebra lie in Z[q]. Therefore is it natural to address the question of the existence of a
similar generic Hecke algebra associated with each generalise Renner monoid, and in particular with
the ones considered in the literature, that is monoids of Lie type and face monoids. We prove that

Theorem 0.2. With each generalised Renner monoid R can be associated a generic Hecke algebra H(R)

which is a ring on the free Z[q]-module with basis R. Moreover, if M is a finite reductive monoid over Fq with
Renner monoid R, then the Iwahori–Hecke algebra H(M, B) is isomorphic to the C-algebra C ⊗Z Hq(R),
where Hq(R) is the specialisation of the generic Hecke algebra H(R) at q.

Thus, Theorem 0.1 turns out to be a corollary of Theorem 0.2. One ingredient used in the proof in
the second part of Theorem 0.2 is the existence of a length function � on every generalised Renner
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monoid R . This length function is related to the canonical generating set S ∪ Λ, which equips every
generalised Renner monoid. In the case of reductive monoids, we investigate the relation of this length
function with the product of double classes. We prove in particular that

Proposition 0.3. Let M be a reductive monoid with unit group G and Renner monoid R. Fix a maximal torus T
and a Borel subgroup B that contains T in G.

(i) Let r lie in R and s lie in S. Then

BsBrB =
{ BrB, if �(sr) = �(r);

BsrB, if �(sr) = �(r) + 1;
BsrB ∪ BrB, if �(sr) = �(r) − 1.

(ii) Let r lie in R and e lie in Λ. Then

BeBrB = BerB and BrBeB = BreB.

The first part of this result extends results obtained in [6,7], and leads to a similar result for finite
reductive monoids. The second part seems to be new, even in the case of reductive monoids.

The paper is organised as follows. In Section 1, we introduce the notion of a generalised Renner
monoid, provide examples and investigate their properties. In particular, we define the length func-
tion � and prove the first part of Theorem 0.2. In Section 2, we first recall the notion of a reductive
monoid and prove Proposition 0.3. We then introduce the notion of a Iwahori–Hecke algebra in the
context of monoid theory. We prove some motivating general results for such algebras. These results
are probably well known by semigroup experts, but we have not be able to find references for them.
Finally, we turn to finite reductive monoids and conclude with the proof of Theorem 0.1 and the
second part of Theorem 0.2.

1. Generic Hecke algebra

The notion of a Coxeter group was introduced in order to study Weyl groups. Our aim in this
section is to develop a similar theory for Renner monoids. We first need to recall some standard
notions and introduce some useful notation.

1.1. Basic notions and notation

We refer to [8] for a general introduction on semigroup theory, and to [4] for a survey on factoris-
able inverse monoids. We refer to [2] for the general theory on Coxeter systems and proofs.

1.1.1. Background on semigroup theory
If M is a monoid, we let E(M) and G(M) its idempotent set and its unit group, respectively. We

interpret a (lower) semi-lattice as a commutative idempotent semigroup where a � b iff ab = ba = a. In
particular, a ∧ b = ab. A semigroup is unit regular if M = E(M)G(M) = G(M)E(M), and it is factorisable
if it is unit regular and E(M) is a semi-lattice. In this latter case M is invertible, that is for every x in
M there exists a unique y in M such that xyx = x (and therefore yxy = y).

1.1.2. Background on Coxeter group theory

Definition 1.1. Let Γ be a finite simple labelled graph whose labels are positive integers greater than
or equal to 3. We let denote S the vertex set of Γ . We let E (Γ ) denote the set of pairs ({s, t},m)

such that either {s, t} is an edge of Γ labelled by m, or {s, t} is not an edge of Γ and m = 2. When
({s, t},m) belongs to E (Γ ), we let |s, t〉m denote the word sts . . . of length m. The Coxeter group W (Γ )

associated with Γ is defined by the following group presentation
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〈
S

∣∣∣∣ s2 = 1 s ∈ S
|s, t〉m = |t, s〉m ({s, t},m) ∈ E (Γ )

〉
.

In this case, one says that the pair (W (Γ ), S) is a Coxeter system, and that W is a Coxeter group. The
Coxeter graph is uniquely defined by the Coxeter system.

Definition 1.2. Let (W , S) be a Coxeter system.

(i) Let w belong to W . The length �(w) of w is the minimal integer k such that w has a word
representative of length k on the alphabet S . Such a word is called a minimal word representative
of w .

(ii) The subgroup W I generated by a subset I of S is called a standard parabolic subgroup of W .

A key tool in what follows is the following classical result.

Proposition 1.3. (See [2].) Let (W , S) be a Coxeter system with Coxeter graph Γ .

(i) For every I ⊆ S, the pair (W I , I) is a Coxeter system. Its graph ΓI is the full subgraph of Γ spanned by I .
(ii) For every I, J ⊆ S and every element w ∈ W there exists a unique element ŵ of minimal length in the

double-class W J wW I . Furthermore there exists w1 in W I and w2 in W J such that w = w2 ŵ w1 with
�(w) = �(w1) + �(ŵ) + �(w2).

Note that (ii) holds, in particular, when I or J are empty. The element ŵ is said to be (I, J )-
reduced. In the sequel, we let Red(I, J ) denote the set of (I, J )-reduced elements. Note also that the
pair (w1, w2) is not unique in general, but it becomes unique if we require that w2 ŵ is (∅, J )-
reduced (or that ŵ w1 is (I,∅)-reduced).

1.2. Generalised Renner monoids

1.2.1. Generalised Renner–Coxeter system
If R is a factorisable monoid and e belongs to E(R) we let W (e) and W�(e) denote the subgroups

defined by

W (e) = {
w ∈ G(R)

∣∣ we = ew
}
,

W�(e) = {
w ∈ G(R)

∣∣ we = ew = e
}
.

The unit group G(R) acts on E(R) by conjugacy.

Definition 1.4. (i) A generalised Renner–Coxeter system is a triple (R,Λ, S) such that

(ECS1) R is a factorisable monoid;
(ECS2) Λ is both a transversal of E(R) for the action of G(R) and a sub-semi-lattice;
(ECS3) (G(R), S) is a Coxeter system;
(ECS4) for every pair e1 � e2 in E(R) there exists w in G(R) and f1 � f2 in Λ such that w fi w−1 = ei

for i = 1,2;
(ECS5) for every e in Λ, the subgroups W (e) and W�(e) are standard Coxeter subgroups of G(R);
(ECS6) the map e ∈ Λ �→ λ�(e) = {s ∈ S | se = es �= e} is not decreasing: e � f ⇒ λ�(e) ⊆ λ�( f ).

In this case, we say that R is a generalised Renner monoid. Following the standard terminology for
Renner monoids (introduced by Putcha in [18] for reductive monoids and before Renner monoids),
we call the section Λ the cross section lattice of R , and we define the type map of R to be the map
λ : Λ → S defined by W (e) = Wλ(e) .
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Notation 1.5. for e in Λ, we set

λ�(e) = {s ∈ S | se = es = e},
W �(e) = Wλ�(e).

Remark 1.6. Assume (R,Λ, S) is a generalised Renner–Coxeter system.

(i) Since W�(e) is a standard Coxeter subgroup of W (e), we have

W�(e) = Wλ�(e).

Moreover, this is clear that W�(e) is a normal subgroup of W (e). As a consequence,

W (e) = W�(e) × W �(e) and λ(e) = λ�(e) ∪ λ�(e).

(ii) Below, several results can be proved without assuming property (ECS6). However this is a crucial
tool in the proof of Theorem 1.27 and Proposition 1.17.

(iii) If E(R) is finite and a lower semi-lattice, then it has to be a lattice. This is so for Renner monoids
associated with reductive monoids.

(iv) the map λ� is not increasing:

e � f ⇒ λ�( f ) ⊆ λ�(e).

(v) We can have λ�(e) = λ�( f ) and λ�(e) = λ�( f ) for e �= f (see [7, Sec. 2.3]).

Now we provide some examples of generalised Renner monoids.

Example 1.7. Let M be a reductive monoid (see Section 2.1 for a definition, and Example 2.6). The
associated Renner monoid R(M) of M is a generalised Renner monoid by [25].

Example 1.8. Let M be an abstract monoid of Lie type (see [19,20,23] or [25] for a definition). Note that
these groups are called regular split monoids in [19], and monoids of Lie type in [23]. The associated Ren-
ner monoid R(M) of M is a generalised Renner monoid. Property (ECS6) follows from [19, Cor. 3.5(i)].
The other defining properties hold by [21, Sec. 2]. The seminal examples of an abstract monoid of Lie
type is a Renner monoid of a finite reductive monoid [24]. In Section 3 we focus on these monoids.

Example 1.9. Let G be a Kac–Moody group over a field F of characteristic zero whose derived group is
the special Kac–Moody group introduced in [11,12]. Denote by (W , S) the associated Coxeter system.
The Coxeter group W is infinite. Let Fa(X) be the set of faces of its associated Tits cone X (see [13]
for details). The action of W on X induces an action on the lattice Fa(X). The Renner monoid R is
the monoid W � Fa(X)/ ∼ where ∼ is the congruence on W � Fa(X) defined by (w, R) ∼ (w ′, R ′)
if R = R ′ and w ′−1 w fixes R pointwise [13]. Then R is a generalised Renner monoid. Properties
(ECS1), (ECS2), (ECS3) and (ECS5) are proved in [13] (see also [15]). The cross section lattice Λ can
be identified with the set of infinite standard parabolic subgroups of W that have no finite proper
normal standard parabolic subgroups. The semi-lattice structure is given by W I � W J if J ⊆ I . If Θ

belongs to Λ, then λ�(Θ) = Θ and λ�(Θ) = {s ∈ S | ∀t ∈ Θ, st = ts}. The latter equality clearly implies
(ECS6). Finally, property (ECS4) can be deduced from [15, Theorem 2 and 4].

Remark 1.10. In Examples 1.7, 1.8 and 1.9 we provide examples of generalised Renner monoids that
are all called Renner monoid in the literature. From our point of view, this is not a suitable terminology
since there is crucial differences between these monoids. Therefore, using the same terminology may
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be misleading. For instance, for Renner monoids of reductive monoids one has λ�(e) = ⋂
f �e λ( f )

and λ�(e) = ⋂
f �e λ( f ). This is not true in general for Renner monoids associated with abstract

monoids of Lie type (see [23] for a details). In Renner monoids of reductive monoids and of ab-
stract monoids of Lie type, all maximal chains of idempotents have the same size. This is not true for
Renner monoids of example 1.9, as explained in [13].

1.2.2. Presentation for generalised Renner monoids
For all this section, we fix a generalised Renner–Coxeter system (R,Λ, S). We let W denote the

unit group of R . Our objective is to prove that important properties shared by Renner monoids of
Examples 1.7, 1.8, 1.9 can be deduced from their generalised Renner–Coxeter system structure. In par-
ticular, we extend to this context the results obtained in [7]. By Proposition 1.3, for every w in W and
every e, f in Λ, each of the sets wW (e), W (e)w , wW�(e), W�(e)w and W (e)wW ( f ) has a unique
element of minimal length. In order to simplify notation, we set Red(·, e) = Red(∅;λ(e)), Red(e, ·) =
Red(λ(e),∅); Red�(·, e) = Red(∅, λ�(e)); Red�(e, ·) = Red(λ�(e),∅); Red(e, f ) = Red(λ(e), λ( f )).

Proposition 1.11. For every r in R,

(i) there exists a unique triple (w1, e, w2) with e ∈ Λ, w1 ∈ Red�(·, e) and w2 ∈ Red(e, ·) such that r =
w1ew2;

(ii) there exists a unique triple (v1, e, v2) with e ∈ Λ, w1 ∈ Red(·, e) and w2 ∈ Red�(e, ·) such that r =
v1ev2 .

Following [25], we call the triple (w1, e, w2) the normal decomposition of r.

Proof. Let us prove (i). The proof of (ii) is similar. Let r belong to the monoid R . By prop-
erty (ECS1), there exists e in E(R) and w in W such that r = ew . By property (ECS2) there
exists e1 in Λ and v in W such that e = ve1 v−1. Then r = vew1 with w1 = v−1 w . By Re-
mark 1.6(i), we can write v = v1 v ′

1 and w1 = w ′
2 w ′′

2 w2 with v1, w2, v ′
1, w ′

2 and w ′′
2 in Red�(·, e),

Red(e, ·), W�(e), W �(e) and W�(e), respectively. Then we have r = v1 w ′
2ew2, and v1 w ′

2 belongs
to Red�(·, e), still by Remark 1.6(i). Now assume r = w1ew2 = v1 f v2 with e, f in Λ, w1, v1
in Red�(·, e) and Red�(·, f ), respectively, and w2, v2 in Red(e, ·) and in Red( f , ·), respectively. Then
(w1 w2)w−1

2 ew2 = (v1 v2)v−1
2 f v2. This implies w−1

2 ew2 = v−1
2 f v2 by [4]. As a consequence, e = f

and v2 w−1
2 lies in W (e). Since v2 and w2 both belong to Red(e, ·), we must have v2 = w2. Now, it

follows that w1e = v1e and w−1
1 v1 lies in W�(e). This implies w1 = v1 in Red�(·, e). �

Lemma 1.12. Let e, f belong to Λ and w lie in Red(e, f ).

(i) There exists h in Λ such that w belongs to W (h) and ew f = wh.
(ii) The element w lies in W�(h). Therefore, wh = h.

Note that in the above lemma we have h � e ∧ f = ef . In the sequel the element h is denoted
by e ∧w f .

Proof. The proof is similar to [7, Prop. 1.21]. (i) Consider the normal decomposition (w1,h, w2) of
ew f . By definition w1 belongs to Red�(·,h) and w2 belongs to Red(h, ·). The element w−1ew f is
equal to w−1 w1hw2 and belongs to E(R). Since w2 lies in Red(h, ·), this implies that w3 = w2 w−1 w1
lies in W�(h), and that f � w−1

2 hw2. By property (ECS4), there exists w4 in W and f1,h1 in Λ, with
f1 � h1, such that w−1

4 f1 w4 = f and w−1
4 h1 w4 = w−1

2 hw2. Since Λ is a cross section for the action
of W , we have f1 = f and h1 = h. In particular, w4 belongs to W ( f ). Since w2 belongs to Red(h, ·),
we deduce that there exists r in W (h) such that w4 = rw2 with �(w4) = �(w2) + �(r). Then w2 lies
in W ( f ), too. Now, write w1 = w ′

1 w ′′
1 where w ′′

1 lies in W �(h) and w ′
1 belongs to Red(·,h). One has

ew f = w ′
1hw ′′

1 w2, and w ′′
1 w2 lies in Red�(h, ·). By symmetry, we get that w ′

1 belongs to W (e). The



230 E. Godelle / Journal of Algebra 343 (2011) 224–247
element w ′−1
1 w w−1

2 is equal to w ′′
1 w−1

3 and belongs to W (h). But, by hypothesis w lies in Red(e, f ).

Then we must have �(w ′′
1 w−1

3 ) = �(w ′−1
1 )+ �(w)+ �(w−1

2 ). Since w ′′
1 w−1

3 belongs to W (h), it follows

that w ′
1 and w2 belong to W (h) too. This implies w2 = w ′

1 = 1 and w = w ′′
1 w−1

3 . Therefore, ew f =
hw ′′

1 = hw = wh.
(ii) This is a direct consequence of the following fact: for h, e in Λ such that h � e, we have

W (h) ∩ Red(e, ·) ⊆ W�(h) and W (h) ∩ Red(·, e) ⊆ W�(h). Assume w lies in W (h) ∩ Red(·, e), then we
can write w = w1 w2 = w2 w1 where w1 lies in W�(h) and w2 lies in W �(h). Since h � e, we have
λ�(h) ⊆ λ�(e) and W �(h) ⊆ W �(e). Since w belongs to Red(·, e), this implies w2 = 1. The proof of the
second inclusion is similar. �
Corollary 1.13.

(i) For every chain e1 � e2 � · · · � em in E(R) there exists w in G(R) and a chain f1 � f2 � · · · � fm in Λ

such that w fi w−1 = ei for every index i.
(ii) If Λ has an infimum e, then λ(e) = S.

(iii) For all e, f in Λ and w in Red(e, f ), one has

ew f = max
{

h ∈ Λ
∣∣ h � e, h � f , w ∈ W (h)

} = f w−1e.

In the case of Renner monoids of reductive monoids, the lattice Λ has an infimum e and λ(e) =
λ�(e) = S . In other words, e is a zero element of R .

Proof. (i) Assume w1e1 w−1
1 � · · · � wmem w−1

m . We prove the result by induction on m. For
m = 2 this is true by property (ECS4). Assume m � 3. By induction hypothesis, we can assume
w2 = · · · = wm . We can also assume that w1 belongs to Red(·, e1). By hypothesis, we have
w1e1 w−1

1 w2e2 w−1
2 = w1e1 w−1

1 . We can write w−1
1 w2 = v1 v3 v−1

2 with v1 in W (e1), v2 in W (e2)

and v3 in Red(e1, e2). Then w1e1 w−1
1 w2e2 w−1

2 = w1 v1e1 v3e2 v−1
2 w−1

2 . If v3 �= 1, then we get a
contradiction by Lemma 1.12(i) and Proposition 1.11. Then v2 = 1 and e1e2 = e1. It follows that
w1 v1 = w2 v2. Write v1 = v1�v�

1 and v2 = v2�v�
2 with vi� in W�(ei) and v�

i in W �(ei). We have

w1 v1�v−1
2� = w2 v�

2 v�
1
−1. Since λ�(e2) ⊆ λ�(e1) and λ�(e1) ⊆ λ�(e2), we get that v1�v−1

2� and v�
2 v�

1
−1

lie in W (e1) and W (e2), respectively. Then w1e1 w−1
1 = we1 w−1 and w2e2 w−1

2 = we2 w−1 with
w = w1 v1�v−1

2� . But W (e2) ⊆ W (e j) for j ∈ {2, . . . ,m}. Therefore, w2e j w−1
2 = we j w−1 for ev-

ery j � 2.
(ii) If s ∈ S does not belong to λ(e), then ese < e in Λ.
(iii) This is clear that e ∧w f lies in {h ∈ Λ | h � e, h � f , w ∈ W (h)}. Now, if h ∈ Λ verifies h � e,

h � f , and w ∈ W (h), then h(e ∧w f ) = hw−1(ew f ) = w−1hw f = hf = h. Therefore, h � ew f . The
last equality follows form the fact that w−1 belongs to Red( f , e). �
Proposition 1.14. For every w in W , we fix an arbitrary reduced word representative w. We set Λ◦ = Λ \ {1}.
The monoid R admits the monoid presentation whose generating set is S ∪ Λ◦ and whose defining relations
are:

(COX1) s2 = 1, s ∈ S;
(COX2) |s, t〉m = |t, s〉m,

({s, t},m
) ∈ E (Γ );

(REN1) se = es, e ∈ Λ◦, s ∈ λ�(e);
(REN2) se = es = e, e ∈ Λ◦, s ∈ λ�(e);
(REN3) ew f = e ∧w f , e, f ∈ Λ◦, w ∈ Red(e, f ).
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Proof. This is clear that the relations stated in the proposition hold in R . Conversely, every element r
in R has a unique representing word wev such that (w, e, v) is its normal decomposition, and this is
immediate that every representing word of r on S ∪ Λ◦ can be transformed into wev using the given
relations only. �
Remark 1.15. (i) The above presentation is not minimal in general. Some of the relations of
type (REN3) can be removed (see the proof of [7, Theorem 0.1] and Remark 1.32 below).

(ii) The reader may verify that the result of Proposition 1.14 and its proof still hold if we do not
assume property (ECS6), except that relation (REN3) must be replace by

(REN3’) ew f = w(e ∧w f ), e, f ∈ Λ◦, w ∈ Red(e, f ).

Indeed, Lemma 1.12(i) still hold.

One may wonder whether every monoid defined by a monoid presentation like in Proposition 1.14.
The answer is positive under some necessary assumptions:

Definition 1.16. A generalised Renner–Coxeter data is 4-uple (Γ,Λ◦, λ�, λ
�) such that Γ is a Coxeter

graph with vertex set S , Λ◦ is a lower semi-lattice and λ� , λ� are two maps from Λ◦ to S that
verifies

(a) for every e in Λ◦ , the graphs spanned by λ�(e) and λ�(e) in Γ are not connected, and

e � f ⇒ λ�( f ) ⊆ λ�(e) and λ�(e) ⊆ λ�( f );
(b) for every f , g in Λ◦ and every w ∈ Red( f , g) the set

{e ∈ Λ◦ | e � f , e � g and w ∈ Wλ(e)}
has a greatest element, denoted by f ∧w g , with λ(e) = λ�(e) ∪ λ�(e) for e ∈ Λ◦ and Red(e, f ) =
Red(λ(e), λ( f )) in the Coxeter group W (Γ ) associated with Γ .

Note that properties (a) and (b) hold in every generalised Renner–Coxeter system. Actually, if Λ◦
is any lower semi-lattice such that all maximal chains are finite, then assumption (b) is necessarily
verified.

Theorem 1.17. Assume M is a monoid. There exists a generalised Renner–Coxeter system (M,Λ, S) if and only
if there exists a generalised Renner–Coxeter data (Γ,Λ◦, λ�, λ

�), where S is the vertex set of Γ , such that M
admits the following monoid presentation

(COX1) s2 = 1, s ∈ S;
(COX2) |s, t〉m = |t, s〉m,

({s, t},m
) ∈ E (Γ );

(REN1) se = es, e ∈ Λ◦, s ∈ λ�(e);
(REN2) se = es = e, e ∈ Λ◦, s ∈ λ�(e);
(REN3) ew f = e ∧w f , e, f ∈ Λ◦, w ∈ Red(e, f ).

Where w is an arbitrary fixed minimal representing word of w ∈ W (Γ ).
In this case, W (Γ ) is canonically isomorphic to the unit group of M, and Λ◦ embeds in M with Λ =

Λ◦ ∪ {1}.
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Note that given a generalised Renner–Coxeter data (Γ,Λ◦, λ�, λ
�), relations (COX1) and (COX2)

implies that the monoid M defined by the presentation stated in Theorem 1.17 does not depend on
the chosen representing words w . Theorem 1.17 follows from the following lemmas.

Lemma 1.18. Consider a generalised Renner–Coxeter data (Γ,Λ◦, λ�, λ
�) and the monoid M defined by the

presentation stated in Theorem 1.17. Then for every f , g in Λ◦ and every w ∈ Red( f , g),

(b1) e ∧1 f = e ∧ f and e ∧w f � e ∧ f ;
(b2) e ∧w f = f ∧w−1 e;
(b3) w ∈ Wλ�(e∧w f ) .

Proof. Properties (b1) and (b2) are immediate consequences of assumption (b). Properties (b3) fol-
lows from assumption (a). The main argument is like in the proof of Lemma 1.12(ii). If w does not
belong to Wλ�(e∧w f ) , then we can write w = w�w� with w� ∈ Wλ�(e∧w f ) and w� ∈ Wλ�(e∧w f ) . But
Wλ�(e∧w f ) ⊆ Wλ�( f ) and w lies in Red(e, f ). Therefore, w� = 1. �
Lemma 1.19. Consider a generalised Renner–Coxeter data (Γ,Λ◦, λ�, λ

�) and the monoid M defined by the
presentation stated in Theorem 1.17. Let FM(S ∪ Λ◦) be the free monoid on S ∪ Λ◦ , and ≡ be the congruence
on FM(S ∪ Λ◦) generated by the defining relations of M. Hence by definition, M is equal to FM(S ∪ Λ◦)/ ≡.

(i) If ω1 and ω2 are two words on S such that ω1 ≡ ω2 , then they represent the same element in W (Γ ).
(ii) If e lie in Λ◦ and ω lie in FM(S ∪Λ◦) with e ≡ ω, then the word ω is equal to ν1e1ν2 · · · ekνk+1 where for

every i we have e � ei in Λ◦ and νi are words on S whose images in W (Γ ) belong to Wλ(e) . Furthermore,
the image of the word ν1ν2 · · ·νk+1 in Wλ�(e) = Wλ(e)/Wλ�(e) is trivial.

Proof. In this proof we write ω1 =̇ ω2 if the two words ω1, ω2 are equals. If the words ω1 ω2 repre-
sent the elements w1, w2 in M , respectively, then ω1 =̇ω2 implies ω1 ≡ ω2 and w1 = w2. Conversely,
w1 = w2 if and only if ω1 ≡ ω2. Point (i) is clear: if ω1 ≡ ω2 then one can transform ω1 into ω2 using
relations (COX1) and (COX2) only, since the words in both sides of relations (REN1)–(REN3) contain
letters in Λ◦ . Let us prove (ii). Write ω1 ≡1 ω2 if one can transform ω1 into ω2 by applying one defin-
ing relation of M on ω1. If e ≡ ω, then there exists ω0 =̇ e,ω1, . . . ,ωr =̇ ω such that ωi ≡1 ωi+1. We
prove the result by induction on r. If r = 0 we have nothing to prove. Assume r � 1. By induction hy-
pothesis, ωr−1 =̇μ1 f1μ2 · · ·μ j f jμ j+1 with e � f i in Λ◦ and μi is a word on S whose image in W (Γ )

belongs to Wλ(e) , and the image of the word μ1μ2 · · ·μ j+1 in Wλ�(e) = Wλ(e)/Wλ�(e) is trivial. We de-
duce the result for ω=̇ωr by considering case by case the type of the defining relation applied to ωr−1
to obtain ωr . The cases where the relation is of one of the types (COX1), (COX2) or (REN1) are trivial.
The case where the relation is of type (REN2) follows from property (a) in Definition 1.16: by induction
hypothesis, one has λ�( f i) ⊆ λ�(e) ⊆ λ(e). Finally, the case where the relation is of type (REN3) follows
from properties (a) and (b) by Lemma 1.18. If the image ui of μi in W (Γ ) belongs to Red( f i−1, f i)

with μi = ui and ω =̇μ1 f1 · · ·μi−1( f i ∧ui f i+1)μi+1 f i+2 · · · f jμ j+1 then e � f i−1 ∧ui f i . Conversely, if
ω = μ1 f1μ2 · · · f i−1μieiuiei+1μi+1 · · ·μ j f jμ j+1 where f i = ei ∧ui ei+1 for ei, ei+1 in Λ◦ and some ui
in Red(ei, ei+1), then e � f i � ei and e � f i � ei+1. Moreover, ui belongs to Wλ�( f i) , which is included
in Wλ�(e) . In all these cases the words ν1ν2 · · ·νk+1 and μ1μ2 · · ·μ j+1 represent the same element in
Wλ(e)/Wλ�(e) , which is trivial by induction hypothesis. �
Proof of Theorem 1.17. Consider a generalised Renner–Coxeter system (M,Λ, S). Denote by Γ the
Coxeter graph with vertex set S of the unit group of M , and set Λ◦ = Λ \ {1}. It follows from
previous results that (Γ,Λ◦, λ�, λ

�) is a generalised Renner–Coxeter data, and by Proposition 1.14
that M has the required monoid presentation. Conversely, consider a generalised Renner–Coxeter
data (Γ,Λ◦, λ�, λ

�) and let M denote the monoid defined by the presentation stated in Theorem 1.17.
By Lemma 1.19(i), the subgroup of M generated by S can be identified with W (Γ ). Lemma 1.19(ii)
implies that Λ◦ injects in M , as a set. Let e, f be in Λ◦ . In M one has ef = f e = e ∧1 f = e ∧ f .
Assume furthermore that w lies in W (Γ ). Lemma 1.19(ii) implies also that (wew−1) f = wew−1 if
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and only if e � f in Λ◦ and w lie in Wλ(e) . Let wew−1 and v f v−1 be in E(M) with e, f in Λ◦ . Write
w−1 v = v1 v2 v3 with v2 in Red(e, f ), v1 in Wλ(e) and v3 in Wλ( f ) . Then ev2 f = e ∧v2 f and v2 lies
in Wλ�(e∧v2 f ) . We get,

wew−1 v f v−1 = w v1e ∧v2 f v3 v−1 = w v1 f ∧−1
v2

ev3 v−1 = w v1 v2 f v−1
2 ev2 v3 v−1

= w v1 v2 v3 f v−1
3 v−1

2 v−1
1 ev1 v2 v3 v−1 = v f v−1 wew−1.

It is easy to see that every representing word ω on S ∪ Λ◦ of en element w of M can be trans-
formed into a word ω1eω2 ≡ ω1eω−1

1 ω1ω2 where e belongs to Λ = Λ◦ ∪ {1} and ω1,ω2 represent
words in W (Γ ). Moreover, if ω contains some letter in Λ◦ , then e has to be in Λ◦ . Therefore, M
is unit regular and G(M) = W (Γ ). In particular property (ECS3) holds. Assume w = w1ew2 lies
in E(M) with w1, w2 in W (Γ ) and e in Λ. If e = 1 then w1 w2 has to be equal to 1 in W (Γ ).
Assume e �= 1. Then w1ew2 w1ew2 = w1ew2, and ew2 w1e = e. By Lemma 1.19(ii), w2 w1 belongs
to Wλ�(e) and w = w1ew−1

1 . Thus E(M) = {wew−1 | e ∈ Λ, w ∈ W (Γ )} is a semi-lattice and prop-
erty (ECS1) holds. Let w1, w2, v1, v2 be in W (Γ ) and e, f be in Λ such that w1ew2 = v1 f v2 in
M . Then e = w−1

1 v1 f v2 w−1
2 and e � f . By symmetry, e = f and the elements w−1

1 v1 and v2 w−1
2

belong to Wλ(e) . This implies that Λ is a transversal of E(M) for the action of W (Γ ) and a sub-
semi-lattice of E(M). Therefore, we get property (ECS2). Furthermore, if w2 = v1 = 1 and v2 = w1,
then w1 lies in Wλ(e) . If w2 = v1 = v2 = 1, then w1 lies in Wλ�(e) by Lemma 1.19(ii). Property (ECS5)
follows. If wew−1 � v f v−1, then wew−1 v f v−1 = wew−1 and ew−1 v f v−1 w = e Then w−1 v lies
in Wλ�(e) × Wλ�(e) , which is included in Wλ�(e) × Wλ�( f ) . As a consequence, property (ECS4) holds.
Finally, property (ECS6) holds by hypothesis. �
1.2.3. Length function for generalised Renner–Coxeter systems

As explained in the introduction, to answer Solomon’s question, we need to define a length
function on finite reductive monoids. Here we introduce this length function in the general con-
text of generalised Renner–Coxeter systems. This extends results obtained in [6] and [7]. As before,
(R,Λ, S) is a generalised Renner–Coxeter system. The unit group of R is denoted by W , and we
set Λ◦ = Λ \ {1}.

Definition 1.20. (i) We set �(s) = 1 for s in S and �(e) = 0 for e in Λ. Let x1, . . . , xk be in S ∪ Λ◦ and
consider the word ω = x1 · · · xk . Then the length of the word ω is the integer �(ω) defined by �(ω) =∑k

i=1 �(xi).
(ii) The length of an element w which belongs to R is the integer �(w) defined by

�(w) = min
{
�(ω)

∣∣ ω is a word representative of w over S ∪ Λ◦
}
.

If ω is a word representative of ω such that �(w) = �(ω), we say that ω is a minimal word represen-
tative of w .

Proposition 1.21. Let r belong to R.

(i) The length function � on R extends the length function � defined on W .
(ii) �(r) = 0 iff r lies in Λ.

(iii) If s lies in S then |�(sr) − �(r)| � 1.
(iv) If r′ belongs to R, then �(rr′) � �(r) + �(r′).

Proof. This is direct consequences of the definition of the length function. �
Proposition 1.22. Let r belong to R. If (w1, e, w2) is the normal decomposition of r, then

�(r) = �(w1) + �(w2).
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Proof. Using the relations of the monoid presentation of R stated in Proposition 1.14, every repre-
sentative word of r can be transformed into w1ew2 without increasing the length. Therefore �(r) =
�(w1) + �(e) + �(w2) = �(w1) + �(w2). �

From the proof of the above proposition, we also deduce that

Corollary 1.23. Let r belong to R and ω1,ω2 be two minimal word representatives of r. Using the relations of
the monoid presentation of R stated in Proposition 1.14, one can transform ω1 into ω2 without increasing the
length.

1.2.4. Matsumoto’s Lemma for generalised Renner–Coxeter systems
In this section we state and prove some technical results that play the role of Matsumoto’s Lemma

in the context of generalised Renner–Coxeter systems. We need these results when proving Theo-
rem 1.27. As before, (R,Λ, S) is a generalised Renner–Coxeter system. Let us first recall Matsumoto’s
Lemma.

Lemma 1.24. (See [9, Sec. 7.2].) Consider a Coxeter system (W , S). Let w belong to W and s, t belong to S. If
�(swt) = �(w) and �(sw) = �(wt), then sw = wt.

Lemma 1.25. Let r belong to R and s, t belong to S. Let (w1, e, w2) be the normal decomposition of r. Then

(i) �(sr) = �(r) ± 1 if and only if the normal decomposition of sr is (sw1, e, w2). In this case, �(sr) − �(r) =
�(sw1) − �(w1).

(ii) �(sr) = �(r) if and only if sr = r if and only if sw1 = w1u for some u in λ�(e). In this case, �(sw1) =
�(w1) + 1.

(iii) �(rt) = �(r) ± 1 if and only if the normal decomposition of rt is either (w1, e, w2t) or (w1u, e, w2) for
some u in λ�(e). Furthermore, in the former case �(rt) − �(r) = �(w2t) − �(w2), and in the latter case
w2t = uw2 with �(w2t) = �(w2) + 1.

(iv) �(rt) = �(r) if and only if r = rt if and only if w2t = uw2 for some u in λ�(e).
(v) If �(srt) = �(r) and �(sr) = �(rt) �= �(r), then there exists u in λ�(e) such that sw1 = w1u and uw2 =

w2t. As a consequence, sr = rt.

Proof. Recall that |�(sr) − �(r)| � 1 and |�(rt) − �(r)| � 1. The normal decomposition of sr is
(sw1, e, w2) if and only if sw1 belongs to Red�(·, e). Since w1 belongs to Red�(·, e), this is clearly
the case if �(sw1) = �(w1) − 1. Assume �(sw1) = �(w1) + 1 and sw1 does not belong to Red�(·, e).
Then we can write sw1 = w ′

1u for some u in λ�(e) such that �(sw1) = �(w ′
1) + 1. In particular,

�(sw1u) = �(w ′
1) = �(w1). On the other hand, �(w1u) = �(w1) + 1 = �(sw1) because w1 belongs to

Red�(·, e), and u lies in λ�(e). By Lemma 1.24, we get sw1 = w1u and sr = sw1ew2 = w1uew2 =
w1ew2 = r. This proves (i) and (ii) since the other implications are obvious. The normal decomposi-
tion of rt is (w1, e, w2t) if and only if w2t belongs to Red(e, ·). Since w2 belongs to Red(e, ·), this
is clearly the case if �(w2t) = �(w2) − 1. Assume �(w2t) = �(w2) + 1 and w2t does not belong to
Red(e, ·). Then we can write w2t = uw ′

2 for some u in λ(e) such that �(w2t) = �(w ′
2) + 1. As before

we can conclude that w2t = uw2. If u lies in λ�(e) then rt = r. Otherwise, u belongs to λ�(e) and
w1u belongs to Red�(·, e). This is true since u belongs to λ�(e) and therefore commutes with each
element of λ�(e). Then the normal decomposition of rt is (w1u, e, w2). This proves (iii) and (iv). Now
assume �(srt) = �(r) and �(sr) = �(rt) �= �(r). We claim that �(w2t) = �(w2) + 1 and there exists u in
λ(e) such that uw2 = w2t . If it was not the case, by above arguments, the normal decomposition of
srt would be (sw1, e, w2t) and �(srt) = �(r) ± 2. Since we assume �(rt) �= �(r), the element u has to
belong to λ�(e). Finally, using that �(sr) = �(rt) �= �(r) = �(srt) we deduce that �(sw1) = �(w1u) and
�(w1) = �(sw1u), which in turn implies sw1 = w1u by Lemma 1.24. �
Lemma 1.26. Let r belong to R, s belong to S and f belong to Λ. Let (w1, e, w2) be the normal decomposition
of r.
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(i) If �(r f ) = �(r) then w2 belongs to W ( f ).

(ii) If �( f r) = �(r) then w1 = w ′
1 w ′′

1 where w ′
1 lies in W ( f ) and w ′′

1 lies in W �(e).

(iii) If �(sr) = �(r) − 1, then �(sr f ) � �(r f ). If �(sr) = �(r) + 1, then �(sr f ) � �(r f ).

(iv) If �(rs) = �(r) − 1, then �( f rs) � �( f r). If �(rs) = �(r) + 1, then �( f rs) � �( f r).

Proof. By definition of the normal decomposition, w2 belongs to Red(e, ·). Write w2 = w ′
2 w ′′

2 with
w ′

2, w ′′
2 in the unit group W of R such that �(w2) = �(w ′

2) + �(w ′′
2), w ′′

2 belongs to W ( f ) and w ′
2

belongs to Red(·, f ). Then w ′
2 lies in Red(e, f ). By relation (REN3), we have r f = w1(e ∧w ′

2
f )w ′′

2. It
follows that �(w ′

2) = 0, and w2 = w ′′
2. This proves (i). The prove of (ii) is similar except that we need

first to decompose w1 in w ′
1 w ′′

1 where w ′′
1 lies in W �(e) and w ′

1 lies in Red(·, e).
(iii) Assume �(sr) = �(r) − 1. Write w1 = sv1 with �(w1) = �(v1) + 1, and write w2 = w ′

2 w ′′
2 v ′′′

2
with w ′

2, w ′′
2, w ′′′

2 in W such that �(w2) = �(w ′
2) + �(w ′′

2) + �(w ′′′
2 ), where w ′′

2 belongs to W �( f ),
w ′′′

2 belongs to W�( f ) and w ′
2 belongs to Red(e, f ). Then (v1, e, w2) is the normal decomposition

of sr. One has sr f = v1ew ′
2 f w ′′

2 = v1e′w ′′
2 where e′ = e ∧w ′

2
f belongs to Λ. Write w ′′

2 = v ′′
2 v ′

2 v2 such
that �(w ′′

2) = �(v ′′
2) + �(v ′

2) + �(v2) with v ′′
2 ∈ W�(e′), v ′

2 ∈ W �(e′) and v2 ∈ Red(e′, ·). We claim that
v ′′

2 = 1. Indeed w ′
2 belongs to W�(e′) by Lemma 1.12(ii), and w2 = w ′

2 v ′′
2 v ′

2 v2 w ′′′
2 = v ′

2 w ′
2 v ′′

2 v2 w ′′′
2

with �(w2) = �(v2) + �(v ′
2) + �(w ′

2) + �(v ′′
2) + �(w ′′′

2 ). But v ′
2 ∈ W �(e′) ⊆ W �(e), since e′ � e by

property (ECS6), whereas w2 belongs to Red(e, ·) by definition of the normal decomposition. Hence,
v ′

2 = 1. Now, write v1 = v ′
1 v ′′

1 such that �(v1) = �(v ′
1) + �(v ′′

1) with v ′
1 ∈ Red�(·, e′) and v ′′

1 ∈ W�(e′).
Then sr f = v ′

1e′v2 and (v ′
1, e′, v2) is the normal decomposition of sw f . Since �(ssr) = �(sr) + 1, we

have �(sv ′
1 v ′′

1) = �(sv1) = �(v1) + 1 by Lemma 1.25(i). This implies �(sv ′
1) = �(v ′

1) + 1 and we cannot
have �(ssr f ) = �(sr f )−1, still by Lemma 1.25(i). Assume �(sr) = �(r)+1. Let (v1, e, w2) be the normal
decomposition of r, and (v ′

1, e′, v2) be the normal decomposition of r f . It follows from above argu-
ments that v ′

1 left divides v1. We conclude using Lemma 1.25: �(sr) = �(r)+1 ⇒ �(sv1) = �(v1)+1 ⇒
�(sv ′

1) = �(v ′
1) + 1 ⇒ �(sr f ) � �(r f ). The proof of (iv) is similar. �

1.3. Free module over R

For all this section, we assume (R,Λ, S) is a generalised Renner–Coxeter system. We let W denote
the unit group of R , and set Λ◦ = Λ \ {1}. We fix an arbitrary unitary associative ring A. We let V
denote the free A-module with basis elements Tr for r ∈ R .

Theorem 1.27. Fix q in A. There exists a unique structure of unitary associative A-algebra on V such that T1
is the unity element and the following conditions hold for every x in S ∪ Λ◦ and every r in R:

TxTr = Txr, if x ∈ S and �(xr) = �(r) + 1;
TxTr = qTr, if x ∈ S and �(xr) = �(r);
TxTr = (q − 1)Tr + qTxr, if x ∈ S and �(xr) = �(r) − 1;
TxTr = q�(r)−�(xr)Txr, if x ∈ Λ◦.

We follow the method explained in [10, Sec. 7.1] for the Hecke algebra of Coxeter groups. Let E =
EndA(V ) the A-algebra of endomorphisms of the A-module V . For s in S and r in R , we define ρs

in E by

ρs(Tr) = Tsr, if �(sr) = �(r) + 1;
ρs(Tr) = qTr, if �(sr) = �(r);
ρs(Tr) = (q − 1)Tr + qTsr, if �(sr) = �(r) − 1.
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For e in Λ and r in R , we define ρe by

ρe(Tr) = q�(r)−�(er)Ter .

Similarly, for s in S and r in R , we define ρs in E by

ρs(Tr) = Trs, if �(sr) = �(r) + 1;
ρs(Tr) = qTr, if �(r) = �(rs);
ρs(Tr) = (q − 1)Tr + qTrs, if �(sr) = �(r) − 1.

For e in Λ and r in R , we define ρe by

ρe(Tr) = q�(r)−�(re)Tre.

The key tool in the proof of Theorem 1.27 is the following result.

Lemma 1.28. For every x, y in S ∪ Λ,

ρxρ y = ρ yρx.

Proof. Let r belong to R and x, y belong to S ∪ Λ. We prove that ρx(ρ y(Tr)) = ρ y(ρx(Tr)). Clearly
we can assume x �= 1 and y �= 1. By Proposition 1.21, �(xry) � �(x)+ �(r)+ �(y) � (r)+ 2. We provide
case by case as in [9].

Case 1. �(xry) = �(r) + �(x) + �(y).

We must have �(xr) = �(r) + �(x), �(ry) = �(r) + �(y) and �(xry) = �(ry) + �(x) = �(xr) + �(y).
Therefore ρx(ρ y(Tr)) = ρx(Try) = Txry = ρ y(Txr) = ρ y(ρx(Tr)).

Case 2. �(xry) = �(r) + 1.

We must have �(xr) � �(r), �(ry) � �(r), and x or y, possibly both, belongs to S . If x or y belongs
to Λ◦ , we are in Case 1. So we assume x and y belong to S .

Subcase 1: �(xr) = �(r), that is xr = r. Then �(ry) = �(xry) = �(r) + 1 and �(xry) = �(xr) + 1. There-
fore ρx(ρ y(Tr)) = ρx(Try) = qTxry = ρ y(qTxr) = ρ y(ρx(Tr)). The case �(ry) = �(r) is similar.

Subcase 2: �(ry) = �(xr) = �(r) + 1. Then �(ry) = �(xr) = �(xry). We deduce that ρx(ρ y(Tr)) =
ρx(Try) = qTxry = ρ y(Txr) = ρ y(ρx(Tr)).

Case 3. �(xry) = �(r).

If x and y belong to Λ◦ , we are in Case 1. So we assume this is not the case.
Subcase 1: x and y belong to S . Consider first the case �(xr) = �(r). Then xr = r and �(xry) =

�(ry) = �(r). Therefore, ρx(ρ y(Tr)) = ρ y(ρx(Tr)) = q2Tr . Assume now �(xr) �= �(r). This implies
�(ry) �= �(y) by symmetry. If �(xr) = �(ry), by Lemma 1.25(v) we have xr = ry. Hence, if �(xr) =
�(ry) = �(r) + 1, we have ρ y(ρx(Tr)) = ρ y(Txr) = (q − 1)Txr + qTxry and ρx(ρ y(Tr)) = ρx(Try) =
(q − 1)Try + qTxry . If �(xr) = �(ry) = �(r) − 1, we have ρ y(ρx(Tr)) = ρ y((q − 1)Tr + qTxr) = (q −
1)T yr + qTxry and ρx(ρ y(Tr)) = ρx((q − 1)Tr + qTry) = (q − 1)Txr + qTxry . Consider now the case
�(xr) = �(r)+ 1 and �(ry) = �(r)− 1. Then ρ y(ρx(Tr)) = ρ y(Txr) = (q − 1)Txr + qTxry = ρx((q − 1)Tr +
qTry) = ρx(ρ y(Tr)). The case where �(xr) = �(r) − 1 and �(ry) = �(r) + 1 is similar.
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Subcase 2: x belongs to S and y belong to Λ◦ . We must have �(xr) � �(r). Assume first �(xr) = �(r).
We have xr = r and �(xry) = �(ry) = �(r). We get, ρ y(ρx(Tr)) = ρ y(qTr) = q1+�(r)−�(ry)Try =
q�(r)−�(ry)ρx(Try) = ρx(ρ y(Tr)). Assume now �(xr) = �(r) + 1, then ρ y(ρx(Tr)) = ρ y(Txr) =
q�(xr)−�(xry)Txry = qTxry . If �(ry) = �(r) then �(xry) = �(ry) and ρx(ρ y(Tr)) = ρx(Try) = qTxry . If
�(ry) < �(r), then �(xry) = �(r) = �(ry) + 1 and ρx(ρ y(Tr)) = qρx(Try) = qTxry . The case x ∈ Λ◦ and
y ∈ S is similar.

Case 4. �(xry) < �(r).

Subcase 1: x, y belong to Λ◦ . Clearly, ρx(ρ y(Tr)) = ρ y(ρx(Tr)) = q�(r)−�(xry)Txry .
Subcase 2: x belongs to S , y belongs to Λ◦ and �(xr) = �(r). Then xr = r and xry = ry. This case is

similar to the first case in Case 3, Subcase 2.
Subcase 3: x belongs to S , y belongs to Λ◦ and �(xr) = �(r) − 1. Applying Lemma 1.26,

we get �(xry) � �(ry). We have ρ y(ρx(Tr)) = ρ y((q − 1)Tr + qTxr) = (q − 1)q�(r)−�(ry)Try +
q1+�(xr)−�(xry)Txry and (ρ y(Tr)) = q�(r)−�(ry)ρx(Try).

Assume first �(xry) = �(ry) − 1. Then �(xr) − �(xry) = �(r) − �(ry) and (ρ y(Tr)) = (q −
1)q�(r)−�(ry)Try + q1+�(r)−�(ry)Txry .

Assume secondly that �(xry) = �(ry), that is xry = ry. In this case, (ρ y(Tr)) = q1+�(r)−�(ry)Txry . But
1 + �(xr) − �(xry) = �(r) − �(ry), therefore ρ y(ρx(Tr)) = q1+�(r)−�(ry)Try .

Subcase 4: x belongs to S , y belongs to Λ◦ and �(xr) = �(r) + 1. By Lemma 1.26, we get �(xry) �
�(ry). We have ρ y(ρx(Tr)) = ρ y(Txr) = q�(xr)−�(xry)Txry . If �(xry) = �(ry) + 1, then ρx(ρ y(Tr)) =
ρx(q�(r)−�(ry)Try) = q�(r)−�(ry)Txry . If �(xry) = �(ry), then ρx(ρ y(Tr)) = ρx(q�(r)−�(ry)Try) =
q�(r)−�(ry)+1Txry . Thus, in both case, ρ y(ρx(Tr)) = ρx(ρ y(Tr)).

Subcase 5: x, y belong to S . If �(xry) = �(r) − 2, then �(xr) = �(ry) = �(r) − 1 and a calculation
similar to [9, p. 148, case (b)] lied to ρ y(ρx(Tr)) = ρx(ρ y(Tr)) = q2Txry + q(q − 1)Txr + q(q − 1)Try +
(q − 1)2Tr . So, we consider the case �(xry) = �(r) − 1. If �(xr) = �(r), then xr = r and xry = ry.
Therefore �(ry) < �(r) and ρ y(ρx(Tr)) = ρx(ρ y(Tr)) = q(q − 1)Txr + q2Txry . Now, consider the case
�(xr) = �(r) − 1. If �(ry) = �(r), then ρ y(ρx(Tr)) = ρx(ρ y(Tr)) = q(q − 1)Tr + q2Txr ; finally, if �(ry) =
�(r) − 1 then ρ y(ρx(Tr)) = ρx(ρ y(Tr)) = (q − 1)2Tr + q(q − 1)Trt + q2Txry . �

Once we have Lemma 1.28, we can almost repeat the argument of [9, Sec. 7.3] to prove Theo-
rem 1.27.

Lemma 1.29. Let L be the sub-algebra of E generated the ρx for x in R. The map ϕ from L to V which sends
ρ to ρ(T1) is an isomorphism of A-modules.

Proof. This is clear that ϕ is a morphism of A-modules. Let r belong to R , and let x1 · · · xk be a mini-
mal word representative. Then by definition of the maps ρxi , we have Tr = ϕ(ρx1 · · ·ρxk ). Therefore, ϕ
is surjective. Assume ϕ(ρ) = 0 for some ρ in L. Consider r and x1 · · · xk as before, such that k is min-
imal. We prove by induction on k that ρ(Tr) = 0. For k = 0, that is r = 1, this is true by hypothesis.
The word x1 · · · xk−1 is a minimal word representative of some element r′ . By induction hypothesis,
we have ρ(Tr′ ) = 0. It follows ρ(Tr) = ρ(Tr′xk ) = ρ(ρxk (Tr′ )) = ρxm (ρ(Tr′ )) = ρxm (0) = 0. �
Proof of Theorem 1.27. Consider the notation of Lemma 1.29. Assume r belongs to R and x1 · · · xk
is a minimal word representative of r. Iterating the first defining relation in Theorem 1.27, we get
Tr = Tx1 · · · Txk . The unicity follows. Since ϕ is an isomorphism, the endomorphism ρr = ρx1 · · ·ρxk

does not depend on the minimal word representing x1 · · · xk , and the set {ρr | r ∈ R} is a free A-
basis for L with ϕ(ρr) = ρr(T1) = Tr . Moreover, we can transfer the A-algebra structure of L to
V using the isomorphism ϕ . It remains to verify that the structure constants of the obtained A-
algebra are the one stated in the theorem. Let x belongs to S ∪ Λ◦ and r in R . If �(xr) = �(x) + �(r)
and ω is a minimal word representative of r, then xω is clearly a minimal word representative
of xr. Therefore ρxρr(T1) = ρx(Tr) = Txr = ρxr(T1). Therefore, ρxρr = ρxr , and TxTr = Txr . Assume
x lies in Λ◦ and �(xr) < �(r). Then ρxρr(T1) = ρx(Tr) = q�(r)−�(xr)Txr = q�(r)−�(xr)ρxr(T1). We get
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ρxρr = q�(r)−�(xr)ρxr and TxTr = q�(r)−�(xr)Txr . Assume x lies in S . If �(xr) = �(r), then ρxρr(T1) =
ρx(Tr) = qTxr = qρxr(T1) and TxTr = qTrx . Finally, consider the case �(xr) = �(r) − 1. One has
ρxρr(T1) = ρx(Tr) = (q − 1)Tr + qTxr = (q − 1)ρr(T1) + qρxr(T1) = ((q − 1)ρr + qρxr)(T1). There-
fore, ρxρr = (q − 1)ρr + qρxr and TxTr = (q − 1)Tr + qTxr . �
Definition 1.30. Let q be an indeterminate and set A = Z[q]. The generic Hecke algebra H(R) of the
generalised Renner monoid R is the A-algebra described in Theorem 1.27.

Corollary 1.31. The generic Hecke algebra H(R) of R admits the following Z[q]-algebra presentation: the
generators are Tx for x in S ∪ Λ◦; the defining relations are

(HEC1) T 2
s = (q − 1)Ts + qT1, s ∈ S;

(HEC2) |Ts, Tt〉m = |Tt, Ts〉m,
({s, t},m

) ∈ E (Γ );
(HEC3) Ts Te = Te Ts, e ∈ Λ◦, s ∈ λ�(e);
(HEC4) Ts Te = Te Ts = qTe, e ∈ Λ◦, s ∈ λ�(e);
(HEC5) Te T w T f = q�(w)Te∧w f , e, f ∈ Λ◦, w ∈ Red(e, f ).

In the special case of the rook monoid (see Example 2.6 below), we recover the presentation
obtained in [6].

Proof. Consider the presentation of H(R) given in Theorem 1.27. Then relations (HEC1)–(HEC5)
clearly hold in H(R). For instance |Ts, Tt〉m = T |s,t〉m = T |t,s〉m = |Tt , Ts〉m . Conversely, consider the
algebra H defined by the presentation given in the corollary. We claim that for two minimal word
representatives ω1 = x1 · · · xk and ω2 = y1 · · · yk on S ∪Λ◦ that represent the same element r in R , we
have Tx1 · · · Txk = T y1 · · · T yk . Indeed, it follows from Corollary 1.23 that we can transform Tx1 · · · Txk

into T y1 · · · T yk by using (HEC2), (HEC3) and (HEC5). So we set Tr = Tx1 · · · Txk in H. If (w1, e, w2)

is the normal decomposition of r we have Tr = T w1 Te T w2 . Now, we deduce that the defining rela-
tions of H(R) given in Theorem 1.27 hold in H using Lemmas 1.25 and 1.26. If �(xr) = �(x) + �(r)
and x1 · · · xk is a minimal word representative of r, then xx1 · · · xk is a minimal word representative
of xr and Txr = TxTx1 · · · Txk = TxTr . If x belong to S and �(xr) = �(r) − 1, then TxTr = TxT w1 Te T w2 =
((q − 1)T w1 + qTxw1 )Te T w2 = (q − 1)Tr + qTxw1 . Here we use that relations (HEC1) and (HEC2) im-
plies T w = (q − 1)T w + qTxw when w belongs to W such that �(xw) = �(w) − 1 (cf. [9, Sec. 7]).
If x belongs to S and �(xr) = �(r), then by Lemma 1.25, there exists u in λ�(e) such that xw1 =
w1u, and �(xw1) = �(w1) + 1. It follows that TxTr = TxT w1 Te T w2 = Txw1 Te T w2 = T w1 Tu Te T w2 =
qT w1 Te T w2 = qTr . Finally, assume x belongs to Λ◦ and �(xr) < �(r). Write w1 = w ′′′

1 w ′′
1 w ′

1 such
that �(w1) = �(w ′′′

1 ) + �(w ′′
1) + �(w ′

1) with w ′′′
1 in W�(x), w ′′

1 in W �(x) and w ′
1 in Red(x, e). We

have TxTr = TxT w1 Te T w2 = TxT w ′′′
1

T w ′′
1

T w ′
1

Te T w2 = q�(w ′′′
1 )TxT w ′′

1
T w ′

1
Te T w2 = q�(w ′′′

1 )T w ′′
1

TxT w ′
1

Te T w2 .

We get TxTr = q�(w ′′′
1 )+�(w ′

1)T w ′′
1

Tx∧w′
1

e T w2 . We can decompose w ′′
1 and w2 such that w ′′

1 = v ′
1 v ′′

1 and

w2 = v ′′
2 v ′

2 where v ′′
1, v ′′

2 belong to W�(x ∧w ′
1

e), v ′
1 belongs to Red�(·, x ∧w ′

1
e) and v ′

2 belongs to
Red�(x ∧w ′

1
e, ·). We have �(xr) = �(v ′

1) + �(v ′
2) and v ′

1(x ∧w ′
1

e)v ′
2 is a minimal word representative

of xr. Hence, TxTr = q�(w ′′′
1 )+�(w ′

1)+�(v ′′
1)+�(v ′′

2)T v ′
1

Tx∧w′
1

e T v ′
2
= q�(x)−�(xr)Txr . �

Remark 1.32. (i) For e, f in Λ◦ , we set

Red�(e, f ) = Red(e, f ) ∩ W⋂
h>e λ(h) ∩ W⋂

h> f λ(h).

It is not difficult to see that in relations (HEC5) of the presentation stated in Corollary 1.31, we can
assume w belongs to Red�(e, f ) (cf. the proof of [7, Theorem 0.1]).
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(ii) In H(R) the following relations hold:

Tr Tx = Txr, if x ∈ S and �(rx) = �(r) + 1;
Tr Tx = qTr, if x ∈ S and �(rx) = �(r);
Tr Tx = (q − 1)Tr + qTrx, if x ∈ S and �(rx) = �(r) − 1;
Tr Tx = q�(r)−�(rx)Trx, if x ∈ Λ◦.

This can be deduced directly from Theorem 1.27, but this is an immediate consequence of Corol-
lary 1.31 since the defining relations (HEC1)–(HEC5) have a right-left symmetry.

2. Iwahori–Hecke algebra of finite reductive monoids

Here, we first recall basic results on Algebraic Monoid Theory, then we introduce the notion of an
Iwahori–Hecke algebra in the general framework of Monoid Theory, we recall some basic properties
and explain why this Iwahori–Hecke algebra is interesting. Finally, we turn to finite reductive monoids
and prove that the Iwahori–Hecke algebra of such monoids is related to the generic Hecke algebra of
the associated Renner monoid. As a consequence, we prove Theorems 0.1 and 0.2.

2.1. Regular monoids and reductive groups

We introduce here the basic definitions and notation on Algebraic Monoid Theory that we shall
need in the sequel. We fix an algebraically closed field K. We let Mn denote the set of all n × n
matrices over K, and by GLn the set of all invertible matrices in Mn . We refer to [22,25,27] for the
general theory and proofs involving linear algebraic monoids and Renner monoids; we refer to [9] for
an introduction to Linear Algebraic Groups Theory. If X is a subset of Mn , we let X denote its closure
for the Zariski topology. Recall that a semigroup M is said to have a zero element if it contains an
element 0 such that 0 × x = x × 0 = 0 for every x in M .

Definition 2.1 (Algebraic monoid). An algebraic monoid is a submonoid of Mn , for some positive inte-
ger n, that is closed for the Zariski topology. An algebraic monoid is irreducible if it is irreducible as a
variety.

It is very easy to construct algebraic monoids. Indeed, the Zariski closure M = G of any sub-
monoid G of Mn is an algebraic monoid. The main example occurs when for G one considers an
algebraic subgroup of GLn . It turns out that in this case, the group G is the unit group of M . Con-
versely, if M is an algebraic monoid, then its unit group G(M) is an algebraic group. The monoid Mn

is the seminal example of an algebraic monoid, and its unit group GLn is the seminal example of an
algebraic group.

The next result, which is the starting point of the theory, was obtained independently by Putcha
and Renner in 1982.

Theorem 2.2. Let M be an irreducible algebraic monoid with a zero element. Then M is regular if and only if
its unit group G(M) is reductive.

Definition 2.3 (Reductive monoid). A reductive monoid is an irreducible algebraic monoid whose unit
group is a reductive group.

Definition 2.4 (Renner monoid). Let M be a reductive monoid. The normaliser of a maximal torus T of
G(M) is denoted by NG(M)(T ). The Renner monoid R(M) of M is the monoid NG(M)(T )/T .
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Fig. 1. Coxeter graph Γ (S) and Hasse diagram Λ(B) for Mn .

It is clear that R(M) does not depend on the choice of the maximal torus of the algebraic
group G(M).

Proposition 2.5. Let M be reductive monoid. Fix a maximal torus T of G(M) and a Borel subgroup B of G(M)

that contains T . The unit group of R(M) is the Weyl group W of G(M). If S is the standard generating set of W
associated with the Borel B and Λ(B) = {e ∈ E(T ) | ∀b ∈ B, be = ebe}, then (R(M),Λ(B), S) is a generalised
Renner–Coxeter system such that R(M) is a generalised Renner monoid. Moreover, there is a canonical order
preserving isomorphism of monoids between E(R(M)) and E(T ).

Example 2.6. Consider M = Mn . Choose the Borel subgroup B of invertible upper triangular matrices
and the maximal torus T of invertible diagonal matrices. The Renner monoid is isomorphic to the
monoid of matrices with at most one non-zero entry, that is equal to 1, in each row and each column.
This monoid is called the rook monoid Rn [28]. Its unit group is the group of monomial matrices,
which is isomorphic to the symmetric group Sn . Denote by ei the diagonal matrix

( Idi 0
0 0

)
of rank i.

Then the set Λ(B) is {e0, . . . , en}. One has ei � ei+1 for every index i. One has λ�(ei) = {s j | j > i} and
λ�(ei) = {s j | j < i} (see Fig. 1).

Other examples can be found in [7].

In the framework of algebraic monoids, Renner monoid plays the role of Weyl groups in Algebraic
Group Theory. In particular we still have a Bruhat decomposition: the monoid M is equal to the disjoint
union

⋃
r∈R BrB . Moreover, the product of double classes BrB is related to the length function that

we introduce in Section 1.2.3:

Proposition 2.7. Let M be a reductive monoid. Fix a maximal torus T of G(M) and a Borel subgroup B of G(M)

that contains T . Consider the generalised Renner–Coxeter system (R(M),Λ, S) of R(M) defined in Proposi-
tion 2.5.

(i) Let r lie in R(M) and s lie in S, then

BsBrB =
{ BrB, if �(sr) = �(r);

BsrB, if �(sr) = �(r) + 1;
BsrB ∪ BrB, if �(sr) = �(r) − 1.

(ii) Let r lie in R(M) and s lie in S, then

BrBsB =
{ BrB, if �(rs) = �(r);

BrsB, if �(rs) = �(r) + 1;
BrsB ∪ BrB, if �(rs) = �(r) − 1.

(iii) Let r lie in R(M) and e lie in Λ, then

BeBrB = BerB and BrBeB = BreB.
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Proof. (i) is proved in [7, Prop. 0.2] in the case of irreducible regular monoid M with a zero ele-
ment. Same arguments can be applied for any reductive monoids; let us deduced (ii): by the remark
following [25, Prop. 8.6] we know that

BrBsB ⊆ BrB ∪ BrsB

and, clearly, BrBsB is a union of double classes. Hence, BrBsB has to be equal to BrB , BrsB are
BrB ∪ BrsB . If �(rs) = �(r) then rs = r and we are done. If �(rs) = �(r)+1 and r = x1 · · · xk is a minimal
word representative of r then BrBsB = Bx1 B · · · Bxk−1 Bxk BsB = Bx1 B · · · Bxk−1 BxksB = · · · = BrsB .
Finally, if �(rs) = �(rs) − 1, and x1 · · · xk−1s is a minimal word representative of r, then BrBsB =
Bx1 B · · · Bxk−1 BsBsB = Bx1 B · · · Bxk−1 B(B ∪ BsB) = BrsB ∪ BrB . Let us proof (iii). Since e belongs
to Λ, Be ⊆ eB [25]. Thus, BrBeB ⊆ BreB . The inclusion BreB ⊆ BrBeB is trivial. Let us prove that
BeBrB = BerB . If r = si1 · · · si�(r) belongs to the Weyl group W , the results follows from (ii) since
for �(esi1 · · · si j ) � �(esi1 · · · si j−1). Therefore, we may assume that r = w1 f w2 where f lies in Λ◦
and (w1, f , w2) is the normal decomposition of r. We can write w1 = v1 v2 v3 v4 with v1 ∈ W�(e),
v2 ∈ W �(e), v3 ∈ Red(e, f ), v4 in W �( f ) and �(w1) = �(v1) + �(v2) + �(v3) + �(v4). Then

BeBrB = BeB w1 f w2 B = BeB v1 v2 v3 f v4 w2 B = BeB v1 B v2 v3 B f B v4 w2 B

= Bev2 v3 B f B v4 w2 B = B v2ev3 f B v4 w2 B = B v2(e ∧v3 f )B v4 w2 B.

Write v4 w2 = v5 v6 v7 such that �(v4 w2) = �(v5) + �(v6) + �(v7) and v5 ∈ W�(e ∧v3 f ), v6 ∈
W �(e ∧v3 f ), v7 ∈ Red(e ∧v3 f , ·). Then BeBrB = B v2(e ∧v3 f )B v6 v7 B . We claim that �(er) =
�(v2(e ∧v3 f )v6 v7) = �(v2(e ∧v3 f )) + �(v6 v7), which implies BeBrB = B v2(e ∧v3 f )v6 v7 B = BerB
by (ii). If it was not the case, by Lemma 1.25(iii), v6 v7 = uv8 with u ∈ λ�(e ∧v3 f ), �(v6 v7) =
�(v8) + 1 and �(v2u) = �(v2) − 1. But λ�(e ∧v3 f ) ⊆ λ�( f ), uv5 = v5u and uv2 = v2u since
v2 lies in W�(e ∧v3 f ). Therefore, this leads to r = w1ew2 = v1 v2 v3 v4 f w2 = v1 v2 v3 f v4 w2 =
v1 v2 v3 f v5uv8 = v1 v2uv3 f v5 v8. But this is impossible since

�(r) = �(v1 v2uv3 f v5 v8) � �(v1) + �(v2u) + �(v3) + �(v5) + �(v8)

= �(v1) + �(v2) − 1 + �(v3) + �(v5) + �(v8) < �(w1) + �(w2) = �(r). �
2.2. Iwahori–Hecke algebra

We introduce here the notion of a Iwahori–Hecke algebra in the general framework of Monoid
Theory. The equivalent notion in the context of Group Theory is well known ([5, Sec. 8.4] for instance).
There is no difficulty to translate the notion from Group Theory to Monoid Theory. The point is to
verify that definitions and proofs can be written without using the existence of inverse elements. This
is not the case for the whole theory (see Remarks 2.10 and 2.16 below) but the main results still
hold as far as one considers the Iwahori–Hecke algebra associated with a subgroup. We have no find
general references for Iwahori–Hecke Algebra of a monoid. This is why we start with an introduction
to these notions with included proof.

For all this section, we assume M is a finite monoid. We let G denote its unit group and we fix a
subgroup H of G . We let C[M] denote the monoid algebra of M . An element of C[M] has the form∑

x∈M λxx where the λx belong to C. We set

ε = 1

|H|
∑
h∈H

h

in C[M]. All the considered algebras are unit associative algebras, and all modules are left modules.
We begin with two easy lemma whose proofs are left to the reader.
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Lemma 2.8. Consider the C-algebra C
M of maps from M to C where the product is the convolution product �,

defined by

f � g(x) =
∑

y,z∈M, yz=x

f (y)g(z).

There is a canonical isomorphism of C-algebra from C[M] to C
M which sends X = ∑

x∈M λxx to the map
X : x �→ λx.

The following lemma is immediate. We left the proof to the reader.

Lemma 2.9. (i) ε2 = ε, and for every h in H one has hε = εh = h.
(ii) C[M]ε and C[M/H] are isomorphic as C[M]-modules and as C-vector spaces.

Remark 2.10. We remark that Lemma 2.9 is no more true in general if we only assume H is a sub-
monoid of M . Indeed, ε is not necessarily an idempotent.

Proposition 2.11. There is a canonical isomorphism between the following C-algebras:

(a) the subalgebra of C
M whose elements are the maps which are constant on the double-classes H\M/H ;

(b) the algebra εC[M]ε;
(c) the algebra (EndC[M](C[M/H]))op of endomorphisms of C[M/H] considered as a C[M]-module (for the

opposite product).

Proof. The second and third algebras are isomorphic by [3, Lemma 3.19]. This is clear that εXε = X
if and only if X belongs to εC[M]ε. Consider the notation of Lemma 2.8. Denote by Hx1, . . . , Hxk the
left classes of M modulo the subgroup H . Let X = ∑

x∈M λxx belong to C[M]. Then

εX = 1

|H|
k∑

i=1

∑
x∈Hxi

∑
h∈H

λxhx =
k∑

i=1

∑
x∈Hxi

(
1

|H|
∑

y∈Hxi

αy,xλy

)
x

where αy,x = #{h ∈ H | hy = x}. If M is a group, then α(y, x) = 1 for every y, x in Hxi . In the gen-
eral case one has α(y, x) = |H|

|Hxi | because H is a group. Therefore, εX = ∑
x∈M( 1

|Hx|
∑

y∈Hx λy)x, and

εX = X if and only if X is constant on each left class. By a similar computation, Xε = X if and only
if X is constant on each right class. Therefore εXε = X if and only if X is constant on each double
class. �
Remark 2.12. The isomorphism between (EndC[M](C[M/H]))op and εC[M]ε is given by f �→ ε f (ε)ε
for every endomorphism f .

Following Solomon [26] and Putcha [22], who consider the case of finite reductive monoids, we
introduce the Iwahori–Hecke algebra H(M, H).

Definition 2.13 (Iwahori–Hecke algebra). Let M be a finite monoid, and assume H is a subgroup of M .
Let ε = 1

|H|
∑

h∈H h in C[M]. We define the Iwahori–Hecke algebra H(M, H) of M relatively to H to be
the algebra εC[M]ε.

It is immediate that for every C[M]-module N , we get an induced structure of left H(M, H)-
module on εN . Proposition 2.11 explains why the Hecke algebra is interesting. Another motivation for
such a definition is the following result.
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Proposition 2.14. Assume C[M] is semisimple.

(i) The Hecke algebra H(M, H) is semisimple.
(ii) The map N �→ εN induced a one-to-one correspondence between the set of simple C[M]-modules in

the induced C[M]-module C[M]ε = C[M] ⊗C[H] C[H] and the set of isomorphic classes of simple
H(M, H)-modules. Furthermore, the multiplicity of N in C[M]ε is equal to the dimension of the H(M, H)

module εN considered as a C-vector space.

Note that this is known by [16] that C[M] is semisimple for abstract monoids of Lie type (cf.
Example 1.8), and therefore for finite reductive monoids.

Proof. Since C[M] is semisimple, the algebra εC[M]ε is semisimple. Assume N is a simple C[M]
module and let f belong to HomC[M](C[M]ε, N). For every x in C[M]ε one has f (x) = f (xε) = xf (ε).
If we consider x = ε, we get that f (ε) belongs to εN . Moreover, it follows that the map f �→
f (ε) from HomC[M](C[M]ε, N) to εN is C-linear and one-to-one. Thus dimC(εN) is equal to
dim(HomC[M](C[M]ε, N)), that is to the multiplicity of N in C[M]ε. Now write C[M]ε = ⊕i Mi

where the Mi are simple C[M]-modules. Then εC[M]ε = ⊕iεMi and each εMi is a non-trivial sim-
ple H(M, H)-modules: its C-dimension is at least one, and for m in Mi such that εm �= 0 one has
H(M, H)εm = εC[M]εm = εMi since Mi is a simple C[M]-module. �

By Proposition 2.11, this is immediate to obtain a C-basis of H(M, H):.

Proposition 2.15. Let {D1, . . . , D�} be the set of double classes of M modulo H. We fix some arbitrary non-
zero complex numbers a1, . . .a� , and we set Xi = ai

∑
x∈Di

x for i in {1, . . . , �}. Then the Xi form a C-basis for

H(M, H). If we write Xi X j = ∑�
k=1 μ(i, j,k)Xk, then μ(i, j,k) = aia j

ak
#{(x, y) ∈ Di × D j | xy = xk} where

xk is an arbitrary fixed element of Dk.

Proof. The first part is clear. The second part come from the fact that H is a group: we can
write Xi X j = ∑�

k=1
∑

z∈Dk
α(i, j, z)z where α(i, j, z) = #{(x, y) ∈ Di × D j | xy = z}. But if z belongs to

Dk , then α(i, j, z) = α(i, j, xk). Indeed, if z = h1xkh2 then the map (x, y) �→ (h1x, yh2) is one-to-one
from {(x, y) ∈ Di × D j | xy = xk} onto {(x, y) ∈ Di × D j | xy = z}. �

As explained in [26, Sec. 4] and in [22, Sec. 2], an important issue is to determined the structure
constants μi, j,k and, if possible, to suitably choose the ai so that the Z-module generated by the ai Xi

becomes a Z-subalgebra of H(M, B), in other words, so that the structure constants μi, j,k belong
to Z.

Remark 2.16. Let ϕ belong to EndC(C[M/H]). Define ϕ̇ : M/H × M/H → C by ϕ(xH) =∑
yH∈M/H ϕ̇(yH, xH)yH . If M is a group, it turns out that ϕ belongs to EndC[M](C[M/H]), that is

to H(M, H), if and only if ϕ̇ is constant on the orbits of M on M/H × M/H [5, Sec. 8.4], which are
naturally related to the double classes HxH when M is a group. This is no more true if we only
assume M is a monoid. One can verify that in the general case, ϕ belongs to EndC[M](C[M/H]) if and
only for every xH and yH in M/H and every g in M , one has ϕ̇(yH, gxH) = 0 if yH ∩ gM is empty,
and

ϕ̇(gyH, gxH) = 1

|C g(yH)|
∑

zH∈C g(yH)

ϕ̇(zH, xH)

where C g(yH) = {zH | gzH = gyH}. If M is a group then yH ∩ gM is never empty, and C g(yH) =
{yH}.
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2.3. Finite reductive monoids

We can now turn to the proof of Theorems 0.1 and 0.2. Let us recall the definition of finite reduc-
tive monoids [24], which is in the spirit of the definition of finite reductive groups [29].

Definition 2.17 (Finite reductive monoid). Let M be a reductive monoid defined over Fq . A finite sub-
monoid M of M is a finite reductive monoid if there exists a surjective endomorphism of algebraic
monoid σ : M → M such that

M = {
x ∈ M

∣∣ σ(x) = x
}
.

Example 2.18. Consider a reductive monoid M over Fq . The finite reductive monoid M associated with
the map (xi, j) �→ (xq

i, j) is Mn(Fq). See [26] for more details.

Finite reductive monoids are special cases of abstract monoids of Lie type [21], and their unit
groups are finite groups of Lie type. Therefore, they are groups with a BN pair and possess Borel sub-
groups and a generalised Renner monoid R (cf. Example 1.8). As a consequence, we can associate
with M a generic Hecke algebra H(R) as defined in Section 1, and a Iwahori–Hecke algebra as de-
fined in Section 2.2. Our objective is to prove Theorem 0.2, which explains how these two notions are
related.

Notation 2.19. Assume M is a finite reductive monoid over Fq, and consider the notation of Definition 2.17.
There exists a maximal torus T of G(M) and a Borel subgroup B of G = G(M) that contains T such that
σ(T ) = T and σ(B) = B [29,24]. Moreover, σ(NG(T )) = NG(T ). Let R be the Renner monoid associated
with M, and W be its unit group. Then σ induces an isomorphism σ : R → R. We set

G = {
b ∈ G

∣∣ σ(g) = g
}
,

B = {
b ∈ B

∣∣ σ(b) = b
}
,

T = {
t ∈ T

∣∣ σ(t) = t
}
,

W = {
w ∈ W

∣∣ σ(w) = w
}
,

R = {
r ∈ R

∣∣ σ(r) = r
}
,

Λ = {
e ∈ Λ

∣∣ σ(e) = e
}
.

Proposition 2.20. (See [24,29].) Consider Notation 2.19. The group G is the unit group of M, and B is a Borel
subgroup of G with maximal torus T . The Renner monoid of M is R. The unit group of R is W , and Λ is the
cross section lattice of R associated with B. Denote by S the canonical generating set of W associated with T
and B. For a conjugated class X of elements of S under σ , we let �X denote the greatest element of W X . Let
S be the set of all �X . Then (W , S) is a Coxeter system, and (R,Λ, S) is a generalised Renner–Coxeter system.
Moreover, we have a disjoint union Bruhat decomposition M = ⋃

r∈R BrB.

From the Bruhat decomposition of M , we deduce for every r in R that

BrB = {
x ∈ BrB

∣∣ σ(x) = x
}
.

It is immediate that for e in Λ one has σ(λ(e)) = λ(e) and σ(λ�(e)) = λ�(e) in R , with obvious
notation. Therefore, ωX belongs to λ(e) in R (resp. to λ�(e)) if and only if X is included in λ(e) (resp.
to λ�(e)) in R .
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Lemma 2.21. Consider Notation 2.19. Denote by � the length function on R.

(i) Let r lie in R and s lie in S. Then

BsBrB =
{ BrB, if �(sr) = �(r);

BsrB, if �(sr) = �(r) + 1;
BsrB ∪ BrB, if �(sr) = �(r) − 1.

(ii) Let r lie in R and s lie in S. Then

BrBsB =
{ BrB, if �(rs) = �(r);

BrsB, if �(rs) = �(r) + 1;
BrsB ∪ BrB, if �(rs) = �(r) − 1.

(iii) Let e lie in Λ◦ and r lie in R. Then

BeBrB = BerB.

Proof. The result follows from Proposition 2.7.
(i) Denote by � the length function on R . Let r lie in R and �X lie in S (cf. Proposition 2.20). Fix

a minimal representative word x1 · · · xk on S of �X . Using the map σ , we deduce that there is three
possibilities:

(a) ∀x ∈ X , �(xr) = �(r) + 1.
In this case, �(ωX r) = �(r)+�(ωX ), BωX BrB = BωX rB and �(ωX r) = �(r)+1. Therefore, BωX BrB ⊆

{x ∈ BωX rB | σ(x) = x} = BωX rB . But BωX BrB is a union of double classes B yB . Then the latter
inclusion has to be an equality.

(b) ∀x ∈ X , �(xr) = �(r).
In this case ωX r = r, and in particular �(ωX r) = �(r), BωX BrB = BrB and �(ωX r) = �(r). It follows

that BωX BrB = BrB as in the previous case.
(c) ∀x ∈ X , �(xr) = �(r) − 1.
In this case, �(ωX r) = �(r) − �(ωX ), �(ωX r) = �(r) − 1 and BωX BrB = ⋃

v B vrB , where v ranges
over all the elements xi1 · · · xi j with 1 � i1 < · · · < i j � k and 0 � j � k. But for such an element v
of R , the set {x ∈ B vrB | σ(x) = x} is empty, except if vr belongs to R , that is v = 1 or v = ωX .
Therefore, {x ∈ BωX BrB | σ(x) = x} = BωX rB ∪ BrB . But BωX BrB = ⋃

b∈B BωX brB . We deduce that

M ∩ BωX BrB =
⋃
b∈B

M ∩ BωX brB =
⋃
b∈B

BωX brB = BωX BrB.

(ii) The proof is similar to (i).
(iii) BeBrB is included in {x ∈ BerB | σ(x) = x} = BerB . But BeBrB is a union of double classes

B yB . Therefore, BeBrB = BerB . �
We are now ready to prove the second part of Theorem 0.2.

End of the proof of Theorem 0.2. By Theorem 1.27 and Definition 1.30, C ⊗Z Hq(R) is the unique
C-algebra such that the relations stated in Theorem 1.27 hold. But, by Section 2.2, H(M, B) is a C-
algebra over the free C-module with basis

∑
x∈BrB x, for r ∈ R . We set

Tr = q�(r)

|BrB|
∑

x

x∈BrB
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in H(M, B). We are going to prove that the relations stated in Theorem 1.27 hold in H(M, B) for the
basis Tr , r ∈ R . The main arguments are like in [26, Sec. 4]. Denote by

π : H(M, B) → C

the restriction of the one-dimensional representation from C[M] → C that sends every g in M to 1.

We have π(Tr) = π(
q�(r)

|BrB|
∑

x∈BrB x) = q�(r) . Let r1, r2, r3 lie in R such that Br1 B Br2 B = Br3 B . Applying
the map π , we get

Tr1 Tr2 = q�(r1)+�(r2)−�(r3)Tr3 .

Therefore, it follows from Lemma 2.19 that

Ts Tr = Tsr, if s ∈ S and �(r) = �(r) + 1;
Ts Tr = qTr, if s ∈ S and �(sr) = �(r);
Te Tr = q�(r)−�(er)Ter, if e ∈ Λ◦.

Assume s lies in S and r lies in R such that �(sr) = �(r) − 1. Denote by (w1, e, w2) the normal de-
composition of r. By Lemma 1.25(i), �(sw1) = �(w1) − 1 and �(sw1ew2) = �(sw1) + �(w2). Therefore,
Ts T w1 = qTsw1 + (1 − q)T w1 , by [5, Theorem 8.4.6], and

Ts Tr = Ts T w1 Tew2 = qTsw1 Tew2 + (1 − q)T w1 Tew2 = qTsr + (1 − q)Tr . �
Now, using Theorem 1.27, Theorem 0.1 is a corollary of Theorem 0.2. More precisely, gathering

Corollary 1.31 and Theorem 0.2, we get the following result.

Corollary 2.22. Let M be a finite reductive monoid over Fq. Consider Notation 2.19. Then the Iwahori–Hecke
algebra H(M, B) admits the following C-algebra presentation:

(HEC1) T 2
s = (q − 1)Ts + qT1, s ∈ S;

(HEC2) |Ts, Tt〉m = |Tt, Ts〉m,
({s, t},m

) ∈ E (Γ );
(HEC3) Ts Te = Te Ts, e ∈ Λ◦, s ∈ λ�(e);
(HEC4) Ts Te = Te Ts = qTe, e ∈ Λ◦, s ∈ λ�(e);
(HEC5) Te T w T f = q�(w)Te∧w f , e, f ∈ Λ◦, w ∈ Red(e, f ).
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