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This paper considers the Cauchy problem for the general degenerate parabolic
equations (1.1) with initial data (1.2). In the critical condition meas[u: g(u)=0]=0
we obtain the regular estimate G(u) # C(1), where G(u)=�u

0 g(s) ds. A new maximum
principle is introduced to obtain the estimate and is applied to some special
equations such as prous media equation, an infiltration equation to obtain the
optimal estimate |(um&1)x |�M. Finally an interesting equation related to the
Broadwell model (where g(u) has two zero points) is studied and a uniquely regular
solution u # C(1) is obtained. Moreover the estimates ux�\( f (u)&u2)�g(u) and
\�infx \0(x)�(1+4t(infx \0(x))) are proved for the solution of the Navier�Stokes
equations corresponding to the Broadwell model. � 1997 Academic Press

1. INTRODUCTION

In this paper, we consider the Cauchy problem for the degenerate
parabolic equations

ut+F(u)x+H(u)=G(u)xx (1.1)

with initial data

u |t=0=u0(x), (1.2)

article no. DE973313

365
0022-0396�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* Current address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82736623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


File: DISTIL 331302 . By:DS . Date:07:11:97 . Time:10:34 LOP8M. V8.0. Page 01:01
Codes: 2848 Signs: 1875 . Length: 45 pic 0 pts, 190 mm

where F # C2, H # C1, g(u)=G$(u)�0, and g # C2. The existence and
uniqueness of weak solutions of (1.1), (1.2) have been well studied [2, 4,
7, 8, 16, 17]. However, the regularity of weak solutions, as we know has
only been studied in the case of g(u) having one zero point. It is well
known that if there is an interval on which g(u)=0 and F(u) is a nonliner
function, then in general, the shock waves will appear in the solution of
the Cauchy problem (1.1), (1.2) even if the initial data are smooth and
small [17]. An open problem is the regularity of solutions if there is no
interval on which g(u)=0. In this paper, we study the regularity of solution
for general g(u) satisfying meas[u : g(u)=0]=0.

As with the porous media equation, in general we cannot expect the
Cauchy problem (1.1), (1.2) to have a classical solution throughout
RT=R_(0, T], since the equation (1.1) is parabolic degenerate at the
points ui (i=1, 2, ...n), g(ui )=0. Thus we introduce the following standard
definition of weak solution for (1.1), (1.2).

Definition 1. A function u(x, t) defined on R� T=R_[0, T] will be
called a weak solution of the Cauchy problem (1.1), (1.2) if

(i) u is bounded, continuous in R� T ;
(ii) G(u) has a bounded generalized derivative with respect to x

in R� T ;
(iii) u satisfies the identity

||
RT

,x[F(u)x&F(u)]&,tu+,H(u) dx dt=|
�

&�
,(x, 0) u0(x) dx (1.3)

for all , # C1
0(R� T ) which vanish for large |x| and for t=T.

This paper is constructed as follows: In Section 2 we first consider the
existence of viscosity solutions for the equation

ut+F(u)x+H(u)=(( g(u)+=) ux)x (1.4)

with the initial data

u |t=0=u=
0(x)=u0 V J==|

R
u0(x&y) J=( y ) dy, (1.5)

where J= is a mollifier and = is a positive constant.
Throughout this paper, we assume that u0(x) # W1, �. Then

u=
0(x) # C�, |u=(x)|�M, |u=

0, x(x)|�M,

}d
iu=

0(x)
dxi }�M(=), i=2, 3, ..., (1.6)

where the positive constant M is independent of = and M(=) depends on =.
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The local existence of solution for the Gauchy problem (1.4), (1.5) in
R� {=R_[0, {] (for a small {>0) is standard if u=

0(x) # C(2+:)(R) since the
equation (1.4) is strictly parabolic for any fixed =>0 (see [9, 10, 12, 15]),
where the function space C(2+:) is defined as follows:

Definition 2. For any P1(t$, x$), P2(t", x") # RT , let

d(P1 , P2)=|x$&x$|+|t$&t"| 1�2 ;

|u| 0=supRT
|u(x, t)|, |u|:=|u| 0+supP1 , P2 # RT

|u(P1)&u(P2)|
d(P1 , P2): ,

0<:�1;

|u| 1+:=|u| 0+|ux |: , |u| 2+:=|u| 1+:+|ux | 1+:+|ut |: , (1.7)

where u(x, t) # C(q)(RT )(q=0, :, 1+:, 2+:) means that |u|q is finite and
u(x) # C(q)(R) means that |u|q is finite with t1=t2 .

To extend the local solution to the entire upper-half space, in Section 2,
give a new method for using the maximum principle to estimate u=

x . This
method is well used in [14] to get the positive lower bound of the density
for the isentropic gas dynamics system with viscosity. Differing from the
classical method to compare the solution in positive time with initial data,
we make a transformation and set up a relation between u=

x and g(u=)+=
and then obtain the bound of (G(u=)+=u=)x uniformly with respect to =. If
we multiply g(u=)+= to (1.4), we obtain an equation about G(u=)+=u=

with uniformly bounded coefficients. Gilding's method ([6]) gives the
uniform boundedness of G(u=)+=u= in C(1). Under the assumption of
meas[u: g(u)=0]=0, we obtain a subsequence u=k such that u=k goes to u
a.e. and so the regularity of G(u) # C(1). In Section 3, we apply the method
given in Section 2 to some special equations, such as porous media equa-
tion and an infiltration equation. The optimal estimate |(um&1)r |�M
(see [1, 8]) is obtained. In Section 4, we consider the Navier�Stokes equa-
tions corresponding to the Broadwell model. For a special case of density
\=const, a unique regular solution u # C(1) is obtained. The a-priori
estimates ux�\( f (u)&u2)�g(u) and infx \0(x)�(1+4t(infx \0(x)))�\ are
proved for the solution of the Navier�Stokes equations.

2. REGULARITY OF SOLUTION

To get the existence of the solution for the Cauchy problem (1.1), (1.2),
we first study the viscous solutions for the Cauchy problem (1.4), (1.5). The
following local solution lemma is standard and can be found in [9, 10,
12, 15].
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Lemma 1. Let u0(x) # C2+: for : # (0, 1), F(u), H(u) and g(u) be smooth
functions. Then for any fixed =>0, there exists a smooth solution, for the
Cauchy problem (1.4), (1.5) in some R{=R_(0, {], which satisfies

|u= | 2+:�2M,

where M is the bound of |u0 |2+: .

To extend the local solution in Lemma 1 to RT for arbitrary T>0, we
need the estimates in |u= | 2+: . But the main difficulty is to obtain the
estimate of u=

x since other estimates in |u= | 2+: can be obtained by using
Itaya's method [10] which is based on the bound of u=

x and the estimates
of the fundamental solution for a linear parabolic equation.

Lemma 2. Let the conditions in Lemma 1 be satisfied and H$(u)=
h(u)�0. Then the solutions of the Cauchy problem (1.4), (1.5) satisfy

|u| 0�|u0(x)| 0 , (2.1)

where for simplicity the superscript = in u is omitted. Moreover, if

F(u)=F1(u)+F2(u), (2.2)

where

F"1(u)�0, f2(u)=
F2(u)

g(u)+=
�0, h(u) f2(u)&f $2(u) H(u)�0, (2.3)

then

ux�f2(u) (2.4)

in the case where the intial data satisfy (2.4). Similarly if

F(u)=F� 1(u)+F� 2(u), (2.5)

where

F� "1(u)�0, f� 2(u)=
F� 2(u)

g(u)+=
�0, h(u) f� 2(u)&f� $2(u) H(u)�0, (2.6)

then

ux�f� 2(u) (2.7)

in the case where the initial data satisfy (2.7).
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Proof. The first conclusion (2.1) is trivial. To prove (2.4), we rewrite
(1.4) as follows:

ut+F1(u)x+H(u)=(( g(u)+=)(ux&f2(u)))x . (2.8)

Letting v=ux&f2(u) and differenting (2.8) with respect to x, we have

vt+f $2(u)(( g(u)+=)v)x+F $1(u) vx+h(u)v

+F"1(u) u2
x+h(u) f2(u)&H(u) f $2(u)=(( g(u)+=)v)xx . (2.9)

Thus the condition (2.3) in Lemma 2 and (2.9) give the following inequality

vt+a(x, t) vx+b(x, t)v�( g(u)+=) vxx , (2.10)

where a, b are functions of u, ux , uxx . Therefore the maximum principle
[9, 14] applied to (2.10) give the estimate v�0 if v0(x)�0. So the estimate
(2.4) is proved. Similarly we can obtain the proof of (2.7).

For the case of H(u)=0, we can always find a suitable large constant C
such that F(u)&C<0, F(u)+C>0 since u is bounded and F(u) is con-
tinuous. Thus we choose F1 , F2 , F� 1 , F� 2 in Lemma 2 as F1=&C, F2(u)=
F(u)+C, F� 1=C, F� 2(u)=F(u)&C respectively. Moreover since u=

0, x is
bounded from (1.6), ( g(u=

0)+=) |u=
0, x | is bounded. Therefore the initial data

always satisfy (2.4), (2.7) for large constant C. So we obtain

|ux |�
max( |F2 | 0 , |F� 2 | 0)

g(u)+=
�

M
g(u)+=

�M(=). (2.11)

The left estimates in |u| 2+: can be obtained by using Itaya's method [10].
So the global existence and uniqueness of solution for the Cauchy problem
(1.4), (1.5) is obtained.

Theorem 3. Let u0(x) # C2+: for : # (0, 1), where |u0 (x)| 2+: may
depend on =. Let H(u)=0, g(u) # C2. Then for any fixed =>0, there exists
a unique smooth solution, for the Cauchy problem (1.4), (1.5) in RT=
R_(0, T], which satisfies

|u= | 2+:�M(=). (2.12)

Moreover if |u=
0 | 1�M, then

|G(u=)+=u= | 1�M. (2.13)

Proof. The existence and uniqueness of solution is clear from the
a-priori estimates |u= | 2+: . From the estimate (2.11), z==G(u=)+=u= is
Ho� lder continuous with respect to x with Ho� lder exponent 1.

369DEGENERATE PARABOLIC EQUATIONS



File: DISTIL 331306 . By:DS . Date:07:11:97 . Time:10:34 LOP8M. V8.0. Page 01:01
Codes: 2734 Signs: 1812 . Length: 45 pic 0 pts, 190 mm

Multiplying g(u=)+= by (1.4), we have

(z=)t+F$(u=)(z=)x=( g(u=)+=)(z=)xx . (2.14)

Since F$(u=) and g(u=+= are bounded independent of =, z= is Ho� lder con-
tinuous with respect to t with Ho� lder exponent 1

2 by using Gilding's results
in [6]. Theorem 3 is proved.

Since z= is uniformly bounded in C(1), there exists a subsequence z=k con-
verges to a function z(x, t) # C(1) a.e. on any compact set in R_[0, T]. So
G(u=k )=�u = k

0 g(s) ds converges to z(x, t). If meas[u: g(u)=0]=0, then
�u

0 g(s) ds=z(x, t) uniquely defines a value u(x, t) for any given z(x, t).
Thus u=k � u(x, t) a.e. on any compact set in R_[0, T]. Letting = a 0 in
(1.4), we obtain the following main conclusion in this section.

Theorem 4. If H(u)=0, F(u) # C2, g(u) # C2, meas[u: g(u)=0]=0 and
|u0 | 1�M, then there exists a unique weak solution u(x, t), for the Cauchy
problem (1.1), (1.2), which satisfies the regular estimate

|G(u)| 1�M. (2.15)

3. APPLICATION IN THEORY OF INFILTRATION

In this section, we apply Lemma 2 in Section 2 to some special functions
F(u)=c1un, H(u)=c2uh and G(u)=um, where c1 , c2 , n�1, h�1, and
m>1 are all constants.

For simplicity, we let 0�u0u0(x)�M. Instead of adding a viscous
constant = to the equation (1.1), we consider the Cauchy problem (1.1)
with the initial data

u |t=0=u=
0(x)=_|

�

&�
((u0(x&y))m&1+=m&1) G =( y ) dy&

1�(m&1)

, (3.1)

where G= is a mollifier and = is a positive constant.
When c1=c2=0, (1.1) is the porous media equation. When c1<0,

c2=0, (1.1) is an equation derived from the theory of infiltration [8]. In
both cases, the optimal estimate is |(um&1)x |�M from the previous results
in [1, 8]. In this section we use the conclusion in Lemma 2 to obtain the
same estimate.

Lemma 5. If c2�0, h�1, n�1, m>1 and if the solution of the Cauchy
problem (1.1), (3.1) exists (Lemma 1) in RT=R_(0, T] and satisfies

0<u=�M(=), |u= | 2+:�M(=), (3.2)
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then

=e&Mtt�u=�M+=, (3.3)

where M1=c2(M+=)h&1.

Proof. Since =�u=
0�M+=, we have from (1.1) that

ut+F(u)x�G(u)xx . (3.4)

So the upper bound u=�M+= is obtained by using the maximum principle
to (3.4). To obtain the lower bound in (3.3), we let v=eM1 tu&=. Then we
have from (1.1) that

{vt+c1nun&1 vx+(c2uh&1&M1)v�(mum&1vx)x

u |t=0=u=
0(x)&=�0.

(3.5)

From (3.5) we have v�0. This means u=�e&M1 t =. Lemma 5 is proved.

The lower bound of u= in (3.3) ensures that the equation (1.1) is strictly
parabolic in RT for any finite time T and for any fixed =. So all the analyses
about the parabolic equation given in Section 2 are valid.

Lemma 6. If the conditions in Lemma 5 are satisfied, and moreover h>1
and |(um&1

0 )x |�M, then

|((u=)m&1)x |�M2 (3.6)

for a positive constant M2 independent of =.

Proof. We choose

{F1 (u)=&Lu,
F� 1 (u)=Lu,

F2(u)=c1un+Lu
F� 2(u)=c1un&Lu

(3.7)

then F"1(u)=F� "1(u)=0, F2(u)�0, F� 2(u)�0 for a sufficiently large, positive
constant L. Moreover

h(u) f2(u)&f $2(u) H(u)

=c2 huh&1 c1un+Lu
mum&1 &c2 uk \c1 nun&1+L

mum&1 &
(m&1)(c1un+Lu)

mum +
=c2 _(h&1) Luh+(h&n) c1un+h&1

mum&1 +
(m&1) un(c1un+Lu)

mum & . (3.8)
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Since c2�0, h>1, and m>1, we can always choose L large enough so
that (h&1) L+(h&n) c1un&1>0. So the right hand side of (3.8) is non-
negative. Similarly we obtain that

h(u) f� 2(u)&f� $2(u) H(u)�0. (3.9)

Thus the conditions (2.3) and (2.6) in Lemma 2 are satisfied. If |(um&1
0 )x |�M,

we have from (3.1) that |((u=
0)m&1)x |�M. Then for a sufficiently large L,

the initial data (3.1) satisfy the estimates (2.4) and (2.7). So we have from
Lemma 2 that

|u=
x |�

Lu=+|c1 | (u=)n

m(u=)m&1 �
M2

m(u=)m&2 (3.10)

for a positive constant M2 . Lemma 6 is proved.

Therefore we obtain the following main theorem in this section.

Theorem 7. Let F(u)=c1un, H(u)=c2uh, G(u)=um and c2�0, h>1,
m>1, n�1. If 0�u0(x)�M, |(um&1

0 )x |�M, then the Cauchy problem
(1.1), (1.2) has a weak solution satisfying the regular estimate

|um&1(x, t)| 1�M. (3.11)

4. APPLICATION IN NAVIER�STOKES EQUATIONS

The Navier�Stokes equations corresponding the Broadwell model may
be written [3]

{
\t+( \u)x=0

(4.1)
ut+( f $(u)&u) ux+( f (u)&u2)

ux

\
=

1
\

( g(u) ux)x ,

for (x, t) # R_R+, where \ and u denote the density and the velocoty of
the moving particles.

The first equation in (4.1) is hyperbolic and the second is of degenerate
parabolic type because

g(u)=
2(1&f (u)

(1+3u2)3�2 , f (u)=
1
3

(2(1+3u2)1�2&1). (4.2)

At points (x, t) # RT=R_(0, T], where |u|<1, i.e., g(u)>0, the second
equation in (4.1) is parabolic, but at points where |u|=1, i.e., g(u)=0, it
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is not. When g(u) is a constant, the system (4.1) is similar to the com-
pressible Navier�Stokes equations of the isentropic gas.

Let \=1. Then we obtain the following degenerate parabolic equation
from the second equation in (4.1):

ut+( f $(u)&u)ux=( g(u) ux)x . (4.3)

The interest of the equation (4.3) is that g(u) has two zero points at u=1
and u=&1, respectively.

We consider the Cauchy problem

{
ut+F(u)x=( g(u) ux)x ,

(4.4)
u |t=0=u=

0(x)=|
�

&�
(1&=) u0(x&y) G=( y ) dy,

where F(u)=f (u)&(u2�2).

Lemma 8. If |u0(x)|�1, &1
2�u0, x(x)� 1

4 , then the solutions u= of the
Cauchy problem (4.4) satisfy

|u= |�1&=, &1
2 (1+3(u=)2)3�2�u=

x� 1
4 (1+3(u=)2)3�2. (4.5)

Proof. Since |u0(x)|�1, then |u=
0(x)|�1&=. So applying the maximum

principle to (4.4) gives |u= |�1&=.
To prove the second part in (4.5), we choose

F1=
u2

2
, F2=f (u)&u2, F� 1=1&

u2

2
, F� 2=f (u)&1. (4.6)

By simple calculations,

F2= 1
3 (1+3u2)1�2 (2&(1+3u2)1�2) (4.7)

and

F� 2= 2
3 ((1+3u2)1�2&2). (4.8)

So F2=0 if |u|=1, F2>0 if |u|<1 and F� 2=0 if |u|=1, F� 2>0 if |u|<1.
Moreover

g(u)=
4(2&(1+3u2)1�2)

3(1+3u2)3�2 (4.9)

373DEGENERATE PARABOLIC EQUATIONS



File: DISTIL 331310 . By:DS . Date:07:11:97 . Time:10:34 LOP8M. V8.0. Page 01:01
Codes: 2043 Signs: 1048 . Length: 45 pic 0 pts, 190 mm

and

F2

g
=

1
4

(1+3u2)2,
F� 2

g
=&

1
2

(1+3u2)3�2. (4.10)

Since &1
2�u=

0, x� 1
4 from the conditions in Lemma 8, the initial data satisfy

the second estimate in (4.5). So the conclution in Lemma 2 gives the proof
of the second part in (4.5). Lemma 8 is proved.

From Lemma 8, we have the following theorem:

Theorem 9. If |u0(x)|�1, &1
2�u0, x(x)� 1

4 , then the Cauchy problem
(4.3) with the initial data u0(x) has a unique weak solution u satisfying

u # C(1), |u|�1. (4.11)

Remark. The uniqueness in Theorem 9 may be obtained by using the
method in the proof of Theorem 1 in [8] which is based on the following

Lemma 10. Let F(u)=f (u)&(u2�2), G(u)=�u
&1 g(s) ds, and f, g be

given by (4.2). If |u2 |�1, |u1 |�1, then there exists a constant A which
depends only on f and g, such that

(F(u2)&F(u1))2�A(G(u2)&G(u1))(u2&u1). (4.12)

Proof. If u1=u2 , (4.12) is satisfied. Thus without loss of generality, we
let u1<u2 .

Define

K(u)=
(F(u)&F(u1))2

G(u)&G(u1 )
. (4.13)

Then K(u) is continuous for u # (u1 , 1] and

lim
u � u1

+
K(u)= lim

u � u1
+

2(F(u2)&F(u1))( f $(u)&u)
g(u)

=0 (4.14)

since

f $(u)&u
g(u)

=
3
4

u(1+3u2)
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is bounded for u # [&1, 1]. Moreover

K$(u)=
2(F(u)&F(u1))( f $(u)&u)

G(u)&G(u1)
&\F(u)&F(u1)

G(u)&G(u1)+
2

g(u) (4.15)

is continue for u # (u1 , 1] and

lim
u � u1

+
K$(u)=\ lim

u � u1
+

2( f $(u)&u)
g(u) + ( f $(u1)&u1)&\ lim

u � u1
+

f $(u)&u
g(u) +

2

g(u1)

(4.16)

exists and is bounded independent of u1 . Thus we can obtain the proof of
Lemma 10 by using the Tayler expansion to function K(u) at u=u1 .

Finally we end this section by the following lemma.

Lemma 11. If |u0(x)|�1, u0, x�\0(x)( f (u0)&u2
0)�g(u0), infx \0(x)>0,

then we have the a-priori estimates in form for the solution ( \, u) of (4.1)
with initial data ( \0(x), u0(x)) as follows:

|u|�1, ux�
\( f (u)&u2)

g(u)
, \�

infx \0(x)
1+4t(infx \0(x))

. (4.17)

Proof. We can add a small positive constant to g(u) such that the
second equation in (4.1) is strictly parabolic. But for simplicity, we omit the
process and give the proof in form.

Since f (u)&u2 has two zero points at u=1 and u=&1, applying the
maximum principle to the second equation in (4.1) gives u�1 and u�&1
respectively.

To estimate the second inequality in (4.17), we rewrite the second
equation in (4.1) as follows:

ut+uux+
1
\

(( f (u)&u2) \)x=
1
\

( g(u) ux)x . (4.18)

Then

ut+uux=
1
\ \ g(u) \ux&

\( f (u)&u2)
g(u) ++x

. (4.19)

Differenting (4.19) with respect to x and letting

v=ux&
\( f (u)&u2)

g(u)
, f2(u)=

f (u)&u2

g(u)
(4.20)

375DEGENERATE PARABOLIC EQUATIONS



File: DISTIL 331312 . By:DS . Date:07:11:97 . Time:10:34 LOP8M. V8.0. Page 01:01
Codes: 1876 Signs: 708 . Length: 45 pic 0 pts, 190 mm

we have

(ux)t+u2
x+uuxx=

1
\

( g(u)v)xx+\1
\+x

( g(u)v)x . (4.21)

Let the right hand side in (4.21) be I. We have from (4.21)

vt+f2(u) \t+f $2(u) \ut+u2
x+uvx+u( f2(u) \x+f $2(u) \ux)=I. (4.22)

Substituting the first equation in (4.1) and (4.19) into (4.22), we have

vt+f2(u) \v+v2+uvx=
1
\

( g(u)v)xx+\\1
\+x

&f $2(u)+ ( g(u)v)x . (4.23)

Applying the maximum principle to (4.23) gives v�0 since v0(x)�0 from
the conditions in Lemma 11.

Thus

ux�
\( f (u)&u2)

g(u)
=

\
4

(1+3u2)2�4\. (4.24)

Substituting ux�4\ into the first equation in (4.1), we have

\t+4\2+u\x�0. (4.25)

Thus

\1
\

&4t+ t
+u \1

\
&4t+x

�0. (4.26)

Applying the maximum principle to (4.26) gives

1
\

&4t�sup
x

1
\0(x)

=
1

infx \0(x)
. (4.27)

Therefore

\�
infx \0(x)

1+4t(infx \0(x))
. (4.28)

Lemma 11 is proved.
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