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Let D(m, n) be the set of all the integer points in them-dilate of the

Birkhoff polytope of doubly-stochastic n × nmatrices. In this paper

we find the sharp upper bound on the tropical determinant over the

set D(m, n). We define a version of the tropical determinant where

the maximum over all the transversals in a matrix is replaced with

the minimum and then find the sharp lower bound on thus defined

tropical determinant over D(m, n).
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We start with the following problem. Consider usual Rubik’s cubewith nine square stickers on each

side colored in one of six colors.Wewant to solve Rubik’s cube by peeling off the stickers and replacing

them so that each of the faces has all stickers of one color. Doing this, wewill ignore the structure of the

Rubik’s cube. For example, if initially the (solved) cube had the blue and the green squares on opposite

faces, after removing and replacing the stickers we may end up having blue and green faces adjacent

to each other. Here is our first problem.

Problem 1. Howmany stickers we would need to peel off and replace in the worst case scenario?

More generally, assume that we have n pails with m balls in each. Each ball is colored in one of n

colors and we have m balls of each color. Same question:
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Problem 2. Howmany balls do we need to move from one pail to another in the worst case scenario

so that the balls are sorted by color?

Consider an n × n matrix A where the rows represent the colors of the stickers (or balls) and

the columns represent the faces of the cube (or pails). In the (i, j)th position in A we record the

number of stickers (balls) of color i on face (in pail) j. All the entries of matrix A are nonnegative

integers and the row and column sums of A are equal to m. We call such matrices integer doubly-

stochastic.

We would like to assign each face a color so that the overall number of stickers that we need to

move is the smallest possible. In other words, we would like to find a transversal of Awith the largest

possible sum of entries. That is, Problem 2 reformulates as:

Problem 3. Given positive integers m and n, find the sharp lower bound L(m, n) on

maxσ∈Sn{a1σ(1) + a2σ(2) + · · · + anσ(n)}

over the set of all integer doubly-stochastic n× nmatrices A = (aij) whose row and column sums are

equal to m. The answer to Problem 2 would then be mn − L(m, n).

The quantity above looks very similar to the determinant of a matrix, where multiplication is

replaced with addition while the addition is replaced with taking maximum. Even more, it is almost

identical with the definition of the tropical determinant

tropdet A = minσ∈Sn{a1σ(1) + a2σ(2) + · · · + anσ(n)},
which is related to the classical assignment problem. Considernworkers andn jobs. Letworker i charge

aij dollars for job j. We would like to assign the jobs, one for each worker, so that the overall cost is as

small as possible. Clearly, the tropical determinant solves this problem. A polynomial-time algorithm

for solving the assignment problemwas developed by Kuhn in 1955 [7]. See [2] for modern treatment

and various versions of the problem as well as an overview of the literature.

In 1926 van der Waerden conjectured that the smallest value of the permanent of n × n doubly-

stochastic (with row and column sums equal to one) matrices is attained on the matrix all of whose

entries are equal to 1/n, and thisminimum is attained only once. This conjecturewas proved indepen-

dently by Egorychev [4] and Falikman [5] in 1979/80. In [3] Burkard and Butkovich proved a tropical

version of the conjecture, where the permanent is replaced with the tropical determinant. Our results

provide an integral tropical version of the van der Waerden conjecture.

It is natural to pose a question similar to Problem 3 where we compute the upper bound on the

usual tropical determinant.

Problem 4. Given positive integers m and n, find the sharp upper bound U(m, n) on

tropdet A = minσ∈Sn{a1σ(1) + a2σ(2) + · · · + anσ(n)}
over the set of all integer doubly-stochastic n × n matrices A whose row and column sums are equal

tom.

The set of all doubly-stochastic n × n matrices forms a convex polytope in R
n2 [1], an m-dilate of

the Birkhoff polytope. The tropical determinant defines a piece-wise linear function on that polytope.

We would like to minimize that function over the integer points of the polytope, so the question we

are interested in is an integer linear-programming problem.

In this paper we solve Problem 3 and Problem 4 completely. First three sections of the paper are

devoted to Problem 3. In the last section we solve Problem 4, which turns out to be significantly

easier than Problem 3. Our methods are elementary, combinatorial in nature; one of our tools is Hall’s

marriage theorem.
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2. Definitions, examples, and easy cases

Definition 2.1. Let A = (aij) be an n × n matrix. Define

tropdet A = minσ∈Sn{a1σ(1) + a2σ(2) + · · · + anσ(n)}

tdet A = maxσ∈Sn{a1σ(1) + a2σ(2) + · · · + anσ(n)}.
We will refer to both of these quantities as the tropical determinant of A, which should not cause

confusion since throughout the paper we will mostly be dealing with tdet A except for the last section

of the paper which is devoted to tropdet A.

Definition 2.2. Let A be an n × n matrix with non-negative integer entries. We say that A is integer

doubly stochastic with sumsm if the entries in each of the rows and columns sum up to a fixedm ∈ N.

We will denote the set of all such matrices by D(m, n).

Then Problem 3 reformulates as:

Problem 5. Fixm, n ∈ N. Find the sharp lower bound L(m, n) on the tropical determinant tdet A over

the set D(m, n).

Example 1. Let n = 5, m = 7

tdet

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 2 2

0 1 2 2 2

2 2 1 1 1

2 2 1 1 1

2 2 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 9.

We will later show that L(7, 5) = 9, that is, the minimum of the tropical determinant on the set of

5 × 5 doubly-stochastic integer matrices with sums 7 is attained on this matrix.

One of our tools is Hall’s marriage theorem. The theorem in our formulation deals with a block of

zeroes in a matrix with the largest sum of dimensions after all possible swaps of columns and rows.

We will refer to such a block as the largest block of zeroes.

Theorem 2.3 (Philip Hall [6]). Let A be an n× n 0–1 matrix. Then there is a transversal in A that consists

of all 1’s if and only if the largest block of zeroes in A has sum of dimensions less than or equal to n.

Here the theorem is formulated in its weakest form and it can be easily proved by induction on n.

For our future discussion we will need two of its corollaries.

Corollary 2.4. Let A be an m × n 0–1 matrix. Then there is a transversal that consists of all 1’s if and only

if the largest block of zeroes in A has sum of dimensions less than or equal to max(m, n).

Proof. Let us assume thatm � n. Extend A to a square 0–1 matrix by appending to A m − n columns

consisting of all 1’s and apply Hall’s marriage theorem to the resulting matrix. �
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Let A be an n× n 0–1matrix andW be the block of zeroes in Awith the largest sum of dimensions.

Then after some row and column swaps A can be written in the form

A =
⎛
⎝ X Y

Z W

⎞
⎠ .

Corollary 2.5. Each of Y and Z has a transversal that consists of all 1’s.

Proof. Let W be of size d1 by d2 and let the largest block of zeroes in Y be of size s1 by s2. We can

assume that the block of zeroes is in the lower right corner of Y, right on top of the zero blockW . Then

the lower right s1 + d1 by s2 block of A consists of all zeroes and hence s1 + d1 + s2 � d1 + d2, so

s1 + s2 � d2 and by Corollary 2.4 there exists a transversal in Y that consists of all 1’s. Similarly, such

a transversal exists in Z. �

Here is the first instance where we are going to apply Hall’s marriage theorem to integer doubly-

stochastic matrices.

Lemma 2.6. Let A ∈ D(m, n). Then A has a transversal all of whose entries are nonzero.

Proof. Let’s rearrange the rows and columns of A so that the block of zeroes with the largest sum of

dimensions is in the lower right corner of A. That is, A is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B C

D

0 · · · 0

...
. . .

...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us assume that the block of zeroes is of size r × s. Let �B and �C denote the sums of all the entries

in the matrices B and C correspondingly. Then we have

�C = sm

�B + �C = (n − r)m.

Hence �B = (n − r − s)m, which implies r + s � n. By Hall’s marriage theorem A has a transversal

all of whose entries are nonzero. �

Proposition 2.7. L(m, n) � L(m + 1, n).

Proof. It is enough to check that for eachmatrix A∈D(m+1, n) there is amatrix A′∈D(m, n) such that

tdet A′ � tdet A.

By Lemma 2.6, A has a transversal all of whose entries are nonzero. Let A′ be obtained from A by

subtracting 1 from each element on such a transversal. Clearly, A′ ∈ D(m, n) and tdet A′ � tdet A. �

Proposition 2.8. If 1 � m � n then L(m, n) = n.

Proof. Clearly, L(1, n) = n. Hence by Proposition 2.7 L(m, n) � n. To show that L(m, n) equals n, we

need to construct a matrix inD(m, n)with tropical determinant n. Let the first row of this matrix have

m 1’s in the first m slots and zeroes in the rest. The second row is the shift of the first row by one slot

to the right, etc. For example, here is a matrix in D(4, 6) whose tropical determinant is 6.
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tdet

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0

0 1 1 1 1 0

0 0 1 1 1 1

1 0 0 1 1 1

1 1 0 0 1 1

1 1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 6. �

Lemma 2.9. L(m, n) � m.

Proof. If A ∈ D(m, n), the sum of its entries ismn. On the other hand, the sum of all the entries of A is

the sum of its entries in n transversals, which is less than or equal to n times the tropical determinant

of A. Hence, tdet A � m and L(m, n) � m. �

Proposition 2.10. If m is a multiple of n, then L(m, n) = m.

Proof. By the previous proposition, we only need to find a matrix inD(m, n)whose tropical determi-

nant is m. Let m = qn for some q ∈ N and then the matrix is qIn, where In is the n × n matrix that

consists of all 1’s. �

Proposition 2.10 also follows from the tropical van der Waerden conjecture proved in [3].

3. Not so easy cases

Let nowm = qn+ r, where 0 � r < n. We will provide lower bounds on the tropical determinant

of A ∈ D(m, n), first for the case when r � n/2, and next for the case when r < n/2. Our first bound
will turn out to be sharp, while the second bound will be sharp only under the additional assumption

that qr � n − 2r.

Theorem 3.1. Let m = qn + r, where n/2 � r < n. Then for any matrix A ∈ D(m, n) we have

tdet A � m + (n − r) = n(q + 1).

That is, L(m, n) � n(q + 1).

Proof. Let us assume that there exists a matrix A ∈ D(m, n) such that

tdet A < m + (n − r) = n(q + 1).

We rearrange rows and columns of A so that the tropical determinant is equal to the sum of entries on

themain diagonal of A and the entries are decreasing along themain diagonal. That is, wemay assume

that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

a2
...

. . .
...

an−1 bn−1

c1 . . . . . . cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ D(m, n), (3.1)
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where a1 � · · · � an. By our assumption,

tdet A = a1 + · · · + an < n(q + 1),

and hence an � q as it is the smallest of the ai’s. We next observe that

c1 + b1 � a1 + an

since otherwisewe could switch the first and the last rows of thematrix and get a bigger sumof entries

on the main diagonal. Similarly, we get

c2 + b2 � a2 + an

· · ·
cn−1 + bn−1 � an−1 + an.

Summing up these inequalities we obtain

m − an + m − an � tdet A + (n − 2)an, (3.2)

which implies

2m � tdet A + nan.

Using our assumption tdet A < qn + n and its consequence an � q we get

2qn + 2r = 2m � tdet A + nan < qn + n + qn,

so 2r < n, which contradicts the hypotheses of the theorem. �

Theorem 3.2. Let m = qn + r, where 0 � r � n/2. Then for any matrix A ∈ D(m, n) we have

tdet A � m + r = qn + 2r.

That is, L(m, n) � m + r.

Proof. As in the proof of the previous theorem, we assume that there exists a matrix A ∈ D(m, n)
such that

tdet A < m + r = qn + 2r

and that A is of the form 3.1 with non-increasing ai’s, and the sum of entries on the main diagonal

equal to the tropical determinant.

Then, using the hypothesis that 2r � n we get

tdet A = a1 + · · · + an < qn + 2r � n(q + 1),

which implies an � q as an is the smallest among the ai’s. As before, we have 2m � tdet A + nan,

which together with tdet A < qn + 2r and an � q implies

2qn + 2r = 2m � tdet A + nan < qn + 2r + qn = 2qn + 2r,

that is, 2qn + 2r < 2qn + 2r, a contradiction. �

We next show that the bound obtained in Theorem 3.1 is sharp.
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Theorem 3.3. Let m = qn + r, where n/2 � r < n. Then

L(m, n) = m + n − r = n(q + 1).

Proof. We have already shown in Theorem 3.1 that L(m, n) � n(q+ 1). Hence we only need to come

up with a matrix A in D(m, n) whose tropical determinant is n(q + 1). Our matrix A will consist of

four blocks

A =
⎛
⎜⎝

A1 A2

A3 A4

⎞
⎟⎠ ,

where A2 ∈ M(r, n− r) and A3 ∈ M(n− r, r) are matrices all of whose entries are equal to q+ 1, and

A4 ∈ M(n− r, n− r) has all of its entries equal to q . The upper left corner block A1 is of size r by r and

is constructed in the following way: let the first 2r − n entries in the first row be equal to q + 1 and

all the other entries in that row be equal to q. Here we are using the fact that 0 � 2r − n < r, which

is equivalent to the assumption of the theorem that n/2 � r < n. The second row is then a shift by

one slot of the first row, the third is the shift of the second, etc. For example, for r = 5 and n = 7

we get

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q + 1 q + 1 q + 1 q q

q q + 1 q + 1 q + 1 q

q q q + 1 q + 1 q + 1

q + 1 q q q + 1 q + 1

q + 1 q + 1 q q q + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, A ∈ D(m, n) and its tropical determinant is at most n(q + 1) as all its entries are less than or

equal to q + 1. By Theorem 3.1, the tropical determinant of A is at least n(q + 1) and hence tdet A =
n(q + 1). �

We will show that under some additional assumptions the bound of Theorem 3.2 is sharp.

Theorem 3.4. Let m = qn + r, where 0 � r � n/2, and assume that qr � n − 2r. Then L(m, n) =
m + r = qn + 2r.

Proof. We need to construct a matrix A in D(m, n) whose tropical determinant is qn + 2r. We will

start out in the same way as in Theorem 3.3. The matrix A will be of the form

A =
⎛
⎜⎝

A1 A2

A3 A4

⎞
⎟⎠ ,

where A2 ∈ M(r, n − r) and A3 ∈ M(n − r, r) are matrices all of whose entries are equal to q + 1,

and A4 ∈ M(n − r, n − r) has all of its entries equal to q . Now we need the row and column sums of

A1 to be equal to qr + 2r − n. Notice that now 2r − n � 0. We will first make every entry of A1 to be

equal to q and will then distribute 2r − n between r entries in each row. For this, let us divide n − 2r

by r with a remainder to get n− 2r = rl + r′, where 0 � r′ < r. Now subtract l from each entry in A1

and an extra 1 from r′ entries in each row and column. We get
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A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q − l − 1 . . . q − l − 1 q − l . . . . . . q − l

q − l q − l − 1
. . . q − l − 1 q − l

. . . q − l

... q − l
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . q − l

q − l
. . .

. . .
. . .

. . .
. . . q − l − 1

q − l − 1
. . .

. . .
. . .

. . .
. . .

...

...
. . .

. . .
. . .

. . .
. . .

...

q − l − 1 . . . q − l − 1 q − l . . . . . . q − l − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the band of q− l−1’s is of width r′. For this construction to workwe need the entries of A to be

nonnegative. That is, we need, q− l− 1 � 0 for r′ �= 0, and q− l � 0 for r′ = 0. This is where we use

the additional assumption that qr � n− 2r. If r′ = 0, we get qr � n− 2r = rl, which implies qr � lr

and q � l. Next, let r′ �= 0. Then qr � n − 2r = rl + r′, which implies q � l + r′/r, or q � l + 1. �

Corollary 3.5. Let m = qn + r where n/3 � r < n/2 and q �= 0. Then L(m, n) = m + r = qn + 2r.

Proof. We have

n − 2r

r
� 3r − 2r

r
= 1

and hence the assumption of Theorem 3.4 that qr � n − 2r is satisfied for all q � 1. �

Example 2. Notice that we have solved the Rubik’s cube Problem 1 stated in the introduction. For this

problem, we have n = 6, m = 9, and r = 3, so we are under the assumptions of Theorem 3.3 and

L(9, 6) = m + n − r = 12, so one needs to replace mn − L(m, n) = 54 − 12 = 42 stickers in the

worst-case scenario represented by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

2 2 2 1 1 1

2 2 2 1 1 1

2 2 2 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4. Hard cases

Let m = nq + r, where 0 � r < n. It remains to take care of the situation when n > 2r + rq

and r and q are both nonzero. We will adjust the above construction of a matrix A with small tropical

determinant to this case. The matrix Awill still consist of four blocks
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A =
⎛
⎝ A1 A2

A3 A4

⎞
⎠ , (4.1)

where A4 is a squarematrixwith all its entries equal to q, but its size now could be smaller than (n−r).
Sub-matrices A2 and A3 will have entries that are equal to q and q + 1 and the excess (smaller than in

the previous construction) will then be distributed over the matrix A1, whose entries will be less than

or equal to q.

Example 3. Let us look at the example where n = 6,m = 7, and q = 1. If we use the construction of

the previous section we would get the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 2 2 2 2 2

2 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

2 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with a negative entry. Let’s make the block of 1’s 4 × 4 instead of 5 × 5, then we won’t need to put

four 2’s in the same row. We get

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 1 2 1

0 1 1 2 1 2

2 1 1 1 1 1

1 2 1 1 1 1

2 1 1 1 1 1

1 2 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2)

and the resulting matrix does not have any negative entries. By Theorem 3.2, L(7, 6) � m + r = 8.

Notice that tdet A = 10, which is bigger than the bound of 8.Wewill show in Example 5 that L(7, 6) =
10.

Example 4. The block of q’s in our new construction does not have to be square. For example, if n = 5

andm = 6 (and hence q = 1), we will show that the following matrix with 3 × 4 block of 1’s has the

smallest possible tropical determinant in D(6, 5):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 2

0 2 1 2 1

2 1 1 1 1

2 1 1 1 1

2 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For general m, n with n > 2r + rq and nonzero q and r (which implies n > 3), we construct A in

a similar way. Let A1 ∈ M(l1, l2), A2 ∈ M(l1, n − l2), A3 ∈ M(n − l1, l2), and A4 ∈ M(n − l1, n − l2)
with l1, l2 � r. Set the entries of A4 equal to q. Let the entries of A2 be q’s and q + 1’s with exactly r
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q + 1’s in each column and with the q + 1’s evenly distributed among the rows so that the numbers

of q + 1’s in different rows differ by no more than 1. This can be easily accomplished by shifting the

q + 1’s along the columns. We then order the rows in A2 so that the row sums are non-decreasing as

we go from top of the matrix to the bottom. Matrix A3 is constructed in a similar way.

Let us assume for now that we were able to construct A1 and obtained a matrix A in D(m, n) with

all the entries less than or equal to q + 1. The tropical determinant of such a matrix A is less than or

equal to nq+ (l1 + l2). Since we are looking for amatrix inD(m, n)with the smallest possible tropical

determinant, we want to make l1 + l2 as small as possible.

Let �Ai be the sum of all the entries of the block Ai for i = 1 . . . 4. Then �A4 = q(n − l1)(n − l2).
Hence �A2 = (n − l2)m − q(n − l2)(n − l1) and

�A1 = l1m − �A2 = (l1 + l2)r + l1l2q − nr.

In order for �A1 to be non-negative, we need l1 and l2 to satisfy the inequality

(l1 + l2)r + l1l2q � nr.

To minimize tdet A, we would like to find l1, l2 � r that satisfy this inequality with l1 + l2 being as

small as possible. If the sum of two integers l1 + l2 is fixed, their product l1l2 is the largest when l1 = l2
or l2 = l1 + 1, so we can assume that either l1 = l2 = l or l1 = l + 1, l2 = l. In the first case, we need

l to satisfy ql2 + 2lr − rn � 0 and in the second, ql2 + l(2r + q) + r − rn � 0. For each of these cases

let’s finish the construction of the block A1 of the matrix A.

Let us consider the case when l is the smallest positive integer that satisfies

ql2 + 2lr − rn � 0

and A1 is of size l by l. Notice that our assumption n > 2r+rq implies that l is greater than or equal to r.

Let each entry of A1 be q, then the overall excess in the first l rows of Awould be r(n− l)−rl = rn−2lr.

To check that this excess is positive we need to verify that n � 2l. If n is even it’s enough to see that if

the plug in n/2 for l into ql2 + 2lr − rn � 0 the inequality is satisfied and by minimality of l we have

l � n/2. If n is odd we plug in (n− 1)/2 and again (using n > 2r + rq > 3r and q � 1) conclude that

n � 2l.

We want to distribute this positive excess rn − 2lr evenly (that is, the row sums differ by no more

than 1) among the l rows of A1. Let ql
2 + 2lr − rn = a � 0. We have

rn − 2lr

l
= ql2 − a

l
= ql − a

l
,

where a � 0. Hence if a = 0 the excess in each row is equal to ql and this can be remedied by letting

all the entries of A1 be equal to 0. If a = ql2 then there is no excess and A1 consists of all q’s.

In general, we need to construct A1 whose row and column sums are equal to a, where 0 � a � ql2

and a is distributed as evenly as possible among the rows and columns of A1 so that this distribution

agrees with the distribution of the excess in matrices A2 and A3. For this, first distribute a among the

rows making sure that the row sums are non-increasing as we go from the top of the matrix to the

bottom. Then distribute each row sum evenly among the entries swapping entries in the same row to

make sure that the distribution over the columns is even. Finally, we swap columns of A1 so that the

column sums are non-increasing as we go from left to right. We have proved.

Proposition 4.1. Let m = nq + r, where 0 < r < n. Additionally, assume that n > 2r + rq and q is

nonzero. Let l be the smallest positive integer that satisfies ql2 + 2lr − rn � 0. Then there exists a matrix

A ∈ D(m, n) such that tdet A � nq + 2l. That is, L(m, n) � nq + 2l.

We next consider the case when l1 = l+ 1, l2 = l and ql2 + l(2r + q)+ r − rn = a � 0. As before,

we first let A1 consist of all q’s. The excess over first (l + 1) rows is then equal to

(n − l)r − r(l + 1) = nr − 2lr − r = l2q + lq − a



1222 T. Dinitz et al. / Linear Algebra and its Applications 436 (2012) 1212–1227

and if we divide this by the number of the rows of A2 we get

nr − 2lr − r

l + 1
= lq − a

l + 1
.

Similarly, the overall excess over first l columns is (n − l − 1)r − rl = nr − 2lr − r, and when we

divide this by the number of columns we get

nr − 2lr − r

l
= l2q + lq − a

l
= (l + 1)q − a

l
.

It can be checked very similarly to the above that the excess nr − 2lr − r is nonnegative, that is, that

n � 2l + 1 if n > 2. Hence 0 � a � l(l + 1)q and we can construct an l + 1 by l matrix A1 with row

and column sums equal to a by distributing a evenly among the entries as before. We have proved

Proposition 4.2. Let m = nq + r, where 0 < r < n. Additionally, assume that n > 2r + rq and q is

nonzero. Let l be the smallest positive integer that satisfies ql2 + l(2r + q) − rn � 0. Then there exists a

matrix A ∈ D(m, n) such that tdet A � nq + 2l + 1. That is, L(m, n) � nq + 2l + 1.

Our last task is to show that the tropical determinant attains its minimum on the matrices that we

have constructed.

Theorem 4.3. Let m = nq+ r, where 0 � r < n. Additionally, assume that n > 2r + rq and q and r are

nonzero. Consider two inequalities

l2q + 2lr − rn � 0 (4.3)

l2q + l(2r + q) + r − rn � 0. (4.4)

Let l be the smallest non-negative integer that satisfies at least one of these inequalities. Then

Case (1) If this l satisfies only (4.4) then L(m, n) = qn + 2l + 1.

Case (2) If this l satisfies (4.3) (and, consequently (4.4)) then L(m, n) = qn + 2l.

Example 5. Let us use this theorem to find L(7, 6). Here m = 7, n = 6, q = 1, r = 1. Clearly,

n > 2r + rq. The two inequalities are l2 + 2l− 6 � 0 and l2 + 3l− 5 � 0. The smallest positive l that

satisfies at least one of them is 2 and it happens to satisfy both inequalities. Hence L(7, 6) = qn+2l =
6 + 4 = 10. See (4.2) above for an example of a matrix in D(7, 6) that has tropical determinant 10.

Proof. Notice that the hypotheses of the theorem imply that n > 2r + rq � 2 + 1 = 3, so in what

follows we can use the fact that n > 3.

LetA ∈ D(m, n).Weonlyneed to showthat tdet A � qn+2l+1 in thefirst case and tdet A � qn+2l

in the second case since we have constructed matrices in Propositions 4.1 and 4.2 whose tropical

determinants are less than or equal to (and, hence, by this theorem are equal to) these bounds.

Swap the rowsandcolumnsofA so that the largest (in termsof sumofdimensions)blockof elements

that are less than or equal to q is in the lower right corner of A. Let us call this block W . Then A is of

the form

A =
⎛
⎝ X Y

Z W

⎞
⎠ .

Let X be of size k1 by k2.

Lemma 4.4. Under the assumptions of the theorem, in both cases, we have r(k1 + k2) + k1k2q � rn.
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Proof. Let �W and �Y be the sums of all entries in blocks W and Y . Then �W � q(n − k1)(n − k2).
Hence

�Y = (n − k2)(qn + r) − �W � (n − k2)(qn + r) − q(n − k1)(n − k2).

On the other hand, �Y � k1(qn + r). Putting these two inequalities together we get

(n − k2)(qn + r) − q(n − k1)(n − k2) � k1(qn + r),

which is equivalent to r(k1 + k2) + k1k2q � rn. �

Let us assume that the conclusion of the theorem does not hold. That is, we assume in Case (1) that

tdet A � qn + 2l and in Case (2) tdet A � qn + 2l − 1.

Lemma 4.5. Under the assumptions of the proof of the Theorem that we have made so far, k1 + k2 � n.

Proof. If not, the sum of dimensions of W is less than n and by Hall’s Marriage Theorem 2.3 A has a

transversal with each of the entries being at least q+1. Hence tdet A � n(q+1). On the other hand, in

Case (2)weareunder the assumption that tdet A � qn+2l−1, andhencewegetn(q+1) � qn+2l−1

and then n � 2l − 1, which rewrites l � (n + 1)/2, but it is easy to see that l � n/2. For this, plug in

n/2 into (4.3) if n is even and (n − 1)/2 if n is odd and verify that both of them satisfy the inequality,

using the assumption that n � 4 . In Case(1) we get n(q + 1) � qn + 2l, that is, l � n/2. Again
plugging in (n − 1)/2 for l into (4.4) if n is odd and (n − 2)/2 if n is even, we get a contradiction. �

Lemma 4.6. Under the assumptions of the proof of the Theorem that we have made so far, we have

k1 + k2 � 2l + 1 in Case (1) and k1 + k2 � 2l in Case (2).

Proof. In Case (2) we have

(l − 1)2q + (l − 1)(2r + q) + r − rn < 0,

which rewrites r(2l − 1) + l(l − 1)q < rn. Let us assume that k1 + k2 � 2l − 1. Then k1k2 � l(l − 1)
and r(k1 + k2) + k1k2q � r(2l − 1) + l(l − 1)q < rn by the above, which contradicts Lemma 4.4.

Similarly, in Case (1) we have l2q + 2lr − rn < 0. Let us assume that k1 + k2 � 2l. Then k1k2 � l2

and r(k1 + k2) + k1k2q � 2lr + l2q < rn by the above, which contradicts Lemma 4.4. �

By Corollary 2.5 there exist transversals in each Y and Z whose entries are at least q + 1. Notice,

that since k1 + k2 � n, the transversals in Y and Z have respectively k1 and k2 entries.

Consider transversals inY and Z that have largest possible sumsof entries t1 and t2. Theunionof two

such transversals extends (in many different ways) to a transversal of A. Consider all the transversals

of A obtained by extending the union of a transversal in Y with sum of entries t1 and a transversal in Z

with sum of entries t2. Among all these transversals, pick one transversal in Y and one in Z such that

their union extends to the largest transversal in A. Let a1, . . . , ak1 and b1, . . . , bk2 be the entries of

those transversals in Y and Z. We have

t1 = a1 + · · · + ak1 � k1(q + 1) t2 = b1 + · · · + bk2 � k2(q + 1).

Cross out the rows and columns of A that intersect those largest transversals to get an (n− k1 − k2)
by (n − k1 − k2) submatrix Q of W . Let us assume first that Q has a transversal of all q’s.

Then, using Lemma 4.6, we get a contradiction in Case (2)

qn + 2l − 1 � tdet A � t1 + t2 + (n − k1 − k2)q

� k1(q + 1) + k2(q + 1) + qn − k1q − k2q

= qn + k1 + k2 � qn + 2l,

as well as in Case (1)
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qn + 2l � tdet A � t1 + t2 + (n − k1 − k2)q

� k1(q + 1) + k2(q + 1) + qn − k1q − k2q

= qn + k1 + k2 � qn + 2l + 1.

Next, assume that the largest transversal of Q has an entry that is less than or equal to q − 1. We

can assume that this largest transversal is the main diagonal of Q and the smallest entry of the largest

transversal is in the lower right corner. We have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 a1

c2 a2
...

. . .

ck1 ak1

e1 f1

e2 f2

. . .
...

d1 d2 . . . dk2 g1 g2 . . . ek3 i1 i2 . . . ik1

b1 h1

b2 h2

. . .
...

bk2 hk2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ek3 � q − 1, k3 = n− k1 − k2, and tdet Q = e1 + e2 +· · ·+ ek3 . Let f = f1 +· · ·+ fk3−1 + ek3 ,

g = g1 + · · · + gk3−1 + ek3 , c = c1 + · · · + ck1 , d = d1 + · · · + dk2 , h = h1 + · · · + hk2 , and

i = i1 + · · · + ik1 .

By an argument similar to that of Theorem 3.1 we get

f + g � k3ek3 + tdet Q . (4.5)

Next notice that each cj � aj since otherwise we could replace aj with cj and get a transversal of

Y with sum of entries bigger than t1. We also know that ij � q since it’s in the block W where all the

entries are less than or equal to q.

Assume thatwesimultaneouslyhave cj = aj and ij = q. Thenwecanpick {a1, a2, . . . , aj−1, cj, aj+1

. . . , ak1}, a transversal ofY with sumof entries t1, and {e1, . . . , ek3−1, ij}, a transversal ofQ . Notice that

sinceek3 < q = ij , this contradicts the fact thatwe initially chosea transversal {a1, . . . , ak1 , e1, . . . ek3 ,
b1, . . . , bk2} of A so that the sum of the a’s is t1, the sum of b’s is t2, and the overall sum of all the

entries in the transversal is the largest possible among such transversals.

This can be visualized by swapping columns n − k1 and n − k1 + j in A and noticing that we do

not change the value of the transversal in Y (as cj replaces aj) but make the transversal in Q bigger

(since i2 = q replaces ek3 � q − 1). For example, in the case j = 1 the swaps are: a1 ↔ c1 and ek3↔ i1.

Hence cj + ij � aj + q − 1 and summing these up over j we get c + i � t1 + qk1 − k1. Similarly,

d + h � t2 + qk2 − k2. Since the row and column sums of A are equal to qn + r we get

qn + r = c + f + h, qn + r = d + g + i.

Adding up these two equalities and using inequalities obtained above together with (4.5) we get



T. Dinitz et al. / Linear Algebra and its Applications 436 (2012) 1212–1227 1225

2qn + 2r = (c + i) + (d + h) + (f + g)

� t1 + qk1 − k1 + t2 + qk2 − k2 + k3ek3 + tdet Q

� t1 + qk1 − k1 + t2 + qk2 − k2 + k3(q − 1) + tdet Q

= t1 + t2 + qn − n + tdet Q .

From here,

tdet A � t1 + t2 + tdet Q � qn + 2r + n > qn + k1 + k2.

Here the inequality is strict as we have assumed r > 0. Next, by Lemma 4.6, in Case (1) we have

k1 + k2 � 2l + 1 and hence

tdet A > qn + k1 + k2 � qn + 2l + 1.

In Case (2) we have k1 + k2 � 2l and hence

tdet A > qn + k1 + k2 � qn + 2l

as claimed.

Notice that the above inequalities are proved under the assumption that the largest transversal of

Q has an entry that is less than or equal to q − 1. The fact that the inequalities are strict shows that

the minimum of tdet A is achieved on a matrix A such that there is a transversal of all q’s in Q . �

We sum up all the obtained results in:

Theorem 4.7. Let m = qn + r where 0 � r < n. Then

• If q = 0 then L(m, n) = n (Proposition 2.8).
• If r = 0 then L(m, n) = m (Proposition 2.10).
• If n/2 � r < n then L(m, n) = n(q + 1) (Theorem 3.3).
• If 0 < r < n/2 and n � 2r + rq (in particular, if n/3 � r < n/2) then L(m, n) = qn + 2r

(Theorem 3.4 Corollary 3.5).
• If n > 2r + rq and r, q �= 0 then L(m, n) = qn + 2l + 1 or qn + 2l (see the definition of l and

details in Theorem 4.3).

5. Upper bound on the tropical determinant

Let A = (aij) be an n by nmatrix. Recall that

tropdet (A) = minσ∈Sn{a1σ(1) + a2σ(2) + · · · + anσ(n)}.
In this section we solve Problem 4 which reformulates as:

Problem 6. Fixm, n ∈ N. Find the sharp upper bound U(m, n) on the tropical determinant tropdet A

over the set D(m, n).

This problem turns out to be much easier than our original problem. The solution is very similar to

the “not so easy” cases of Problem 5.

Theorem 5.1. Let m = qn + r where 0 � r � n/2. Then for any matrix A ∈ D(m, n) we have

tropdet A � qn. That is, U(m, n) � qn.

Proof. Let’s assume that there exists a matrix A ∈ D(m, n) such that

tropdet A > qn.
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We rearrange rows and columns of A so that the tropical determinant is equal to the sum of entries on

the main diagonal of A and the entries are non-decreasing along the main diagonal. That is, we may

assume that A is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

a2
...

. . .
...

an−1 bn−1

c1 . . . . . . cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.1)

where a1 � a2 � · · · � an and tropdet A = a1 + · · · + an. Notice that by our assumption we also

have

tropdet A = a1 + · · · + an > qn,

which implies an � q + 1 as an is the largest among the ai’s. Similarly to the proof of Theorem 3.1 we

get 2m � tropdet A + nan and hence

2qn + 2r = 2m � tropdet A + nan > qn + n(q + 1),

which implies 2r > n, and this contradicts the hypotheses of the theorem. �

Theorem 5.2. Let m = qn + r where n/2 � r < n. Then for any matrix A ∈ D(m, n) we have

tropdet A � qn + (2r − n). That is, U(m, n) � qn + (2r − n).

Proof. As in the previous theorem, we assume that A is of the form 5.1 with non-decreasing ai’s and

the sum of entries on the main diagonal equal to the tropical determinant.

Let us assume that tropdet A > qn + (2r − n). Then

tropdet A = a1 + · · · + an > qn + (2r − n) � qn,

which implies that an � q + 1 as an is the largest among the ai’s. As before we get

2m � tropdet A + nan > qn + (2r − n) + n(q + 1) = 2qn + 2r = 2m,

that is, 2m < 2m, a contradiction. �

Finally, we show that these bounds are sharp.

Theorem 5.3. Let m = qn + r where 0 � r < n/2. Then U(m, n) = qn.

Proof. We have already shown in Theorem 3.1 that U(m, n) � nq. Hence we only need to come up

with a matrix A in D(m, n) whose tropical determinant is nq. Our matrix Awill consist of four blocks

A =
⎛
⎝ A1 A2

A3 A4

⎞
⎠ ,

where A2 ∈ M(n − r, r) and A3 ∈ M(r, n − r) are matrices all of whose entries are equal to q, and

A4 ∈ M(r, r) has all of its entries equal to q+ 1. The upper left corner block A1 is of size n− r by n− r

and is constructed in the following way: Let the first r entries in the first row be equal to q + 1 and

the remaining n − 2r be equal to q. Here we are using the fact that 0 < n − 2r, which is equivalent

to the assumption of the theorem that r < n/2. The second row is then a shift by one slot of the first

row, the third is the shift of the second, etc.
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Clearly, the tropical determinant of A is at least nq as all its entries are greater than or equal to q.

By the Theorem 5.1, the tropical determinant of A is at most nq and hence tropdet A = nq. �

Theorem 5.4. Let m = qn + r where n/2 � r < n. Then U(m, n) = qn + 2r − n.

Proof. We need to construct a matrix A in D(m, n) whose tropical determinant is qn + 2r. As before,

let matrix A be of the form

A =
⎛
⎝ A1 A2

A3 A4

⎞
⎠ ,

where A2 ∈ M(n − r, r) and A3 ∈ M(r, n − r) are matrices all of whose entries are equal to q, and

A4 ∈ M(r, r) has all of its entries equal to q + 1. It remains to define A1 so that the sums of first n − r

rows and columns of A are equal to qn+ r. Let first all the entries of A1 be equal to q and then distribute

r between n − r entries in each row and column of A1. For this, divide r by n − r with a remainder to

get r = (n − r)q′ + r′, where 0 � r′ < r. Notice that q′ � 1 since r � n − r. Next, let the entries of

A1 be equal to q + q′ and then add a band of 1’s of width r′ < r to A1. Since n − r � r we can pick

a transversal of all q’s in A2 and A3 each consisting of n − r q’s. If we extend this to a transversal of A

we get a transversal with sum of entries equal to qn + 2r − n. This is the smallest transversal in A as

the largest number of q’s we could have in a transversal in A is 2(n− r) (at most n− r from first n− r

rows and at most n − r from first n − r columns) and all the entries in a transversal that are not equal

to q, are at least q + 1. We have shown

tropdet A = qn + 2r − n. �
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