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Abstract

We construct differential invariants for generic rank 2 vector distributions on n-dimensional manifolds, where n � 5. Our method
for the construction of invariants is completely different from the Cartan reduction-prolongation procedure. It is based on the
dynamics of the field of so-called abnormal extremals (singular curves) of rank 2 distribution and on the theory of unparameterized
curves in the Lagrange Grassmannian, developed in [A. Agrachev, I. Zelenko, Geometry of Jacobi curves I, J. Dynam. Control Syst.
8 (1) (2002) 93–140; II, 8 (2) (2002) 167–215]. In this way we construct the fundamental form and the projective Ricci curvature
of rank 2 vector distributions for arbitrary n � 5. In the next paper [I. Zelenko, Fundamental form and Cartan’s tensor of (2,5)-
distributions coincide, J. Dynam. Control. Syst., in press, SISSA preprint, Ref. 13/2004/M, February 2004, math.DG/0402195] we
show that in the case n = 5 our fundamental form coincides with the Cartan covariant biquadratic binary form, constructed in 1910
in [E. Cartan, Les systemes de Pfaff a cinque variables et les equations aux derivees partielles du second ordre, Ann. Sci. Ecole
Normale 27 (3) (1910) 109–192; reprinted in: Oeuvres completes, Partie II, vol. 2, Gautier-Villars, Paris, 1953, pp. 927–1010].
Therefore first our approach gives a new geometric explanation for the existence of the Cartan form in terms of an invariant degree
four differential on an unparameterized curve in Lagrange Grassmannians. Secondly, our fundamental form provides a natural
generalization of the Cartan form to the cases n > 5. Somewhat surprisingly, this generalization yields a rational function on the
fibers of the appropriate vector bundle, as opposed to the polynomial function occurring when n = 5. For n = 5 we give an explicit
method for computing our invariants and demonstrate the method on several examples.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A rank l vector distribution D on an n-dimensional manifold M or an (l, n)-distribution (where l < n) is a subbun-
dle of the tangent bundle T M with l-dimensional fibers. Two germs of vector distributions D1 and D2 at the point
q0 ∈ M are called equivalent, if there exist neighborhoods U and Ũ of q0 and a diffeomorphism F :U �→ Ũ such that
F∗D1(q) = D2(F (q)) for all q ∈ U and F(q0) = q0. The natural problem is to construct invariants of distributions
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w.r.t. this equivalence relation. Distributions are associated with Pfaffian systems and with control systems linear in
the control. So invariants of distributions are also invariants of the corresponding Pfaffian systems and state-feedback
invariants of the corresponding control systems.

The obvious (but very rough in the most cases) invariants of a distribution D at q are so-called the small and
the big growth vectors at q: The small growth vector is the tuple (dimD(q),dimD2(q),dimD3(q), . . .), where Dj

is the j th power of the distribution D, i.e., Dj = Dj−1 + [D,Dj−1], D1 = D, j � 2; the big growth vector is the
tuple (dimD(q),dimD2(q),dimD3(q), . . .), where Dj is defined by the following recursive formula Dj = Dj−1 +
[Dj−1,Dj−1], D1 = D. A simple estimation shows that at least l(n − l) − n functions of n variables are required to
describe generic germs of (l, n)-distribution, up to the equivalence (see [17] and [25] for precise statements). There are
only three cases, where l(n − l) − n is not positive: l = 1 (line distributions), l = n − 1, and (l, n) = (2,4). Moreover,
it is well known that in these cases generic germs of distributions are equivalent: for l = 1 it is just the classical
theorem about the rectification of vector fields without stationary points, for l = n−1 all generic germs are equivalent
to Darboux’s model, while for (l, n) = (2,4) they are equivalent to Engel’s model (see [9] or [24]). In all other cases
functional invariants should appear for generic distributions.

The case l = 2, n = 5 (the smallest dimensions, when functional parameters appear) was treated by E. Cartan in
[11] with his method of equivalence. For any (2,5)-distribution D with the small growth vector (2,3,5) he con-
structed the canonical coframe in some 14-dimensional manifold and used some structural functions of this coframe
in order to obtain an invariant homogeneous polynomial of degree 4 on each plane D(q). He called it the covari-
ant biquadratic binary form. We will call it for shortness the Cartan form. If the roots of the projectivization of the
Cartan form are different, then their cross-ratio is the functional invariant of the distribution. E. Cartan proved also
that the largest possible Lie algebra of infinitesimal symmetries for (2,5)-distributions with the small growth vector
(2,3,5) is the split real form G̃2 of the exceptional Lie algebra G2, there is only one, up to the equivalence, germ of
(2,5)-distribution with algebra of infinitesimal symmetries equal to G̃2, and this germ is also the unique one with the
identically vanishing Cartan form.

In the modern terminology, to any generic (2,5)-distribution the canonical Cartan G̃2-valued connection can be
assigned. The Cartan reduction-prolongation procedure was systematized by N. Tanaka in [15,16] for a special class
of distributions (see also survey [18]). This class contains (2,5)-distributions, but it does not contain, for example,
generic (2, n)-distributions with n > 5. To be more precise let us briefly describe the class of distributions for which
the Tanaka theory works. Suppose that a distribution D satisfies Dm = T M for some m ∈ N. Set D0(q) = 0 and
g−l (q) = Dl(q)/Dl−1(q), 1 � 1 � m. Given a point q ∈ M the space g(q) = ⊕−1

l=−m gl (q) can be endowed naturally
with the structure of the graded nilpotent Lie algebra, called also symbol algebra of D at q . Suppose that all symbol
algebras g(q) are isomorphic to one graded nilpotent Lie algebra g = ⊕−1

l=−m gl . In [15] it was shown that there exists

the maximal graded Lie algebra Sg = ⊕∞
l=−m ḡl such that its “negative part”

⊕−1
l=−m ḡl is isomorphic to g. The Lie

algebra Sg is called the universal prolongation of the symbol algebra g. In [16] N. Tanaka proved that if the Lie
algebra Sg is semisimple, then to any distribution with the same symbol algebra g at any point the canonical Cartan
Sg-valued connection can be assigned.

But the class of (2, n)-distributions, where n � 5, such that the universal prolongations of their symbol algebras
are semisimple, consists of distributions of only two types: (2,5)-distributions with the small growth vector (2,3,5),
considered by Cartan, and (2,6)-distributions with the small growth vector (2,3,4,5,6) and the big growth vector
(2,3,4,6) at any point (in both cases the universal prolongation is the split real form of G2, the last case is not
generic). The proof of this fact follows without difficulties from the results of [18] about the classification of all
graded simple Lie algebras S = ⊕∞

l=−m gl , which are universal prolongations of their negative part
⊕−1

l=−m gl : just
consider the case dimg−1 = 2 and make an appropriate analysis of Dynkin diagrams. So, the Tanaka theory cannot
be directly applied for generic (2, n)-distributions with n > 5. Other important points in the Tanaka approach are that
the symbol algebras should be isomorphic at different points and all constructions are heavily based on the type of
symbol. Note that already in the case of (2,6)-distributions with maximal possible small growth vector (2,3,5,6)

three different symbol algebras are possible.
In the present paper we develop a completely different method for the construction of functional (differential)

invariants of generic germs of bracket-generating (2, n)-distributions for arbitrary n � 5, which is based on a new
variational approach to differential invariants proposed recently by A. Agrachev (see [1,2], and also the Introduction
to [3]). Our constructions are independent of the symbol algebra and actually also of the small growth vector of
a distribution D. The algebras of infinitesimal symmetries do not play any role in the constructions. Besides, to
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construct our invariants we do not look for some canonical frame (on the contrary, the canonical frame may be found
with the help of our invariants, see, for example, [20, Section 10.5] there).

The main objects in the method are abnormal extremals of distributions, which are some special unparameterized
curves in the cotangent bundle (see Section 2.1 below). To a given extremal one can assign a special curve, the Ja-
cobi curve, in some Lagrange Grassmannian, i.e., in the set of all Lagrangian subspaces of some symplectic space
(see Section 2.2 below). The Jacobi curves can be seen as generalizations of the spaces of Jacobi fields along Rie-
mannian geodesics. Any symplectic invariant of the Jacobi curve (i.e., an invariant w.r.t. the natural action of the
linear Symplectic group on the Lagrange Grassmannian, where this Jacobi curve lives) produces an invariant of the
distribution itself. In [3] for any curve of so-called constant weight in a Lagrange Grassmannian we constructed the
canonical projective structure and the following two invariants w.r.t. the action of the linear Symplectic Group and
reparameterizations: a special degree 4 differential, the fundamental form, and a special function, the projective Ricci
curvature. These constructions are based on the notion of the cross-ratio of four “points” in a Lagrange Grassmannian
and some universal asymptotic of the cross-ratio of points on a curve in a Lagrange Grassmannian, when one glues
them together (see formula (2.5) below). Roughly speaking, the fundamental form of the curve is the first nontrivial
term of this asymptotic. We briefly describe all these constructions in Section 2.3.

The next steps of the method are to interpret the condition for the Jacobi curve of an abnormal extremal of a
distribution to be of the constant weight in terms of the distribution (Section 3.1) and to pass from the mentioned
invariants defined on a single Jacobi curve of each regular abnormal extremal of the distribution to the corresponding
invariants of the distribution itself (Sections 3.2 and 3.3). In this way for generic germ of (2, n)-distribution we
construct the fundamental form and the projective Ricci curvature. To describe what kind of object is the fundamental
form of the distribution D, let us denote by (Dl)⊥ ⊂ T ∗M the annihilator of the lth power Dl , namely

(1.1)(Dl)⊥ = {
(q,p) ∈ T ∗M: p · v = 0 ∀v ∈ Dl(q)

}
.

The fundamental form at the point q ∈ M is a special degree 4 homogeneous rational function defined, up to multipli-
cation on positive constant, on the linear space

(1.2)(D2)⊥(q) = (D2)⊥ ∩ T ∗
q M.

We show that for (2,5)-distribution with the small growth vector (2,3,5) the fundamental form at any point is a
polynomial (Theorem 3), while for n > 5 for generic (2, n)-distributions the fundamental form is a rational function,
which is not a polynomial (Theorem 5).

In the case of (2,5)-distribution with small growth vector (2,3,5) the fundamental form can be also realized as a
degree 4 polynomial on the plane D(q) for all q ∈ M (we call it the tangential fundamental form), i.e., it is an object
of the same nature as the Cartan form. In the next paper [22] we prove that for n = 5 our tangential fundamental
form coincides (up to constant factor −35) with the Cartan form. Therefore first the existence of the special degree
four differential on a curve in Lagrange Grassmannians gives the new geometric explanation for the existence of the
Cartan covariant biquadratic binary form. Secondly, our fundamental form can be seen as a natural generalization of
the Cartan form to the cases n > 5.

The projective Ricci curvature of the distribution is a function, defined on the subset of (D2)⊥\(D3)⊥, where the
fundamental form does not vanish. Note that the notion of the projective Ricci curvature is new even for n = 5. Using
this notion, we construct, in addition to the fundamental form, a special degree 10 homogeneous rational function,
defined, up to multiplication on a positive constant, on (D2)⊥(q) for any q ∈ M (for n = 5 this function is again a
polynomial).

In the case n = 5 we also give an explicit method for calculation of the fundamental form and the projective Ricci
curvature. The method is given by three very compact formulas in Theorem 2. The main advantage of it is that one
can work all the time with one arbitrary chosen local basis of the distribution, while in the Cartan method one had to
repeat the whole Cartan reduction-prolongation procedure for this distribution from the very beginning. We apply the
obtained formulas for several examples. In particular, we calculate our invariants for the distribution generated by the
rolling of two spheres of radiuses r and r̂ (r � r̂) without slipping and twisting. We show that the fundamental form of
such distribution is equal to zero iff r̂

r
= 3 and that the distributions with different ratios r̂

r
are not equivalent. Also we

give some sufficient conditions for the rigidity of an abnormal trajectory in terms of the canonical projective structure
and the fundamental form on it (see Proposition 4.5 below). In the forthcoming paper [23] we classify distributions
with the constant projective Ricci curvature and a big group of symmetries, giving models and proving uniqueness
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results (we announce some of these results at the end of the Section 3, see Theorem 4). In the forthcoming paper [12]
we construct the canonical frame for generic (2, n)-distributions with n > 5 and find the most symmetric case for any
such n. The main tool in this construction is the canonical projective structure on each abnormal extremal.

2. Preliminaries

2.1. Abnormal extremals

For (2, n)-distributions (where n � 4) with small growth vector of the type (2,3,4, or 5, . . .) one can distinguish
special (unparameterized) curves in the cotangent bundle T ∗M of M . For this let π :T ∗M �→ M be the canonical
projection. For any λ ∈ T ∗M , λ = (p, q), q ∈ M , p ∈ T ∗

q M , let ς(λ)(·) = p(π∗·) be the canonical Liouville form and
σ = −dς be the standard symplectic structure on T ∗M (here we prefer the sign “−” in the right-hand side, although
usually one defines the standard symplectic form on T ∗M without this sign). Let (Dl)⊥ ⊂ T ∗M be as in (1.1). The
set D⊥ is a codimension 2 submanifold of T ∗M . Consider the restriction σ |D⊥ of the form σ on D⊥. It is not difficult
to check that (see, for example [19, Section 2]): The set of points, where the form σ |D⊥ degenerates, coincides with
(D2)⊥. The set (D2)⊥\(D3)⊥ is a codimension 1 submanifold of D⊥. For each λ ∈ (D2)⊥\(D3)⊥ the kernel of
σ |D⊥(λ) is a two-dimensional subspace of TλD

⊥, which is transversal to Tλ(D
2)⊥. Hence ∀λ ∈ (D2)⊥\(D3)⊥ we

have

kerσ |(D2)⊥(λ) = kerσ |D⊥(λ) ∩ Tλ(D
2)⊥.

This equality implies that these kernels form a line distribution in (D2)⊥\(D3)⊥ and this line distribution defines a
characteristic 1-foliation AbD of (D2)⊥\(D3)⊥. The leaves of this foliation will be called the characteristic curves
of the distribution D. These characteristic curves are also called regular abnormal extremals of D (as in [14,19]).

Remark 2.1. The term abnormal extremal comes from Pontryagin Maximum Principle in Optimal Control. Defining
on the set of all curves tangent to D some functional (for example, length w.r.t. some Riemannian metric on M), one
can consider the corresponding optimal control problem with fixed endpoints. Abnormal extremals are the extremals of
this problem with vanishing Lagrange multiplier near the functional, so they do not depend on the functional but on the
distribution D itself. Projections of abnormal extremals to the base manifold M will be called abnormal trajectories.
Conversely, an abnormal extremal projected to the given abnormal trajectory will be called its lift. If some lift of the
abnormal trajectory is a regular abnormal extremal, then this abnormal trajectory will be called regular. Again from
Pontryagin Maximum Principle it follows that the set of all lifts of given abnormal trajectory can be provided with the
structure of linear space. The dimension of this space is called corank of the abnormal trajectory.

2.2. Jacobi curves

Given a segment γ of characteristic curve we construct a curve of Lagrangian subspaces, called the Jacobi curve,
in the appropriate symplectic space. For this for any λ ∈ (D2)⊥ denote by J (λ) the following subspace of Tλ(D

2)⊥

(2.1)J (λ) = (
Tλ(T

∗
π(λ)M) + kerσ |D⊥(λ)

) ∩ Tλ(D
2)⊥ = {

v ∈ Tλ(D
2)⊥: π∗v ∈ D

(
π(λ)

)}
.

Here Tλ(T
∗
π(λ)M) is tangent to the fiber T ∗

π(λ)M at the point λ (or vertical subspace of Tλ(T
∗M)). Actually J is rank

(n − 1) distribution on the manifold (D2)⊥\(D3)⊥.
Let Oγ be a neighborhood of γ in (D2)⊥ such that N = Oγ /(AbD|Oγ ) is a well-defined smooth manifold.

The quotient manifold N is a symplectic manifold endowed with a symplectic structure σ̄ induced by σ |(D2)⊥ .
Let φ :Oγ → N be the canonical projection on the factor. It is easy to check that φ∗(J (λ)) is a Lagrangian sub-
space of the symplectic space Tγ N for all λ ∈ γ . Let L(Tγ N) be the Lagrangian Grassmannian of the symplectic

space Tγ N , i.e., L(Tγ N) = {Λ ⊂ Tγ N : Λ

 = Λ}, where Λ



is the skew-symmetric complement of the subspace Λ,

Λ

 = {v ∈ Tγ N : σ̄ (v,Λ) = 0}. The Jacobi curve of the characteristic curve (regular abnormal extremal) γ is the

mapping Jγ :γ �→ L(Tγ N) satisfying

(2.2)Jγ (λ) = φ∗
(
J (λ)

)
, ∀λ ∈ γ.
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Remark 2.2. In [1] and [2] Jacobi curves of extremals were constructed in a purely variational way using the notion
of Lagrangian derivative (L-derivative) of the endpoint map associated with geometric structure (control system). The
reason to call these curves Jacobi curves is that they can be considered as the generalization of spaces of “Jacobi fields”
along Riemannian geodesics: in terms of these curves one can describe some optimality properties of corresponding
extremals. Namely, if the Jacobi curve of the abnormal extremal is a simple curve in the Lagrange Grassmannian,
then the corresponding abnormal trajectory is W 1∞-isolated (rigid) curve in the space of all curves tangent to the
distribution D with fixed endpoints (the curve in the Lagrange Grassmannian is called simple if one can choose a
Lagrangian subspace transversal to each Lagrange subspace belonging to the image of the curve). This result can be
found in [6] or [19]. Moreover, if some Riemannian metric is given on M , then under the same conditions on the Jacobi
curve the corresponding abnormal trajectory is the shortest among all curves tangent to the distribution D, connecting
its endpoints and sufficiently closed to this abnormal trajectory in W 1

1 -topology (see [7]) and even in C0-topology
(see [8]).

Jacobi curves are invariants of the distribution. They are unparameterized curves in the Lagrange Grassmannians.
In this way the problem of finding invariants of rank 2 distributions is reduced to the much more treatable problem of
finding symplectic invariants of unparameterized curves in Lagrange Grassmannians.

2.3. Principal invariants of curves in Grassmannian of half-dimensional subspaces

Let W be a 2m-dimensional linear space and Gm(W) be the set of all m-dimensional subspaces of W (i.e., the
Grassmannian of half-dimensional subspaces). Below we give definitions of the weight and the rank of the curve in
Gm(W) and describe briefly the construction of the fundamental form and the projective Ricci curvature for a curve
of constant weight in Gm(W) (for the details see [3]), which are invariants w.r.t. the action of General Linear Group
GL(W). Since any curve of Lagrange subspaces w.r.t. some symplectic form on W is obviously the curve in Gm(W),
all constructions below are valid for the curves in the Lagrange Grassmannian.

For given Λ ∈ Gm(W) denote by Λ� the set of all m-dimensional subspaces of W transversal to Λ, Λ� = {Γ ∈
Gm(W): Γ ∩Λ = 0}. Fix some ∆ ∈ Λ�. Then for any subspace Γ ∈ Λ� there exists a unique linear mapping from ∆

to Λ with graph Γ . We denote this mapping by 〈∆,Γ,Λ〉. So, Γ = {v + 〈∆,Γ,Λ〉v | v ∈ ∆}. Choosing the bases in
∆ and Λ one can assign to any Γ ∈ Λ� the matrix of the mapping 〈∆,Γ,Λ〉 w.r.t. these bases. In this way we define
the coordinates on the set Λ�.

Remark 2.3. Assume that W is endowed with some symplectic form σ̄ and ∆,Λ are Lagrange subspaces w.r.t. σ̄ .
Then the map v �→ σ̄ (v, ·), v ∈ ∆, defines the canonical isomorphism between ∆ and Λ∗. It is easy to see that Γ is a
Lagrange subspace iff the mapping 〈∆,Γ,Λ〉, considered as the mapping from Λ∗ to Λ, is self-adjoint.

Let Λ(t) be a smooth curve in Gm(W) defined on some interval I ⊂ R. We are looking for invariants of Λ(t)

w.r.t. the action of GL(W). Suppose that in some coordinates W ∼= R
m ×R

m and Λ(t) = {(x, Stx): x ∈ R
m} for some

m × m-matrix St . The curve Λ(·) is called ample at the point τ if the function t �→ det(St − Sτ ) has a zero of finite
order at τ . It is easy to see that this definition does not depend on the choice of the coordinates. The curve Λ(·) is
called ample if it is ample at any point.

Definition 1. The order of zero of the function t �→ det(St − Sτ ) at τ , where St is a coordinate representation of the
curve Λ(·), is called a weight of the curve Λ(·) at τ .

It is clear that the weight of Λ(τ) is an integral valued upper semicontinuous function of τ . Therefore it is locally
constant on the open dense subset of the interval of definition I .

Now suppose that the curve has the constant weight k on some subinterval I1 ⊂ I . It implies that for any two
distinct and sufficiently closed parameters t0, t1 ∈ I1 one has Λ(t0) ∩ Λ(t1) = 0. Hence for such t0, t1 the following
linear mappings

(2.3)
d

ds

〈
Λ(t0),Λ(s),Λ(t1)

〉∣∣∣∣ :Λ(t0) �→ Λ(t1),

s=t0



240 I. Zelenko / Differential Geometry and its Applications 24 (2006) 235–259
(2.4)
d

ds

〈
Λ(t1),Λ(s),Λ(t0)

〉∣∣∣∣
s=t1

:Λ(t1) �→ Λ(t0)

are well defined. Taking the composition of mapping (2.4) with mapping (2.3) we obtain an operator from the subspace
Λ(t0) to itself, which is actually the infinitesimal cross-ratio of two points Λ(ti), i = 0,1, together with two tangent
vectors Λ̇(ti) at these points in Gm(W) (see [3] for the details).

Theorem 1. (See [3, Lemma 4.2]) If the curve has the constant weight k on some subinterval I1 ⊂ I , then the following
asymptotic holds

(2.5)tr

(
d

ds

〈
Λ(t1),Λ(s),Λ(t0)

〉∣∣∣∣
s=t1

◦ d

ds

〈
Λ(t0),Λ(s),Λ(t1)

〉∣∣∣∣
s=t0

)
= − k

(t0 − t1)2
− gΛ(t0, t1),

where gΛ(t0, t1) is a smooth function in a neighborhood of diagonal {(t, t) | t ∈ I1}.

The function gΛ(t0, t1) is a “generating” function for invariants of the parametrized curve by the action of GL(2m).
The first coming invariant of the parametrized curve, the generalized Ricci curvature, is just gΛ(t, t), the value of gΛ

at the diagonal.
In order to obtain invariants for unparameterized curves (i.e., for one-dimensional submanifold of Gm(W)) we use

a simple reparameterization rule for the function gΛ. Indeed, let t = ϕ(τ) be a reparameterization of the curve Λ (with
original parameter t ). It follows directly from (2.5) that

(2.6)gΛ◦ϕ(τ0, τ1) = ϕ̇(τ0)ϕ̇(τ1)gΛ

(
ϕ(τ0), ϕ(τ1)

) + k

(
ϕ̇(τ0)ϕ̇(τ1)

(ϕ(τ0) − ϕ(τ1))2
− 1

(τ0 − τ1)2

)
.

In particular, putting τ0 = τ1 = τ , one obtains the following reparameterization rule for the generalized Ricci curvature

(2.7)gΛ◦ϕ(τ, τ ) = ϕ̇(τ )2gΛ

(
ϕ(τ),ϕ(τ)

) + k

3
S(ϕ),

where S(ϕ) is a Schwarzian derivative of ϕ,

(2.8)S(ϕ) = 1

2

ϕ(3)

ϕ′ − 3

4

(
ϕ′′

ϕ′

)2

= d

dt

(
ϕ′′

2ϕ′

)
−

(
ϕ′′

2ϕ′

)2

.

From (2.7) it follows that the class of local parameterizations, in which the generalized Ricci curvature is identically
equal to zero, defines a canonical projective structure on the curve (i.e., any two parameterizations from this class are
transformed one to another by Möbius transformation). This parameterizations are called projective. From (2.6) it
follows that if t and τ are two projective parameterizations on the curve Λ(·), t = ϕ(τ) = aτ+b

cτ+d
, and gΛ is the

generating function of Λ(·) w.r.t. the parameter t , then

(2.9)
∂2gΛ◦ϕ

∂τ 2
1

(τ, τ1)

∣∣∣∣
τ1=τ

= ∂2gΛ

∂t2
1

(t, t1)

∣∣∣∣
t1=t=ϕ(τ)

(
ϕ′(τ )

)4
,

which implies that the following degree four differential A= 1
2

∂2gΛ

∂t2
1

(t, t1)|t1=t (dt)4 on the curve Λ(·) does not depend

on the choice of the projective parametrization (by degree four differential on the curve we mean the following: for
any point of the curve a degree 4 homogeneous function is given on the tangent line to the curve at this point). This
degree four differential is called the fundamental form of the curve.

If t is an arbitrary (not necessarily a projective) parametrization on the curve Λ(·), then the fundamental form in
this parametrization is of the form A(t)(dt)4, where A(t) is a smooth function, called the density of the fundamental
form w.r.t. the parametrization t . The density A(t) can be expressed by the generating function gΛ in the following
way (see [3, Lemma 5.1]):

(2.10)A(t) = 1

2

∂2

∂t2
1

gΛ(t, t1)

∣∣∣∣
t1=t

− 3

5k
gΛ(t, t)2 − 3

20

d2

dt2
gΛ(t, t).
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Remark 2.4. Fix a parametrization t of the curve Λ(·). Suppose that in some coordinates W ∼= R
m × R

m and Λ(t) =
{(x, Stx): x ∈ R

m} for some m × m-matrix St . Then

(2.11)gΛ(t0, t1) = ∂2

∂t0∂t1
ln

det(St0 − St1)

(t0 − t1)k

(see relations (4.9), (4.11), and Lemma 4.2 in [3]). From this and (2.10) it follows that for any t0 the density A(t0)

w.r.t. the parametrization t of the fundamental form of Λ(·) at t0 is a rational expression w.r.t. some entries of the
matrices Ṡ(t0), S̈(t0), . . . , S

(j)(t0) for some j > 0.

If the fundamental form A of the curve Λ(·) is not zero at any point of Λ(·), then the canonical length element 4
√|A|

is defined on Λ(·). The length w.r.t. this length element gives the canonical parametrization of the unparameterized
curve, well defined up to translation. The Ricci curvature w.r.t. this parametrization is a functional invariant of the
unparameterized curve, which is called its projective Ricci curvature. If t = ϕ(τ) is the transition function between
the canonical parametrization τ and some projective parametrization t , then by (2.7) it follows that the projective
Ricci curvature is equal to k

3S(ϕ(τ )).

Remark 2.5. By construction, if τ is the canonical parametrization then A= ±(dτ)4.

Remark 2.6. Note that in the case m = 1 the fundamental form is always identically zero (see [3], Lemma 5.2 there): in
this case the only invariant of an unparameterized curve in the corresponding Lagrange Grassmannian is the canonical
projective structure on it.

Another important characteristic of the curve Λ(·) in Gm(W) is the rank of its velocities. Take a smooth moving
frame (E1(τ ), . . . ,Em(τ)) which spans the subspace Λ(τ) for any τ . Set

(2.12)D(i)Λ(τ) = span

{
dkEj (τ )

dτ k
: 0 � k � i, 1 � j � m

}
.

It is clear that the subspaces D(i)Λ(τ) do not depend on the choice of frames (E1(τ ), . . . ,Em(τ)). The rank r(τ ) of
Λ(·) at τ is equal by definition to the difference dimD(1)Λ(τ) − dimΛ(τ).

Remark 2.7. Note that the tangent space TΛGm(W) to any subspace Λ ∈ Gm(W) can be identified with the space
Hom(Λ,W/Λ) of linear mappings from Λ to W/Λ. Namely, take a curve Λ(t) ∈ Gm(W) with Λ(0) = Λ. Given
some vector l ∈ Λ, take a curve l(·) in W such that l(t) ∈ Λ(t) for all sufficiently small t and l(0) = l. Denote by
pr :W �→ W/Λ the canonical projection on the factor. It is easy to see that the mapping l �→ pr l′(0) from Λ to W/Λ

is a linear mapping depending only on d
dt

Λ(0). In this way we identify d
dt

Λ(0) ∈ TΛGm(W) with some element
of Hom(Λ,W/Λ) (a simple counting of the dimensions shows that these correspondence between TΛGm(W) and
Hom(Λ,W/Λ) is a bijection). By construction, the rank of the curve Λ(t) at the point τ in Gm(W) is actually equal
to the rank of the linear mapping corresponding to its velocity d

dt
Λ(t) at τ . If W is endowed with some symplectic

form σ̄ and L(W) is the corresponding Lagrange Grassmannian, then the tangent space TΛL(W) to any Λ ∈ L(W)

can be identified with the space of quadratic forms Q(Λ) on the linear space Λ. Namely, let Λ(t) and l(t) be as above
(where Gm(W) is substituted by L(W)). It is easy to see that the quadratic form l �→ σ̄ (l′(0), l) depends only on
d
dt

Λ(0). In this way we identify d
dt

Λ(0) ∈ TΛL(W) with some element of Q(Λ) (a simple counting of the dimensions
shows that these correspondence between TΛL(W) and Q(Λ) is a bijection).

Using the identification in the previous remark one can define the notion of monotone curves in the Lagrange
Grassmannian: the curve Λ(t) in L(W) is called nondecreasing (nonincreasing) if its velocities d

dt
Λ(t) at any point

are nonnegative (nonpositive) definite quadratic forms.
As we will see in the next section the rank of Jacobi curves of characteristic curves of a rank 2 distribution is

identically equal to 1. There is a simple criterion for rank 1 curves in the Lagrange Grassmannian to be of constant
weight in terms of the subspaces D(i)Λ(τ), defined above:
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Proposition 2.1. The curve Λ(·) of constant rank 1 in the Lagrange Grassmannian L(W) of a symplectic space W ,
dim W = 2m, has a constant finite weight in a neighborhood of the point τ iff

(2.13)dimD(m)Λ(τ) = 2m.

In this case the weight is equal to m2.

The proof of the proposition can be easily obtained by application of some formulas and statements of Sections 6
and 7 of [3] (for example, formulas (6.15), (6.16), (6.18), (6.19), Proposition 4, and Corollary 2 there).

Note also that from the fact that the rank of the curve is equal to 1 it follows easily that

(2.14)dimD(i)Λ(τ) − dimD(i−1)Λ(τ) � 1.

Therefore the condition (2.13) is equivalent to the relation dimD(i)Λ(τ) = m + i for all i = 1, . . . ,m.

3. Fundamental form and projective Ricci curvature of rank 2 distribution

3.1. Properties of Jacobi curves of regular abnormal extremals of rank 2 distributions

In this subsection we find under what assumption on germ of a (2, n)-distribution (n � 4) with small growth
vector of the type (2,3,4 or 5, . . .) one can apply the theory of Section 2.3. First note that the Jacobi curve Jγ of a
characteristic curve γ of the distribution D defined by (2.2) is not ample, because all subspaces Jγ (λ) have a common
line. Indeed, let δa :T ∗M �→ T ∗M be the homothety by a 
= 0 in the fibers, namely,

(3.1)δa(p, q) = (ap,q), q ∈ M, p ∈ T ∗
q M.

Denote by �e(λ) the following vector field called Euler field: �e(λ) = ∂
∂a

δa(λ)|a=1.

Remark 3.1. Obviously, if γ is a characteristic curve of D, then also δa(γ ) is.

It implies that the vectors φ∗(�e(λ)) coincide for all λ ∈ γ , so the line Eγ
def= {Rφ∗(�e(λ))} is common for all sub-

spaces Jγ (λ), λ ∈ γ (here, as in Introduction, φ :Oγ → N is the canonical projection on the factor N = Oγ /(AbD|Oγ ),
where Oγ is a sufficiently small tubular neighborhood of γ in (D2)⊥). Therefore it is natural to make an appropriate
factorization by this common line Eγ . Namely, by above all subspaces Jγ (λ) belong to the skew-symmetric comple-

ment E


γ of Eγ in Tγ N . Denote by p :Tγ N �→ Tγ N/Eγ the canonical projection on the factor-space.

The mapping J̃γ (λ) :γ �→ L(E


γ /Eγ ), defined by J̃γ (λ) = p(Jγ (λ)), is called the reduced Jacobi curve of the

characteristic curve γ . Note that

(3.2)dim J̃γ (λ) = n − 3.

Now the question is at which points λ ∈ γ the germ of the reduced Jacobi curve has constant weight? The answer
on this question can be easily done in terms of rank (n − 1) distribution J defined by (2.1) on (D2)⊥\(D3)⊥.

First note that for any λ ∈ γ one can make the following identification

(3.3)Tγ N ∼ Tλ(D
2)⊥/kerσ |(D2)⊥(λ).

Take on Oγ any vector field H tangent to the characteristic 1-foliation AbD and without stationary points, i.e.,
H(λ) ∈ kerσ |(D2)⊥(λ), H(λ) 
= 0 for all λ ∈ Oγ . Then it is not hard to see that under identification (3.3) one has

(3.4)J̃γ (etH λ) = (e−tH )∗
(
J (etH λ)

)
/ span

(
kerσ |(D2)⊥(λ), �e(λ)

)
where etH is the flow generated by the vector field H . Recall that for any vector field � in (D2)⊥ one has

(3.5)
d

dt

(
(e−tH )∗�

) = (e−tH )∗[H,�].
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Set J (0) = J and define inductively

(3.6)J (i)(λ) = J (i−1)(λ) + {[H,V ](λ): H ∈ kerσ |(D2)⊥ , V ∈ J (i−1) are vector fields
}

or shortly J (i) = J (i−1) + [kerσ |(D2)⊥ ,J (i−1)]. Then by definition of the operation D(i) (see (2.12)) and formulas
(3.4), (3.5) it follows that

(3.7)D(i)J̃γ (etH λ)|t=0 = J (i)(λ)/ span
(
kerσ |(D2)⊥(λ), �e(λ)

)
,

which in turn implies that

(3.8)dimD(i)J̃γ (etH λ)|t=0 − dimD(i−1)J̃γ (etH λ)|t=0 = dimJ (i)(λ) − dimJ (i−1)(λ).

Proposition 3.1. The (reduced) Jacobi curve of a characteristic curve of a (2, n)-distribution (n � 4) with small
growth vector of the type (2,3,4 or 5, . . .) is of rank 1 at any point.

Proof. First show that the (reduced) Jacobi curve has rank 1 at any point. For this, according to (3.8), it is sufficient
to prove that

(3.9)dimJ (1)(λ) − dimJ (λ) = 1.

Let X1, X2 be two vector fields, constituting a basis of the distribution D, i.e., for any q ∈ M D(q) =
span(X1(q),X2(q)). Since our study is local, we can always suppose that such basis exists, restricting ourselves,
if necessary, on some coordinate neighborhood instead of whole M . Given the basis X1, X2 one can construct a
special vector field tangent to the characteristic 1-foliation AbD . For this suppose that

(3.10)X3 = [X1,X2] modD, X4 = [X1,X3] modD2, X5 = [X2,X3] modD2.

Let us introduce the “quasi-impulses” ui :T ∗M �→ R, 1 � i � 5,

(3.11)ui(λ) = p · Xi(q), λ = (p, q), q ∈ M, p ∈ T ∗
q M.

Then by definitions (D2)⊥ = {λ ∈ T ∗M: u1(λ) = u2(λ) = u3(λ) = 0}. For given function G :T ∗M �→ R denote by
�G the corresponding Hamiltonian vector field defined by the relation σ( �G, ·) = dG(·). Then it is easy to show (see,
for example [19]) that

(3.12)kerσ |D⊥(λ) = span
(�u1(λ), �u2(λ)

)
, ∀λ ∈ D⊥,

(3.13)kerσ |(D2)⊥(λ) = R
(
(u4 �u2 − u5 �u1)(λ)

)
, ∀λ ∈ (D2)⊥\(D3)⊥.

The last relation implies that the following vector field

(3.14)�hX1,X2 = u4 �u2 − u5 �u1

is tangent to the characteristic 1-foliation (this field is actually the restriction on (D2)⊥ of the Hamiltonian vector field
of the function hX1,X2 = u4u2 − u5u1).

Suppose that dimD3(q) = 5 for any q (the case when dimD3(q) = 4 for some q can be treated similarly and it
is left to the reader). Let us complete the tuple (X1,X2,X3,X4,X5) to a local frame X1, . . . ,Xn on M . Similarly to
(3.11) define the “quasi-impulses” ui :T ∗M �→ R, 5 < i � n. The tuple of functions {ui}ni=1 defines coordinates on
any fiber T ∗

q M . Let us denote

(3.15)∂θ = u4∂u5 − u5∂u4, X = u5�u2 + u4 �u1 − (
u2

4 + u2
5

)
∂u3, F = �u3 + u4∂u1 + u5∂u2 .

On (D2)⊥\(D3)⊥, using (2.1) and (3.12), one has

(3.16)J = span(�hX1,X2, �e,X , ∂θ , ∂u6 , . . . , ∂un).

By direct computations, one can obtain that

(3.17)[�hX ,X , ∂ui
] ∈ span(�e, ∂θ , ∂u , . . . , ∂un), 6 � i � n,
1 2 6
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(3.18)[�hX1,X2 , ∂θ ] ≡X
(
mod

(
span(�hX1,X2, �e, ∂θ , ∂u6 , . . . , ∂un)

))
,

(3.19)[�hX1,X2 ,X ] ≡ −(
u2

4 + u2
5

)
F (modJ ).

From this and the definition of J (1) it follows that

(3.20)J (1) = RF ⊕J ,

which implies (3.9). Finally, from (3.15) and (3.19), it follows easily that σ̄ ([h,X ],X ) = (u2
4 + u2

5)
2 > 0, which

implies that the curve t �→ J̃γ (et �hx1,x2 λ) is nondecreasing (see Remark 2.7 and the sentence after it). �
Proposition 2.1, relation (2.14), Proposition 3.1 and relation (3.8) imply immediately the following characterization

of the points of (D2)⊥\(D3)⊥ in which the germ of the corresponding reduced Jacobi curve has a constant weight:

Proposition 3.2. For any λ ∈ (D2)⊥\(D3)⊥ the following relation holds

(3.21)dimJ (i)(λ) − dimJ (i−1)(λ) � 1, ∀i = 1, . . . , n − 3.

The germ of the reduced Jacobi curve J̃γ at λ ∈ γ has a constant weight iff

(3.22)dimJ (n−3)(λ) = 2n − 4.

In this case the weight is equal to (n − 3)2.

From (3.21) it follows that (3.22) is equivalent to relations J (i)(λ) = n − 1 + i for all i = 1, . . . , n − 3.
Denote by RD the set of all λ ∈ (D2)⊥\(D3)⊥ such that the germ of the reduced Jacobi curve J̃γ at λ ∈ γ has a

constant weight. By the previous proposition,

(3.23)RD = {
λ ∈ (D2)⊥\(D3)⊥: dimJ (n−3)(λ) = 2n − 4

}
.

Also ∀q ∈ M let

(3.24)RD(q) =RD ∩ T ∗
q M

and (D2)⊥(q) be as in (1.2). The question is whether for generic germ of a rank 2 distribution at q the set RD(q) is
not empty so that we can apply the theory, presented in Section 2.3.

For this first we will investigate the following question: suppose that the reduced Jacobi curve of the regular
abnormal extremal γ has constant weight; what can be said about the corresponding abnormal trajectory ξ = π(γ )?
Take some basis (X1,X2) for the distribution D in a neighborhood of the curve ξ such that ξ is tangent to the line
distribution spanned by X1 (since our considerations are local we always can do it, restricting ourselves, if necessary,
to some subinterval of ξ ). For any q ∈ ξ denote by T (i)

ξ (q) the following subspace of TqM :

(3.25)T (i)
ξ (q) = span

(
X1(q),X2(q), adX1(X2)(q), . . . , (adX1)

i(X2)(q)
)
.

It is easy to see that the subspaces T (i)
ξ (q) do not depend on the choice of the local basis (X1,X2) with the above

property, but only on the germs of the distribution D and the curve ξ at q . The property of the curve ξ to be an
abnormal trajectory can be described in terms of T (i)

ξ (q):

Proposition 3.3. If γ is an abnormal extremal in (D2)⊥\(D3)⊥ and ξ is the corresponding abnormal trajectory,
ξ = π(γ ), then ∀λ ∈ γ the following relations hold

(3.26)T (i)
ξ

(
π(λ)

) = π∗J (i)(λ),

(3.27)dimT (i)
ξ

(
π(λ)

) = dimJ (i)(λ) − (n − 3).
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Proof. Let, as before, H be some vector field without stationary points tangent to the characteristic 1-foliation AbD

in a neighborhood of γ . Also, let X̃ be some vector field in a neighborhood of γ such that π∗(span(H(λ), X̃ (λ))) =
D(π(λ)). Then from construction of J (i) and relations (3.17)–(3.19) it follows easily that

(3.28)J (i)(λ) = span
(
Tλ

(
(D2)⊥

(
π(λ)

))
,H(λ), X̃ (λ), adH(X̃ )(λ), . . . , (adH)i(X̃ )(λ)

)
.

Take some n-dimensional submanifold Σ of (D2)⊥, passing through γ transversal to the fibers (D2)⊥(π(λ)) for any
λ ∈ γ . By construction, π projects some neighborhood Σ̃ of γ in Σ bijectively to some neighborhood V of ξ in M .
Taking

X1
(
π(λ)

) = π∗H(λ), X2
(
π(λ)

) = π∗X̃ (λ), ∀λ ∈ Σ̃

and using Eqs. (3.25), (3.28), one obtains (3.26). Relation (3.27) follows from (3.26) and the fact that the fiber
(D2)⊥(q) is (n − 3)-dimensional. This concludes the proof. �
Corollary 1. The reduced Jacobi curve of the regular abnormal extremal γ has constant weight iff

(3.29)dimT (n−3)
ξ (q) = n − 1, ∀q ∈ ξ,

where ξ = π(γ ) is the abnormal trajectory corresponding to γ .

Remark 3.2. Note that a smooth curve ξ in M , satisfying (3.29) together with the following relation

(3.30)dimT (n−2)
ξ (q) = n − 1, ∀q ∈ ξ,

is a corank 1 abnormal trajectory (see Remark 2.1 for definition of corank). If in addition to (3.29) and (3.30) the
following relation holds

(3.31)T (n−3)
ξ (q) + D3(q) = TqM, ∀q ∈ ξ,

then the curve ξ is a regular abnormal extremal. In terms of a local basis (X1,X2) such that ξ is tangent to
the line distribution spanned by X1 the condition (3.31) is equivalent to the fact that for all q ∈ ξ the vectors
X1(q),X2(q), adX1(X2)(q), . . . , (adX1)

n−3(X2)(q), and [X2, [X1,X2]](q) span the whole tangent space TqM . The
assertions of this remark can be deduced without difficulties from the fact that abnormal trajectories are critical points
of certain endpoint mapping (or time × input/state mapping) and from the expression for the first differential for this
mapping (one can use, for example, [6, Section 4]).

Remark 3.3. If the germ of a regular abnormal trajectory ξ at some point q0 has corank 1, then the set of q ∈ ξ ,
satisfying (3.29), is open and dense set in some neighborhood of q0 in ξ .

Now we are ready to prove the following genericity result:

Proposition 3.4. For a generic germ of (2, n)-distribution D at q0 ∈ M (n � 4) the set RD(q0), defined in (3.24), is
a nonempty open set in Zariski topology on the linear space (D2)⊥(q0), i.e., RD(q0) is a complement to some proper
algebraic variety of (D2)⊥(q0).

Proof. First note that the set (D2)⊥(q0)\RD(q0) is an algebraic variety in the linear space (D2)⊥(q0). Indeed, choose
again a local frame {Xi}ni=1 on M such that X1,X2 constitute a local basis of D and X3, X4, X5 satisfy (3.10). Then
from (3.16), the definitions of the subspaces J (i)(λ) and the vector field �hX1,X2 it follows that as a basis of spaces
J (i)(λ) one can take some vector fields, which are linear combinations of the fields �uk , ∂ul

with polynomial in uj

coefficients (here k, l = 1, . . . , n, j = 4, . . . , n). Therefore the set

(3.32)(D2)⊥(q0)\RD(q0) = {
λ ∈ (D2)⊥(q0): J (n−3)(λ) < 2n − 4

}
can be represented as a zero level set of some polynomial in uj , j = 4, . . . , n.

Further the coefficients of this polynomial are some polynomials in the space of ln-jets of (2, n)-distributions for
some natural ln. We will denote this space by Jet2,n(ln). It implies that there exists an open set Un in Zariski topology
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of Jet2,n(ln) such that the set RD(q0) is not empty iff the ln-jet of D at q0 belongs to Un. Note that if the set Un is not
empty, then it is dense in Jet2,n(ln). Therefore in order to prove our proposition it is sufficient to give an example of
germ of (2, n)-distribution such that RD is nonempty. As such example one can take the distribution D0 spanned by
the following vector fields

(3.33)X1 = ∂

∂x1
, X2 = ∂

∂x2
+

n−3∑
i=1

xi
1

i!
∂

∂xi+2
+ x1x2

∂

∂xn

,

where (x1, . . . , xn) are some local coordinates on M , q0 = (0, . . . ,0). Using Remark 3.2 and Corollary 1, it is easy to
see that the curve (x1,0, . . . ,0) is a regular abnormal trajectory and its lift has the reduced Jacobi curve of constant
weight. This implies that RD0(q0) 
= ∅. �

Below we give an explicit description of the set RD for n = 4,5 and 6. In the case n = 4, small growth vector
(2,3,4), from (3.19) it follows immediately that RD = (D2)⊥\(D3)⊥. A similar result holds in the case n = 5:

Proposition 3.5. For any (2,5)-distribution with small growth vector (2,3,5) the following relation holds

(3.34)RD = (D2)⊥\(D3)⊥.

Proof. Let the vector fields �hX1,X2 and F be as in (3.14) and (3.15) respectively. Then, using (3.20), one can obtain
by direct computations that

(3.35)[�hX1,X2 ,F ] = u4 �u5 − u5 �u4 (modJ (1))

(actually this formula holds for all n � 5). Hence dimJ (2)(λ) = dimJ (1)(λ) + 1 = 6 for all λ ∈ (D2)⊥\(D3)⊥, which
implies (3.34). �
Remark 3.4. Let D be a (2, n)-distribution (n � 5) such that dimD3(q) = 4 for any q in some neighborhood U .
Then from (3.35) it follows easily that J (2)(λ) = J (1)(λ) for any q ∈ π(U). It implies that RD(q) = ∅ for any such
q and the theory of Section 2.3 cannot be directly applied for the reduced Jacobi curves. However it is easy to see
that in the considered case D is either the Goursat distribution or by the factorization of the ambient manifold by the
corresponding characteristics of D2 (or series of such factorizations) one can get from this distribution the distribution
D̃, satisfying dim D̃3 = 5.

In the case of a (2,6)-distribution D with growth vector of the type (2,3,5, . . .) the set RD can be described
as follows: Take some λ̄ = (p̄, q) ∈ (D3)⊥(q) and some vector v ∈ D(q). Let ν be some vector field tangent to D

such that ν(q) = v. Also, let (X1,X2) be a local basis of the distribution. Then it is easy to see that the number
p̄ · [ν, [ν, [X1,X2]]](q) does not depend on the choice of the vector field ν. Consider the following quadratic form

(3.36)v �→ Qλ̄,X1,X2
(v)

def= p̄ · [ν,
[
ν, [X1,X2]

]]
(q)

on D(q). A change of the local basis of the distribution causes to the multiplication of this quadratic form on a nonzero
constant (which is equal to the determinant of the transition matrix between the bases). For the (2,6)-distribution D

the linear space (D3)⊥(q) is one-dimensional. Therefore the zero level set K(q) = {v ∈ D(q): Qλ̄,X1,X2
(v) = 0} of

Qλ̄,X1,X2
is the same for all λ̄ ∈ (D3)⊥(q)\(0, q) and any local basis X1,X2 of the distribution.

Proposition 3.6. For a (2,6)-distribution D with small growth vector of the type (2,3,5, . . .) the following relation
holds

(3.37)RD(q) = {
λ ∈ (D2)⊥(q): π∗

(
kerσ |(D2)⊥(λ)

)
/∈ K(q)

}
.

The set RD(q) 
= ∅ iff the small growth vector of D at q is equal to (2,3,5,6).

Proof. As before, complete some basis X1,X2 of D to the frame {Xi}6
i=1 on M such that X3, X4, X5 satisfy (3.10).

Let ck be the structural functions of this frame, i.e., the functions, satisfying [Xi,Xj ] = ∑6
ck Xk . Then from
ji k=1 ji
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(3.35) by straightforward calculation it follows that

(3.38)[�hX1,X2, u4 �u5 − u5 �u4] = [u4 �u2 − u5 �u1, u4 �u5 − u5�u4] = α6 �u6
(
mod span(�u4, �u5, J

(1))
)
,

where

(3.39)α6 = c6
52u

2
4 − (c6

42 + c6
51)u4u5 + c6

41u
2
5.

From (3.35) and (3.38) it follows that if J (3)(λ) = J (2)(λ), then α6 = 0. Conversely, if α6 = 0 then by (3.38) J (3)(λ) ⊂
span(�u4, �u5, J

(1)). But by construction J (3)(λ) ⊂ �e(λ)



(where �e(λ)



is the skew-symmetric complement of �e(λ) in
TλT

∗M). This together with (3.35) implies that J (3)(λ) = J (2)(λ). So, λ ∈ RD(q) iff α6(λ) 
= 0. To prove (3.37) it
remains to note that

Qλ̄,X1,X2

(
π∗(�hX1,X2(λ)

) = Cα6(λ),

where C is a nonzero constant. The last assertion of the proposition follows from the fact that α6 ≡ 0 iff c6
ji = 0,

where i = 1,2, j = 4,5, which is equivalent to the condition dimD4(q) = 5. �
3.2. Fundamental form of distribution and its properties

For any λ ∈ RD take the characteristic curve γ , passing through λ. Let Aλ be the fundamental form of the reduced
Jacobi curve J̃γ of γ at λ. By construction Aλ is a degree 4 homogeneous function on the tangent line to γ at λ. In
the previous subsection to any (local) basis (X1,X2) of the distribution D we assigned the vector field �hX1,X2 tangent
to the characteristic 1-foliation AbD (see (3.14)). Let

(3.40)AX1,X2(λ) =Aλ

(�hX1,X2(λ)
)
.

In this way to any (local) basis (X1,X2) of the distribution D we assign the function AX1,X2 on RD . If we consider the

parametrization t �→ J̃γ (et �hX1,X2 λ) of the reduced Jacobi curve of γ , then AX1,X2(λ) is the density of the fundamental
form of this curve w.r.t. the parametrization t at t = 0.

Let X̃1, X̃2 be another basis of the distribution D. By direct computation one has

(3.41)�h
X̃1,X̃2

(λ) = ∆2(π(λ)
)�hX1,X2(λ),

where ∆ is equal to the determinant of the transition matrix from the basis (X1,X2) to the basis (X̃1, X̃2). From this
and the homogeneity of A it follows that

(3.42)AX̃1,X̃2
(λ) = ∆

(
π(λ)

)8
AX1,X2(λ).

Therefore for any q ∈ M such that RD(q) 
= ∅ the restriction of AX1,X2 to RD(q) is the well defined function, up
to the multiplication on a positive constant, or the well defined element of the “positive projectivization” of the space
of functions on RD(q). We will call it the fundamental form of the rank 2 distribution D at the point q . From now on
we will write �h instead of �hX1,X2 and A instead of AX1,X2 without special mentioning.

Remark 3.5. According to Section 2.3 (see the sentence after formula (2.8)) any abnormal extremals of (2, n)-
distribution D lying in RD carries the canonical projective structure. It can be shown that in the case n = 4, small
growth vector (2,3,4), our canonical projective structure defined on abnormal extremals (and therefore also on abnor-
mal trajectories) coincides with the projective structure on abnormal trajectories, introduced in [10] (see Proposition 5
there). Note also that by Remark 2.6 and relation (3.2) in the case n = 4 the fundamental form is identically equal to
zero.

Remark 3.6. Using Remark 2.4 it is easy to see that the fundamental form A(λ) is a smooth function for all λ ∈ RD :
one can choose the coordinate representation of the curves t �→ J̃γ (et �hλ) smoothly depending on λ and use the fact
that the operation of differentiation by t in coordinates corresponds to the operation ad �h due to the relation (3.5).

In fact one can say much more about the algebraic structure of the fundamental form of distribution.
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Proposition 3.7. For any q ∈ M such that RD(q) 
= ∅ the fundamental form of the rank 2 distribution D at the point
q is a degree 4 homogeneous rational function on (D2)⊥(q), defined up to the multiplication on a positive constant.

Proof. First let us prove that the fundamental form at q is a rational function on (D2)⊥(q). From Remark 2.4 it
follows that in order to do this it is sufficient to show that the parametrized reduced Jacobi curves t �→ J̃γ (et �hλ) have

coordinate representations t �→ Sλ(t) such that for any natural l all entries of S
(l)
λ (0), as functions of λ, are rational

functions on the fibers (D2)⊥(q). For this choose the following (2n − 3) vector fields on (D2)⊥:

(3.43)∂θ , X, ∂u6, . . . , ∂un, F, Y4, . . . , Yn−1, Z, �e, �h,

where

Yk = uk+1 �uk − uk �uk+1 +
3∑

i=1

(
uk+1{ui, uk} − uk{ui, uk+1}

)
∂ui

,

Z = u4 �u5 + u5 �u4 +
3∑

i=1

(
u4{ui, u5} + u4{ui, u4}

)
∂ui

(here {ui, uj } are Poisson brackets of the Hamiltonians ui and uj , i.e., {ui, uj } = duj (�ui)). Let

(3.44)Wλ = (�e(λ)

 ∩ Tλ(D

2)⊥
)
/ span

(
kerσ |(D2)⊥(λ), �e(λ)

)
(here by �e(λ)



we mean the skew-symmetric complement of �e(λ) in TλT

∗M). Then under identification (3.3) the
reduced Jacobi curve J̃γ lives in the Lagrange Grassmannian L(Wλ) of the symplectic space Wλ. Denote by P the set
of all λ ∈ (D2)⊥ such that the vector fields (3.43) at λ constitute a basis of Tλ(D

2)⊥. Evidently, for any q ∈ M the set
P ∩ (D2)⊥(q) is a nonempty open set in Zariski topology on the linear space (D2)⊥(q). For any λ ∈ (D2)⊥ the first
2(n − 3) vectors in (3.43) belong to �e(λ)



. Therefore, for any λ ∈ P the images of the first 2(n − 3) vectors in (3.43)

under the canonical projection from �e(λ)

 ∩ Tλ(D

2)⊥ to Wλ constitute the basis of the space Wλ. Introduce in Wλ

the coordinates w.r.t. this basis and suppose that t �→ Sλ(t) is the corresponding coordinate representation of the curve
t �→ J̃γ (et �hλ), J̃γ (et �hλ) = {x,Sλ(t)): x ∈ R

n−3}. Then from (3.4) and (3.5) it follows that for any natural l all entries

of the matrix S
(l)
λ (0) are some rational combinations of some coordinates of the vectors of the type (ad �h)j (∂θ )(λ),

(ad �h)j (X)(λ), or (ad �h)j (∂ui
)(λ), w.r.t. the basis (3.43) (here 6 � i � n, 1 � j � l). But from the form of the vector

fields Yi and Z it is clear that these coordinates are also rational functions on the fibers (D2)⊥(q). So, for any q the
fundamental form at q is a rational function on the fiber (D2)⊥(q).

Now let us show that the fundamental form is homogeneous of degree 4. Indeed, it is clear that δa ∗J (λ) =
J (δa(λ)), where δa is the homothety defined by (3.1). This together with Remark 3.1 implies that δa ∗ induces the
symplectic transformation from Wλ to Wδa(λ), which transforms the curve J̃γ to the curve J̃δa(γ ). Therefore the fol-
lowing identity holds

(3.45)Aδa(λ)

(
δa ∗ �h(λ)

) =Aλ

(�h(λ)
)
.

On the other hand, one has �h(δa(λ)) = aδa ∗ �h(λ). Hence

A(δaλ) =Aδa(λ)

(�h(
δa(λ)

)) = a4Aδa(λ)

(
δa ∗ �h(λ)

) = a4Aλ

(�h(λ)
) = a4A(λ).

So A is homogeneous of degree 4. �
In the case n = 5 and small growth vector (2,3,5) one can look at the fundamental form of the distribution D

from the different point of view. In this case (in contrast to generic (2, n)-distributions with n > 5) there is only
one abnormal trajectory starting at the given point q ∈ M in the given direction (tangent to D(q)). All lifts of this
abnormal trajectory can be obtained one from another by the homothety. So they have the same, up to a symplectic
transformation, Jacobi curve. It means that one can consider the Jacobi curve and the fundamental form of this curve
on the abnormal trajectory instead of the abnormal extremal. Therefore, to any q ∈ M one can assign a homogeneous
degree 4 rational function Åq on the plane D(q) in the following way: Åq(v) = Aλ(H), where v ∈ D(q) and λ, H
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satisfy

(3.46)π(λ) = q, π∗H = v, H ∈ kerσ |(D2)⊥(λ).

By above Aλ(H) is the same for any choice of λ and H , satisfying (3.46). Åq will be called the tangential fundamental
form of the distribution D at the point q . We stress that the tangential fundamental form is the well defined function
on D(q) and not the class of functions under the positive projectivization.

The analysis of the algebraic structure presented in the proof of Proposition 3.7 is rather rough. In the sequel we
will show that for n = 5 the fundamental form is always a polynomial on (D2)⊥(q) (defined up to the multiplication
on a positive constant), while for n > 5 it is a nonpolynomial rational function for generic distributions.

3.3. Projective curvature of rank 2 distribution with nonzero fundamental form

Denote by ℵD = {λ ∈RD: Aλ 
= 0}. Suppose that the set ℵD is not empty. Note that for n = 5 the set ℵD is empty
iff the distribution is locally equivalent to so-called free nilpotent (2,5)-distribution (see Example 1 and Remark 4.4
in Section 3).

For any λ ∈ ℵD take the characteristic curve γ , passing through λ. Since by assumptions the fundamental form
at λ is not zero, the projective Ricci curvature ρD(λ) of the reduced Jacobi curve J̃γ is well defined at λ. So, to the
given rank 2 distribution D we assign canonically the function ρD :ℵD �→ R. This function is called the projective
Ricci curvature of the distribution D.

Note also that on the germ of γ at λ the canonical parameter is defined, up to the shift (see the paragraph before
Remark 2.5). Therefore one can define the vector field

−→
hA on ℵD by taking the velocities of the characteristic curves

parameterized by their canonical parameters. The vector field
−→
hA is invariant of the distribution D and it will be used

in [23] for the construction of the canonical frame for rank 2 distributions with nonzero fundamental form.
Now we give a method for computation of the projective curvature ρD . Take some local basis X1,X2 of D. Let

again �h = �hX1X2 and A = AX1,X2 be as in (3.14), and (3.40) respectively. Also denote by ρ(λ) the Ricci curvature of

the parameterized curve t �→ J̃γ (et �hλ) at the point t = 0. Note that in contrast to ρD(λ), the function ρ(λ) certainly
depends on the local basis of distribution. Using the reparameterization rule (2.7) for the Ricci curvature, one can
easily express the projective curvature ρD(λ) by ρ(λ) and A(λ). Indeed, let τ be the canonical parameter on γ and t

be the parameter defined by the field �h such that τ = 0 and t = 0 correspond to the point λ. Then by Remark 2.5

(3.47)dτ = ∣∣A(et �hλ)
∣∣1/4

dt.

Suppose that t = ϕ(τ). Then by (3.47)

(3.48)ϕ′(τ ) = ∣∣A(et �hλ)
∣∣−1/4

.

Recall that the Jacobi curves under consideration have the weight equal to (n − 3)2. So, by (2.7)

(3.49)ρD(eτ �hAλ) = ρ(eϕ(τ)�hλ)
(
ϕ′(τ )

)2 + (n − 3)2

3
S
(
ϕ(τ)

)
,

where S(ϕ) is Schwarzian of the function ϕ, defined by (2.8). One can check that Schwarzian satisfies the following
relation

(3.50)S
(
ϕ(τ)

) = −y′′(τ )/y(τ ),

where y(τ) = (ϕ′(τ ))−1/2. By (3.48), y(τ) = |A(eτ
−→
hAλ)|1/8. Substituting this in (3.50) and using (3.47) one can easily

obtain

(3.51)S
(
ϕ(τ)

) = �h ◦ �h(∣∣A(et �hλ)
∣∣−1/8)∣∣(A(et �hλ)

∣∣−3/8
.

Finally, substituting (3.51) with τ = 0 in (3.49) we get

(3.52)ρD = ρ√|A| + (n − 3)2

3

�h ◦ �h(|A|−1/8)

8
√|A|3 = ρA2 − (n−3)2

24
�h ◦ �h(A)A + 3(n−3)2

64 (�h(A))2

|A|5/2
.
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Since ρD is the well defined function on ℵD and A is the degree 4 homogeneous rational function on (D2)⊥(q),
defined up to the multiplication on a positive constant, the numerator

(3.53)C def= ρA2 − (n − 3)2

24
�h ◦ �h(A)A + 3(n − 3)2

64

(�h(A)
)2

of the right-hand side of (3.52) is a degree 10 homogeneous function on (D2)⊥(q), defined up to the multiplication
on a positive constant. This function will be called the second fundamental form of the distribution D. The second
fundamental form is a rational function on (D2)⊥(q), because both A and ρ are rational (the rationality of ρ follows
from the same arguments as in Proposition 3.7). In the case n = 5 the second fundamental form is a polynomial, which
will follow from Theorem 3 below.

4. Calculation of invariants of (2,5)-distributions

In the present section we give explicit formulas for the computation of the fundamental form and the projective
Ricci curvature in the case of rank 2 distributions on a 5-dimensional manifold (as before we assume that the small
growth vector is (2,3,5)). We demonstrate these formulas on several examples, showing simultaneously the efficiency
of our invariants in proving that rank 2 distributions are not equivalent.

4.1. Preliminaries

In order to obtain these formulas we need more facts from the theory of curves in the Grassmannian Gm(W) of
half-dimensional subspaces (here dimW = 2m) and in the Lagrange Grassmannian L(W) w.r.t. to some symplectic
form on W , developed in [3,4]. Below we present all necessary facts from the mentioned papers together with several
new useful arguments.

Fix some Λ ∈ Gm(W). As before, let Λ� be the set of all m-dimensional subspaces of W transversal to Λ. Note that
any ∆ ∈ Λ� can be canonically identified with W/Λ. Keeping in mind this identification and taking another subspace

Γ ∈ Λ� one can define the operation of subtraction Γ − ∆ as follows: Γ − ∆
def= 〈∆,Γ,Λ〉 ∈ Hom(W/Λ,Λ). It

is clear that the set Λ� provided with this operation can be considered as an affine space over the linear space
Hom(W/Λ,Λ).

Consider now some ample curve Λ(·) in Gm(W). Fix some parameter τ . By assumptions Λ(t) ∈ Λ(τ)� for all
t from a punctured neighborhood of τ . We obtain the curve t �→ Λ(t) ∈ Λ(τ)� in the affine space Λ(τ)� with the
pole at τ . We denote by Λτ (t) the identical embedding of Λ(t) in the affine space Λ(τ)�. First note that the velocity
∂
∂t

Λτ (t) is well defined element of Hom(W/Λ,Λ). Fixing an “origin” in Λ(τ)� we make Λτ (t) a vector function
with values in Hom(W/Λ,Λ) and with the pole at t = τ . Obviously, only free term in the expansion of this function
to the Laurent series at τ depends on the choice of the “origin” we did to identify the affine space with the linear
one. More precisely, the addition of a vector to the “origin” results in the addition of the same vector to the free term
in the Laurent expansion. In other words, for the Laurent expansion of a curve in an affine space, the free term of
the expansion is an element of this affine space. Denote this element by Λ0(τ ). The curve τ �→ Λ0(τ ) is called the
derivative curve of Λ(·). If we restrict ourselves to the Lagrange Grassmannian L(W), i.e., if all subspaces under
consideration are Lagrangian w.r.t. some symplectic form σ̄ on W , then from Remark 2.3 it follows easily that the
set Λ�

L of all Lagrange subspaces transversal to Λ can be considered as an affine space over the linear space of all
self-adjoint mappings from Λ∗ to Λ, the velocity ∂

∂t
Λτ (t) is the well defined self-adjoint mappings from Λ∗ to Λ,

and the derivative curve Λ0(·) consists of Lagrange subspaces.
Now suppose that the curve Λ(·) is nondecreasing rank 1 curve in L(W). Then ∂

∂t
Λτ (t) is a nonpositive definite

rank 1 self-adjoint map from Λ∗ to Λ and for t 
= τ there exists a unique, up to the sign, vector w(t, τ ) ∈ Λ(τ) such
that for any v ∈ Λ(τ)∗ one has 〈v, ∂

∂t
Λτ (t)v〉 = −〈v,w(t, τ )〉2. The properties of the vector function t �→ w(t, τ )

for a rank 1 curve of constant weight in L(W) can be summarized as follows ( see [3, Section 7, Proposition 4 and
Corollary 2]):
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Proposition 4.1. If Λ(·) is a rank 1 curve of constant weight in L(W), then for any τ ∈ I the function t �→ w(t, τ ) has
a pole of order m at t = τ . Moreover, if we write down the expansion of t �→ w(t, τ ) in Laurent series at t = τ ,

w(t, τ ) =
m∑

i=1

ei(τ )(t − τ)i−1−l + O(1),

then the vector coefficients e1(τ ), . . . , em(τ) constitute a basis of the subspace Λ(t).

The basis of the vectors e1(τ ), . . . , em(τ) from the previous proposition is called the canonical basis of Λ(τ).
Further for given τ take the derivative subspace Λ0(τ ) and let f1(τ ), . . . , fm(τ) be a basis of Λ0(τ ) dual to the
canonical basis of Λ(τ), i.e. σ̄ (fi(τ ), ej (τ )) = δi,j . The basis ({ei(τ )}mi=1, {fi(τ )}mi=1) of whole symplectic space W

is called the canonical moving frame of the curve Λ(·). Calculation of the structural equation for the canonical moving
frame is another way to obtain symplectic invariants of the curve Λ(·).

For the reduced Jacobi curves of abnormal extremals of a (2,5)-distribution m = 2. In this case the structural
equation for the canonical moving frame has the following form:

(4.1)




e′
1 = 3e2,

e′
2 = 1

4ρe1 + 4f2,

f ′
1 = −( 35

36A − 1
8ρ2 + 1

16ρ′′)e1 − 7
16ρ′e2 − 1

4ρf2,

f ′
2 = − 7

16ρ′e1 − 9
4ρe2 − 3f1,

where ρ and A are the Ricci curvature and the density of the fundamental form of the parametrized curve Λ(·)
respectively (for the proof see [4, Section 2, Proposition 7]). One can express e2(τ ) by e′

1(τ ) using the first equation

of (4.1), then f2(τ ) by e1(τ ) and e′′
1(t) using the second equation of (4.1), after that f1(τ ) by e1(τ ), e′

1(τ ) and e
(3)
1

using the forth equation of (4.1). Finally substituting all this to the third equation of (4.1) one obtains the following
useful

Proposition 4.2. Suppose that Λ(t) is a rank 1 curve of constant weight in L(W) and e1(t) is the first vector in the
canonical basis of Λ(t). Then e1(t) satisfies the following relation:

(4.2)e
(4)
1 =

(
35A − 81

16
ρ2 − 9

4
ρ′′

)
e1 − 15

2
ρ′e′

1 − 15

2
ρe′′

1 .

The previous proposition says that in order to find ρ and A it is sufficient to know the first vector e1(τ ) in the
canonical basis of Λ(·). The following proposition gives a simple way to find the vector e1(τ ).

Proposition 4.3. Let Λ(τ) be a rank 1 nondecreasing curve of constant weight in the Lagrange Grassmannian L(W),
where dimW = 4. Then the first vector e1(τ ) of the canonical basis of Λ(τ) can be uniquely (up to the sign) deter-
mined by the following two relations

(4.3)Re1(τ ) =D(1)Λ(τ)


, σ̄

(
e′′

1(τ ), e′
1(τ )

) = 36,

where the subspace D(1)Λ(τ) is as in (2.12) and D(1)Λ(τ)



is its skew-symmetric complement.

Proof. The second relation of (4.3) follows directly from the first two equations of (4.1). Further from (4.1) it is clear
that D(1)Λ(τ) = span(e1(τ ), e2(τ ), f2(τ )), which implies the first relation of (4.3) (see definition of the canonical
moving frame). Finally, the vector e1(t) is determined by (4.3) uniquely, up to the sign: the first relation gives the
direction of e1(t) and the second one “normalizes” this direction. �
4.2. Application to (2,5)-distributions

Choose some local basis (X1,X2) of a (2,5)-distribution D and complete it by the fields X3, X4, and X5, satisfying
(3.10), to the local frame on M . Such frame (X1,X2,X3,X4,X5) will be called adapted to the distribution D. If
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instead of (3.10) one has

(4.4)X3 = [X1,X2], X4 = [
X1, [X1,X2]

] = [X1,X3], X5 = [
X2, [X2,X1]

] = [X3,X2],
the frame (X1,X2,X3,X4,X5) will be called strongly adapted to D.

We are going to show how to calculate our invariants starting from some adapted frame to the distribution. Let
again �h = �hX1,X2 as in (3.14). For any λ ∈ (D2)⊥\(D3)⊥ consider the characteristic curve γ of D passing through λ.
Under identification (3.3) the reduced Jacobi curve J̃γ lives in the Lagrange Grassmannian L(Wλ) of the symplectic

space Wλ, defined by (3.44). Let ε1(λ) be the first vector in the canonical basis of the curve t �→ J̃γ (et �hλ) at the point
t = 0. Note that it is more convenient to work directly with vector fields of (D2)⊥, keeping in mind that the symplectic
space Wλ belongs to the factor space Tλ((D

2)⊥)/ span(�h(λ), �e(λ)). So, in the sequel by ε1(λ) we will mean both the
element of Wλ and some representative of this element in Tλ((D

2)⊥), depending smoothly on λ. In the last case all
equalities, containing ε1(λ), will be assumed modulo span(�h(λ), �e(λ)). Now we are ready to prove the following

Proposition 4.4. The vector ε1(λ) can be chosen in the form

(4.5)ε1(λ) = 6
(
γ4(λ)∂u4 + γ5(λ)∂u5

)
,

where

(4.6)γ4(λ)u5 − γ5(λ)u4 ≡ 1.

Proof. First note that by (3.20) one has that span(∂u4 , ∂u5) ⊂ (J 1)



. Hence from the first relation of (4.3) it follows
that ε1 = 6(γ4∂u4 + γ5∂u5) (mod span(�h, �e)), where γ4u5 − γ5u4 
= 0. Further, denote by e1(t) the first vector in the

canonical basis of the curve t �→ J̃γ (et �hλ). Then

(4.7)e1(t) = (e−t �h)∗ε
(
et �h(λ)

)
.

Hence by (3.5)

(4.8)σ̄
(
e′

1(t), e
′′
1(t)

)∣∣
t=0 = σ

([�h, [�h, ε1]
]
(λ), [�h, ε1](λ)

)
.

By direct computation one can show that

[�h, ε1] = 6
(
γ5 �u1 − γ4 �u2 + (γ4u4 − γ5u4)∂u3

) (
mod span(�h, �e, ε1)

)
,

(4.9)
[�h[�h, ε1]

] = 6(γ4u4 − γ5u4)(�u3 + u4∂u1 + u5∂u2)
(
mod span(�h, �e, ε1, [�h, ε1])

)
.

From (4.9) it is easy to show that the right-hand side of (4.8) is equal to 36(γ4u5 − γ5u4)
2, which together with the

second relation of (4.3) implies (4.6). �
As a direct consequence of the previous proposition, Proposition 4.2, and relations (3.5), (4.7), (3.52) we obtain

Theorem 2. Let ε1(λ) be as in (4.5) and (4.6). Then there exist functions A0, A1 on (D2)⊥ such that

(4.10)(ad �h)4(ε1) = A0ε1 + �h(A1) ad �h(ε1) + A1(ad �h)2(ε1) mod
(
span(�h, �e)).

The fundamental form A(λ) and the projective Ricci curvature ρD(λ) of the distribution D satisfy:

(4.11)35A = A0 + 9

100
A2

1 − 3

10
(�h)2(A1),

(4.12)ρD =
(

− 2

15
A1A

2 − 1

6
�h ◦ �h(A)A + 3

16

(�h(A)
)2

)
|A|−5/2.

Remark 4.1. It is clear that in the previous theorem we can take ε1 satisfying (4.5) and the relation γ4(λ)u5 −
γ5(λ)u4 ≡ const along any characteristic curve of D (instead of (4.6)). In particular one can take as ε1 one of the

following vector fields: 1
u

∂u4 , 1
u

∂u5 ,
(u5∂u4−u4∂u5 )

2 2 or
(u5∂u4+u4∂u5 )

2 2
5 4 u4+u5 u5−u4
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Formulas (4.10), (4.11) and (4.12) give an explicit way to calculate the fundamental form and the projective Ricci
curvature of the distribution D, starting from some adapted frame to D. The previous theorem allows also to prove
the following theorem about the algebraic structure of (2,5)-distributions

Theorem 3. For a (2,5)-distribution with small growth vector (2,3,5) the fundamental form at any point q is a degree
4 homogeneous polynomial on the fiber (D2)⊥(q), up to the multiplication on a positive constant.

Proof. Let ε1 = 1
u5

∂u4 . Also denote X̃ = �u2 − u5∂u3 and Ỹj = �uj + ∑3
i=1{ui, uj }∂ui

, j = 4,5. Let F be as in (3.15).

Then the tuple of the vector fields (ε1, X̃ ,F,Y4, Y5, �h, �e) constitute a frame on (D2)⊥. By direct calculations

(4.13)[�h, ε1] = − 1

u5
X̃ + p1ε1 mod R�e,

(4.14)(ad �h)2(ε1) = F + p2X̃ + p3ε1 mod
(
span(�h, �e)),

where pi , i = 1,2,3, are some rational functions in u4, u5 with denominator of the form ul
5. From the form of the vec-

tor fields �h and ε1 it follows that the coordinates of the vector field (ad �h)4(ε1) w.r.t. the frame (ε1, X̃ ,F,Y4, Y5, �h, �e)
are also rational functions in u4, u5 with denominator of the form ul

5. But from (4.10), (4.13) and (4.14) it follows
that (ad �h)4ε1 ⊂ span(ε1, X̃ ,F, �h, �e). Expressing X̃ and F by ε1, [�h, ε1], and (ad �h)2(ε1) from (4.13) and (4.14)
mod(span(�h, �e)), one obtains that coefficients A0, A1 from (4.10) and hence also the fundamental form A are rational
functions in u4, u5 with denominator of the form ul

5. But by Proposition 3.5 and Remark 3.6 A is smooth at the points
with u5 = 0, u4 
= 0. It implies that A has to be a polynomial. �
Corollary 2. For any q ∈ M the tangential fundamental form Åq is a degree 4 homogeneous polynomial on D(q).

Remark 4.2. From the previous corollary it follows that the tangential fundamental form has the same algebraic
nature, as the covariant binary biquadratic form, constructed by E. Cartan in [11, Chapter VI, Paragraph 33]. In the
next paper [22] we prove that our tangential fundamental form coincides (up to constant factor −35) with the Cartan
form.

In terms of the canonical projective structure on an abnormal extremal (see Remark 3.5) and the fundamental form
one can obtain sufficient conditions for rigidity of the corresponding abnormal trajectory of a (2,5)-distribution D:
A smooth curve ξ tangent to D and connecting two fixed points q0 and q1 is called rigid, if in some C1-neighborhood
of ξ the only curves tangent to D and connecting q0 with q1 are reparameterizations of ξ . Rigid curves are automat-
ically abnormal trajectories of D. In [10] for (2,4)-distribution it was proved that an abnormal extremal trajectory ξ

is rigid if and only if a global projective parameter exists on ξ (see Proposition 3.4 there). The following extension of
the if part of this result to (2,5)-distributions can be obtained immediately from the result formulated in Remark 2.2
(see also [19, Theorem 4.2]) and the comparison theorems from [4] (Theorem 5, item 1 there):

Proposition 4.5. For abnormal trajectory ξ of (2,5)-distribution to be rigid it is sufficient the existence of a global
projective parameter on ξ together with the nonpositivity of the fundamental form along ξ (equivalently nonnegativity
of the Cartan form along ξ ).

Moreover, if some Riemannian metric is given on M , then under the same conditions the corresponding abnormal
trajectory is the shortest among all curves tangent to the distribution D, connecting its endpoints and sufficiently
closed to this abnormal trajectory in C0-topology. It follows again from the mentioned comparison theorem and from
the fact that the simplicity of the Jacobi curve of the abnormal extremal implies the minimality of the length of the
corresponding abnormal trajectory in C0-topology (see [7,8]).

4.3. Examples

Now we will give the results of computations of the fundamental form and the projective Ricci curvature for five
examples of concrete distributions or families of distributions. We will omit the calculations but they are straightfor-
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ward using Theorem 2 (in fact Examples 2 and 3 are included in Example 4; Examples 1–3 and another example
similar to Examples 4 and 5 with the detailed computations can be found in [20]).

Example 1 (Free nilpotent (2,5)-distribution). Let L1 be a 5-dimensional nilpotent Lie algebra with the following
commutative relations in some basis X1, . . . ,X5:

(4.15)[X1,X2] = X3, [X1,X3] = X4, [X2,X3] = X5, adX4 = 0, adX5 = 0.

Actually L1 is the free nilpotent 3-step Lie algebra with two generators. Let M1 be the Lie group with the Lie algebra
L1. We consider X1, . . . ,X5 as the left-invariant vector fields on M1. Let D1 = span(X1,X2). Such distribution is
called the free nilpotent (2,5)-distribution.

By (4.15) the tuple of the left-invariants fields (X1,X2,X3,X4,X5) constitutes a strong adapted frame to distrib-
ution D1. Applying Theorem 2 to this frame, it is easy to show that the fundamental form AD1 of distribution of D1
vanishes identically.

Example 2 (Left-invariant rank 2 distribution on SO(3) × R
2). One can take the basis a1, a2, a3 on so(3), satisfying

the following commutative relations: [a1, a2] = a3, [a2, a3] = a1, and [a3, a1] = a2. Also let b1, b2 be a basis of R
2.

Denote D2 = span ((a1, b1), (a2, b2)). Consider D2 as a left-invariant distribution on SO(3) × R2.

Remark 4.3. It can be shown easily (see [20]) that the distribution D2 is a unique, up to a group automorphism of
SO(3) × R

2, left-invariant completely nonholonomic rank 2 distribution on SO(3) × R
2 and its small growth vector

is (2,3,5). Distribution D2 appears, when one studies the problem of rolling ball on the plane without slipping and
twisting (see Example 4 below and also [13] for the details).

Completing the chosen basis (a1, b1), (a2, b2) of D2 to the strong adapted frame and applying Theorem 2 to this
frame, one has easily that the fundamental form AD2 and the projective Ricci curvature ρD2 of D2 satisfy

(4.16)AD2 ∼ (
u2

4 + u2
5

)2
, ρD2 = 4

√
35/9

(here as in the sequel we use the sign ∼ to emphasize that the fundamental form at a point is defined up to the
multiplication on a positive constant).

Conclusion 1. Since by (4.16) AD2 is not zero the germs of distributions D1 and D2 are not equivalent.

Remark 4.4. Actually, a (2,5)-distribution has the identically zero fundamental form iff it is locally equivalent to
the distribution D1. It follows from the fact that our fundamental form coincides with the Cartan form (see [22]) and
the fact that the Cartan form of a distribution is identically zero iff it is locally equivalent to the distribution D1 (see
Chapter VIII of [11]).

Example 3 (Left-invariant rank 2 distributions on SL(2,R) × R
2). One can take the basis a1, a2, a3 in sl(2,R),

satisfying the following commutative relations: [a1, a2] = a3, [a2, a3] = a1, [a3, a1] = −a2. Let b1, b2 be a basis
of R2. Suppose that

(4.17)D3,h = span
(
(a1, b1), (a2, b2)

)
, D3,e = span

(
(a1, b1), (a3, b2)

)
.

We consider D3,h and D3,e , as left-invariant distributions on the Lie group SL(2,R) × R
2.

Remark 4.5. It can be shown easily (see [20]) that distributions D3,h and D3,e are the only two different left-invariant
rank 2 completely nonholonomic distributions on SL(2,R) × R

2, up to Lie group automorphisms of SL(2,R) × R
2,

and their small growth vector is (2,3,5). Note that the distribution D3,e appears, when one studies the problem of
rolling hyperbolic plane on the Euclidean plane without slipping and twisting, (see geometric model in Example 4
below).
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Completing the bases, chosen in (4.17), to the strong adapted frames of D3,h and D3,e and applying Theorem 2 to
these frames, one has easily that the fundamental form AD3,h

and the projective curvature ρD3,h
of D3,h satisfy

(4.18)AD3,h
∼ (

u2
4 − u2

5

)2
, ρD3,h

=
{−4

√
35/9 u4 > u5,

4
√

35/9 u4 < u5,

while the fundamental form AD3,e
and the projective curvature ρD3,e

of D3,e satisfy

(4.19)AD3,e
∼ (

u2
4 + u2

5

)2
, ρD3,e

= −4
√

35/9.

Conclusion 2. From the first relations of (4.16) and (4.18) it follows that germs of the distributions D3,h and D2 are
not equivalent; from the first relations of (4.18) and (4.19) it follows that germs of the distributions D3,h and D3,e

are not equivalent; finally, from the second relations of (4.16) and (4.19) it follows that germs of the distributions D2
and D3,e are not equivalent (in the last case the distributions are distinct by their projective Ricci curvatures but not
by the fundamental forms).

Example 4 (Rolling of two surfaces of constant curvatures without slipping and twisting). (2,5)-distributions appear
naturally when one studies the possible motions of two surfaces S and Ŝ in R

3, which roll one on another without
slipping and twisting. Here we follow the geometric model of this problem given in [5] (this model ignores the state
constraints that correspond to the admissibility of contact of the bodies embedded in R

3). The state space of the
problem is the 5-dimensional manifold M4 = {B: TxS �→ Tx̂ Ŝ|B is an isometry}.

Let B(t) ⊂ M4 be an admissible curve, corresponding to the motion of the rolling surfaces. Let x(t) and x̂(t) be
trajectories of the contact points in S and Ŝ respectively (so, B(t) can be considered as an isometry from Tx(t)S to
Tx̂(t)Ŝ).The condition of absence of slipping means that

(4.20)B(t)ẋ(t) = ˙̂x(t),

while the condition of absence of twisting can be written as follows

(4.21)B(t)
(
vector field parallel along x(t)

) = vector field parallel along x̂(t).

From conditions (4.20) and (4.21) it follows that a curve x(t) ∈ S determines completely the whole motion B(t) ∈ M4
and the velocities of admissible motions define a (2,5)-distribution D4,S,Ŝ on M4. If (v1, v2) and (v̂1, v̂2) are some
local orthonormal frames on S and Ŝ respectively and β is the angle of rotation from the frame (Bv1(x),Bv2(x))

to the frame (v̂1(x̂), v̂2(x̂)), then the points of M4 are parametrized by (x, x̂, β) and one can choose a local basis of
distribution D4,S,Ŝ as follows

X1 = v1 + cosβv̂1 + sinβv̂2 − (−σ1 + σ̂1 cosβ + σ̂2 sinβ)∂β,

(4.22)X2 = v2 − sinβv̂1 + cosβv̂2 + (−σ2 − σ̂1 sinβ + σ̂2 cosβ∂β,

where σi , σ̂i are structural functions of the frames: [v1, v2] = σ1v1 + σ2v2, [v̂1, v̂2] = σ̂1v̂1 + σ̂ v̂2.
Let us restrict ourselves to the case, when S and Ŝ are surfaces of the constant curvatures k and k̂ respectively. We

will denote the corresponding (2,5)-distribution by D4,k,k̂
. Take spherical, euclidean, or hyperbolic coordinates on S

and Ŝ, according to the sign of the corresponding curvature, and the orthonormal frames (v1, v2) and (v̂1, v̂2) tangent
to the coordinate net. Complete the basis X1, X2 from (4.17) with these (v1, v2), (v̂1, v̂2) to the frame strongly adapted
to D4,k,k̂

. Applying Theorem 2 to this frame, one can obtain by straightforward computations that the fundamental
form AD4,k,k̂

and the projective curvature ρD4,k,k̂
of D4,k,k̂

satisfy

(4.23)AD4,k,k̂
∼ sgn

(
(9k̂ − k)(k̂ − 9k)

)
(u2

4 + u2
5)

2,

(4.24)ρD4,k,k̂
= 4

√
35

3
(k + k̂)

∣∣(9k̂ − k)(k̂ − 9k)
∣∣−1/2

.

Note that by geometry of the problem for the given k and k̂ any distributions from the set Fam
k,k̂

=
{D4,αk,αk̂

,D4,αk̂,αk
, α > 0} is equivalent to D4,k,k̂

. An elementary analysis of the functions involved in the formulas
(4.23) and (4.24) implies:
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Proposition 4.6. The germ of distribution D4,k1,k̂1
is equivalent to the germ of D4,k,k̂

if and only if D4,k1,k̂1
belongs to

the set Fam
k,k̂

.

In particular, the set of the distributions {D4,k,1, k ∈ R} gives an example of the one-parametric family of distribu-
tions with nonequivalent germs for the different values of the parameter k.

Remark 4.6. From (4.23) and Remark 4.4 it follows that if k̂
k

= 9 or 1
9 , then a germ of D4,k,k̂

is equivalent to a germ
of the free nilpotent (2,5)-distribution D1 from Example 1.

Example 5 (Distributions generated by curves of constant torsion on 3-dimensional manifold of constant curva-
ture). These distributions were mentioned already in [11, Chapter XI, Paragraphs 52, 53]. Let Q be an oriented
3-dimensional Riemannian manifold. Then for given τ the curves of constant torsion τ together with their binormals
are admissible curves of a rank 2 distribution on 5-dimensional manifold M5 = Q × S2. Indeed, let γ (t) be a curve in
Q without inflection points, and let n(t) ∈ S2 be the corresponding binormal. Then γ has a constant torsion τ iff

(4.25)γ̇ (t) = 1

τ
n(t) × ∇γ̇ (t)n(t),

where by × we mean the vector product induced on each (oriented) tangent space Tγ (t)Q by the Riemannian metric
and ∇ denotes the covariant derivative, corresponding to this metric. Obviously, relation (4.25) defines the rank 2
distribution on M5. We restrict ourselves to the case when Q has constant curvature K and denote by D5,τ,K the
corresponding (2,5)-distribution. It can be shown that the corresponding fundamental form AD5,τ,K

and the projective
Ricci curvature ρD5,τ,K

satisfy

(4.26)AD5,τ,K
∼ sgn

(
(τ 2K−1 − 4)(1 − 4τ 2K−1)

)
(sign definite quadratic form)2,

(4.27)ρD5,τ,K
= 2

√
35

3
(τ 2K−1 + 1)

∣∣(τ 2K−1 − 4)(1 − 4τ 2K−1)
∣∣−1/2

.

Remark 4.7. Suppose that S is three-dimensional sphere of radius R. If τR = 2 or 1
2 , then from (4.26) the fundamental

form is equal to zero. Hence by Remark 4.4 any germ of the corresponding distribution is equivalent to any germ of
the free nilpotent (2,5)-distribution D1 and by Remark 4.6 it is equivalent to any germ of the distribution D4,k,k̂

with
k̂
k

= 9 or 1
9 .

Till now we used our invariants in order to prove the nonequivalence of distributions. But what to do, if both
the fundamental form and the projective Ricci curvature do not distinct distributions? Comparing (4.23) with (4.26)

and (4.24) with (4.27) it is not difficult to show that in the case of positive k and k̂ for any ratio k̂
k


= 1 there exists
distribution D5,τ,1/R2 , which has the fundamental form of the same type and the same projective Ricci curvature as
D4,k,k̂

. Does it imply that these distributions are equivalent? We will treat the questions of this kind in the forthcoming
paper [23]. Below we formulate a theorem, which will be proved in the mentioned paper:

Theorem 4. For given s ∈ {1,−1} and ρ ∈ R there exists a unique, up to a diffeomorphism, germ of (2,5)-distribution
satisfying the following three conditions:

1. Its fundamental form is s multiplied by the square of a nondegenerated quadratic form Q;
2. Its symmetry group is 6-dimensional;
3. If Q is sign definite, then its projective Ricci curvature is identically equal to ρ, if Q is sign indefinite, then the

absolute value of its projective Ricci curvature is identically equal to |ρ|.

Remark 4.8. It can be shown that if a distribution D satisfies condition 1 of Theorem 4, then the dimension of the
group of symmetries of D is not greater than 6. It can be shown also that conditions 1 and 2 of Theorem 4 imply that
the projective Ricci curvature or its absolute value is identically equal to some constant.
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It is easy to see that for positive k and k̂ the group of symmetries of distribution D4,k,k̂
contains a subgroup

isomorphic to SO(3) × SO(3) and therefore by Remark 4.8 it is 6-dimensional for k̂
k


= 9 or 1
9 , while the group of

symmetries of distribution D5,τ,1/R2 contains a subgroup isomorphic to SO(4) and therefore by Remark 4.8 it is also

6-dimensional for τR 
= 2 or 1
2 . Therefore Theorem 4 implies

Corollary 3. If the distributions D4,k,k̂
(k̂ > k > 0) and D5,τ,1/R2 have the fundamental forms of the same sign and

their projective Ricci curvatures are equal, then germs of these distributions are equivalent.

5. Algebraic structure of fundamental form in the case n > 5

In the present section we show that in the case n > 5 the fundamental form is in general a rational function, which
is not a polynomial. By Remark 3.6 singularities of the fundamental form could occur out of the set RD , i.e., at the
points, where the weight of the corresponding Jacobi curve is not constant.

First, take some curve Λ(t) in the Grassmannian of half-dimensional subspaces Gm(W) and suppose that in some
punctured neighborhood of t̄ the curve Λ(t) has a constant weight k, while at t̄ it has the weight k + 1. In this case we
will say that t̄ is the point of the weight jump one of Λ(t).

Lemma 5.1. If the curve Λ(t) in Gm(W) has the point of the weight jump one at t̄ , then the generalized Ricci curvature
has a pole of order 2 at t = t̄ . If in addition the weight of Λ(t) in the punctured neighborhood of t̄ is greater than 1,
then the density of the fundamental form of this curve has a pole of order 4 at t = t̄ .

The proof of this lemma follows by direct computations from formula (2.11), the definition of generalized Ricci
curvature, and formula (2.10).

Lemma 5.2. The point t̄ is the point of the weight jump one of rank 1 curve Λ(t) in the Lagrange Grassmannian
L(W), dimW = 2m, iff the following relations hold

(5.1)dimD(m−1)Λ(t̄) = dimD(m)Λ(t̄) = 2m − 1, dimD(m+1)Λ(t̄) = 2m.

The proof of this lemma can be easily obtained by application of some formulas and statements of Sections 6 and 7
of [3] (for example, formulas (6.15), (6.16), (6.18), (6.19), Lemma 6.1 and Proposition 3 there).

Let us apply Lemmas 5.1 and 5.2 to the distribution D. For this let the subspace J (i)(λ) be as in (3.6). Set

S0
D(q) = {

λ ∈ (D2)⊥(q)\(D3)⊥(q): dimJ (n−4)(λ) = dimJ (n−3)(λ) = 2n − 5,

(5.2)dimJ (n−2)(λ) = 2n − 4
}
.

By Lemma 5.2 the set S0
D(q) coincides with the subset of (D2)⊥(q)\(D3)⊥(q), consisting of points, in which the

corresponding reduced Jacobi curves have the weight jump one. Also, from Proposition 3.3 one has

Proposition 5.1. The reduced Jacobi curve of the regular abnormal extremal γ has the weight jump one at a point λ

iff

(5.3)dimT (n−4)
ξ (q) = dimT (n−3)

ξ (q) = n − 2, dimT (n−2)
ξ (q) = n − 1,

where ξ = π(γ ) is the abnormal trajectory corresponding to γ and q = π(λ).

Further note that by Proposition 3.2 the weight of these curves in the punctured neighborhoods of these points is
equal to (n − 3)2 and therefore it is greater than 1 in the considered cases. As a direct consequence of Lemma 5.1 and
Proposition 3.7 we obtain the following

Proposition 5.2. If the sets RD(q) and S0
D(q) are not empty, then the fundamental form of the distribution D at the

point q is a rational function, which is not a polynomial: all points of S0
D(q) are the points of discontinuity of it.
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Example. Consider the distribution D̃ in R
6 spanned by the following vector fields

(5.4)X1 = ∂

∂x1
, X2 = ∂

∂x2
+ x1

∂

∂x3
+ x2

1

2

∂

∂x4
+

(
x4

1

4! + x2
1x2

2

)
∂

∂x5
+ x1x2

∂

∂x6
.

Distribution D̃ has the maximal possible small growth vector (2,3,5,6) at any point. We claim that its fundamental
form at 0 is a rational function, which is not a polynomial. Indeed, by Proposition 3.6, the set RD̃(0) is not empty.
It is not hard to show that the curve (x1,0, . . . ,0) is a regular abnormal trajectory of corank 1. Moreover, from
Proposition 5.1 it follows that the reduced Jacobi curve of any its lift γ has the weight jump one at the point of
intersection of γ with (D̃2)⊥(0), which implies that S0

D̃
(0) is not empty. Now our claim follows from Proposition 5.2.

In general the set S0
D(q) could be empty, but it turns out that for n > 5, after an appropriate complexification of

the fibers of the cotangent bundle, a natural complex analogue of the set S0
D(q) is not empty for generic germ of

(2, n)-distribution at q . Let us describe this complex analogue of S0
D(q). First note that the mappings λ �→ J (i)(λ),

λ ∈ (D2)⊥(q), depend rationally on λ and therefore can be rationally continued to (D2)⊥(q)C (after this continuation
we look on J (i)(λ) as on complex linear spaces).

Let

(5.5)S0
D(q)C = {

λ ∈ (D2)⊥(q)C: dimJ (n−4)(λ) = dimJ (n−3)(λ) = 2n − 5, dimJ (n−2)(λ) = 2n − 4
}

(here all dimensions are over C). Then, using a complex analogous of Lemma 5.1, one can prove that the statement of
Proposition 5.2 remains true if one replace S0

D(q) by S0
D(q)C. Moreover, similarly to the proof of Proposition 3.4, one

can prove that in the case n > 5 for a generic germ of (2, n)-distribution D at q0 the set S0
D(q0)

C is not empty. Due
to the limit of space, we omit the proof of this fact, referring the reader to the preprint [21] (Proposition 4.5 there).
Finally we obtain the following

Theorem 5. In the case n > 5 a generic germ of (2, n)-distribution D at q has the fundamental form, which is a
nonpolynomial rational function on (D2)⊥(q).
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