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T regulatory cells and the control of alloimmunity:
from characterisation to clinical application
Joanna Wieckiewicz, Ryoichi Goto and Kathryn J Wood
T regulatory cells (Treg) play an important role in the induction

and maintenance of immunological tolerance. Recent findings

in experimental transplant models combined with the

development of functional reporter mice have opened new

avenues to study Treg biology and their therapeutic potential. In

particular, recent advances in understanding Treg function and

lineage stability revealed unexpected plasticity of this lineage.

Nevertheless, pre-clinical and pilot clinical trials using Treg

cells as cellular therapies have been initiated suggesting the

safety and feasibility of such treatment.
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Introduction
The appropriate balance between effector and T regu-

latory cells (Treg) is indispensable for the maintenance of

self-tolerance and of functional immune responses in
vivo. In the transplant setting, numerous findings during

the last 25 years have demonstrated the importance and

therapeutic potential of Treg in the active control of

rejection responses. Although the existence of various

cell populations with regulatory/suppressive activity, such

as IL-10 secreting Tr-1 cells, CD28�CD8+ cells or B

regulatory cells, has been demonstrated, in this review

we will focus on classical CD25+CD4+ Treg cells.

Treg mediate suppressive effects by several mechanisms

including anti-inflammatory cytokines (IL-10, TGF-b

and IL-35), direct cytotoxic effect (granzyme B and

galectin-1), metabolic disruption (adenosine production

and IL-2 deprivation) and modulation of dendritic

cell function (CTLA-4, LAG3 and IDO induction) as

discussed in [1]. Numerous regulatory mechanisms
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described to date suggest that multiple, redundant mech-

anisms are required for optimal Treg function in vivo.

Treg can be divided into two populations: thymic-derived

naturally occurring CD25+CD4+ cells (nTreg) [2] and

induced or adaptive Treg (iTreg) that are either differ-

entiated from CD25�CD4+ nonregulatory cells or

expanded from CD25+CD4+ cells in response to the

antigen [3]. These cells differ in origin, antigen experi-

ence, methylation patterns of the key transcription factor

FoxP3 and suppressive mechanisms. Recently, the differ-

ential expression of transcription factor Helios has been

attributed to thymic-derived nTregs and proposed as a

marker to differentiate between nTregs and iTregs [4��].
Both nTreg and iTreg have been demonstrated to play an

important role in transplant tolerance.

In this review, we explore recent advances in understand-

ing Treg function and lineage stability and its impact on

tolerance induction protocols. Next, we focus on the

current attempts to expand human Treg for clinical

application as a cellular therapy in organ and cell trans-

plantation. Finally, we discuss the arising or potential

issues relating to the therapeutic application of Treg and

proposed solutions.

FoxP3 expression in Treg
Expression of the transcription factor FoxP3 is essential

for the development and function of Treg [5,6]. It was

demonstrated that ectopic expression of Foxp3 in con-

ventional T cells was sufficient to confer suppressive

activity, repress IL-2 and IFNg production and upregu-

late Treg-associated molecules such as CTLA-4 and

GITR [2,7]. Furthermore, expression of FoxP3 in mature

Treg is necessary for the maintenance of Treg-specific

transcription profile and of Treg function [8].

Epigenetic regulation of FoxP3 expression

Several epigenetic markers, such as histone acetylation

and methylation, and cytosine residue methylation in

CpG dinucleotides, have been reported at the Foxp3

locus [9�]. In particular, a unique CpG-rich island within

an evolutionarily conserved region upstream of exon 1,

named TSDR (Treg-specific demethylation region), was

demonstrated to be unmethylated in natural Treg but

heavily methylated in other CD4+ T cells [10�,11].

Demethylation of these CpG sites resulted in strong

and stable induction of FoxP3. In human, upon in vitro
expansion of Treg, CpG methylation increased correlat-

ing with loss of FoxP3 expression and emergence of

brought to you by CORE

provided by Elsevier - Publisher Connector 
www.sciencedirect.com

https://core.ac.uk/display/82736438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kathryn.wood@nds.ox.ac.uk
http://dx.doi.org/10.1016/j.coi.2010.08.011
http://creativecommons.org/licenses/by/3.0/


T regulatory cells and the control of alloimmunity: from characterisation to clinical application Wieckiewicz, Goto and Wood 663
pro-inflammatory cytokines [12�]. Interestingly,

CD45RA+FoxP3+ naı̈ve Treg showed no increase in

CpG methylation after 3-week culture, whereas

CD45RA�FoxP3+ memory-like Treg from the same

donors lost CpG demethylation status and converted into

non-Treg cells. Recent advances in our understanding of

the complex regulation of FoxP3 expression have led to

new methods of analysing Treg based on quantitative

DNA methylation analysis of FoxP3 locus [13�], which

may add a useful test for quality assessment of ex vivo
manipulated Treg cells.

Treg lineage stability

FoxP3 epigenetic analysis and the development of func-

tional reporter mice questioned the dogma of natural

Treg lineage stability. An elegant study by Zhou et al.
examined the stability of Treg cells by tracing cells that

induced and downregulated FoxP3 during their life span

[14��]. The authors found that cells that at some point

expressed FoxP3 and lost its expression shared their TCR

repertoire both with FoxP3+ Treg cells and with conven-

tional T cells suggesting that they originated from both

nTreg and iTreg. These ‘ex-Treg’ had an activated-

memory phenotype and produced pro-inflammatory cyto-

kines. Notably, an autoimmune microenvironment

favoured loss of FoxP3, and ‘ex-Treg’ cells from diabetic

mice were able to transfer diabetes [14��]. Notably for the

transplant setting, it was also demonstrated that some

peripheral FoxP3+CD4+ cells lose their FoxP3 expression

and start producing IFNg and IL-17 after transfer to a

lymphopenic host [15�].

Cellular therapy with Treg
Mouse pre-clinical models

Many strategies exist for the in vivo or ex vivo generation

and/or expansion of Treg. The most common in vivo
approaches are based on the fact that exposure to antigen

increases Treg frequency and/or potency by either

expanding naturally occurring Treg or inducing the

generation of adaptive Treg from cells that do not origin-

ally possess regulatory activity [16�]. Generation of Treg

can be achieved by attenuation of activating signals

during antigen presentation. In the mouse, donor-specific

transfusion (DST) combined with a nondepleting anti-

CD4 antibody generates CD25+CD4+ cells able to pre-

vent skin graft rejection [17]. Moreover in vitro culture of

mouse CD4+ or CD25�CD4+cells in the presence of

alloantigen and anti-CD4 antibody results in the enrich-

ment of CD62L+CD25+ cells effective in controlling graft

survival [18]. Interestingly, conditioning of CD4+ cells in

the presence of interferon-g (IFN-g) and immature DC

can also generate FoxP3+ cells that are able to protect

both skin and islet transplants from rejection [19�,20].

Notably, alloantigen-reactive Treg from in vivo tolerised

mice demonstrate increased levels of IFN-g production

transiently after antigen-specific reactivation through T

cell receptor [21�]. In vivo, IFNg produced locally where
www.sciencedirect.com
the Treg are present, the draining lymph nodes and the

graft [22�], creates a microenvironment that influences

the function of other cells in the vicinity, including the

Treg themselves where evidence for the activation of

IFNg signalling pathways has been reported [21�].

Another approach to enrich Treg in vivo is to create Treg-

favouring conditions. In the transplantation setting,

patients are treated with diverse immunosuppressive

drug combinations, which may have a different impact

on Treg. It was demonstrated that calcineurin inhibitors

(CNI), especially cyclosporine A, are detrimental to Treg,

whereas the mTOR inhibitor rapamycin was shown to be

beneficial for Treg both in terms of in vivo generation and

function in mouse models [23] and in in vitro cultures of

human Treg [24]. It was recently demonstrated that

adoptive transfer of a low number of alloantigen-specific

Treg under a cover of low dose of rapamycin induced

long-term survival of heart transplant in unmanipulated

host, an outcome otherwise difficult to obtain [25]. Inter-

estingly, in terms of alloantigen-specificity of Treg two

recent papers have independently demonstrated that

regulatory cells specific for both directly (by donor

APC) and indirectly (by host APC) presented alloantigens

prolonged graft survival with substantially greater efficacy

than Treg with only direct anti-donor specificity [26�,27�].
Noteworthy, successful attempt to achieve long-term

acceptance of islet allografts without immunosuppression

was demonstrated by Webster et al. who in vivo expanded

Treg by injecting mice with IL-2/anti-IL-2 monoclonal

antibody complexes [28�].

Human Treg

Human Treg are currently less well characterised and

understood than mouse Treg, so a thorough understand-

ing of their biology is vital before clinical applications can

be initiated. It is also important to highlight that there are

substantial differences between human and mouse Treg;

most notably the differences in FoxP3 expression be-

tween mouse and human. In human, FoxP3 is also

expressed by activated nonregulatory T cells as well as

by Treg, and activated nonregulatory cells also upregulate

CD25 expression. Thus not all CD25+FOXP3+CD4+ will

be genuine Treg and therefore isolation strategies based

on CD25hi/+CD4+ are likely to be imperfect. Other mar-

kers are therefore needed to enrich Treg from human

peripheral blood mononuclear cells. Recently, it has been

demonstrated that CD127loCD25+CD4+ T cells are

characterised by a higher percentage of FoxP3+ cells with

a more pronounced suppressive capacity [29,30]. Expan-

sion of CD127loCD25+CD4+ cells resulted in high yield

of regulatory cells which maintained high FoxP3 expres-

sion [31��]. Importantly, as we recently demonstrated

in a clinically relevant humanised model of transplant

arteriosclerosis, ex vivo expanded CD25hiCD4+ and

CD127loCD25+CD4+ Treg cells have been very effective

in inhibiting vasculopathy, with CD127loCD25+CD4+
Current Opinion in Immunology 2010, 22:662–668
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cells being five times more efficient than conventional

Treg [32��]. Interestingly, another study subdivided Treg

into two subtypes: resting naı̈ve CD25+CD45RA+FoxP3lo

and activated CD25hiCD45RA�FoxP3hi regulatory cells.

A third population of FoxP3+ cells phenotyped as

CD25+CD45RA�FoxP3lo was demonstrated to consist

of cytokine-secreting, non-suppressive cells [33�]. Nota-

bly, whereas both regulatory subpopulations were highly

suppressive in vitro, only resting Treg were able to

proliferate in vitro and in vivo, converting into activated

CD45RA negative Treg.

A number of different strategies for the isolation/enrich-

ment of human Treg have been described in the litera-

ture, but to date there is no consensus as to which strategy

produces the optimal population for use in cell therapy
Figure 1

Steps in preparation and clinical application of Treg cells. In transparent box

therapy. IS—immunosuppression; GMP—good manufacturing practices.
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applications. The critical steps and the questions awaiting

answers in the process of developing clinically approved

Treg cellular therapy are outlined in Figure 1.

Clinical application of human Treg

One of the obstacles in the implementation of clinical

protocols using Treg is their low frequency in the per-

ipheral blood leading to the need for ex vivo multiplication

of the cells prior to their use in vivo. The most commonly

used expansion protocol at present is based on stimulation

by anti-CD3/anti-CD28 beads in the presence of high

doses of recombinant IL-2, supplemented in some pro-

tocols with rapamycin. This protocol results in the effi-

cient expansion of polyclonal Treg, generating sufficient

numbers of cells for cellular therapy [34�]. However, the

expansion is antigen non-specific without any enrichment
es questions awaiting answers in the process of developing Treg cellular

www.sciencedirect.com
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step for the cells of interest. More appealing for clinical

application, is the concept of expanding or generating

antigen-specific Treg, in the setting of transplantation,

donor alloantigen-reactive Treg. Interestingly, human

Treg expanded with allogeneic PBMC, were found to

be more suppressive in vitro than polyclonaly-driven cells

and, surprisingly, expanded at a similar rate as polyclo-

naly-stimulated cells [35].

Clinical trials

There are several ongoing clinical trials with the appli-

cation of Treg cellular therapy. To date regulatory cells

have been adoptively transferred into haematopoietic

stem cell transplant (HSCT) recipients in Germany,

USA and Italy [36�]. In one of such trials, led by Matthias

Edinger from Regensburg, Germany, freshly isolated

bead-selected donor Treg were infused into HSCT reci-

pients. So far nine patients have been included in the

study with no side effects (M. Edinger, personal com-

munication). In a study led by Massimo Martelli, 22

patients were inoculated with freshly isolated donor Treg

followed by infusion of haematopoietic stem cells and

donor conventional T cells. This strategy improved

immune recovery after HSCT without causing graft ver-

sus host disease (GVHD) (Di Ianni et al., 51st ASH

Annual Meeting and Exposition, New Orleans, LA,

December 2009). Another clinical trial in the University

of Minnesota, USA, led by Bruce Blazar and co-workers,

used ex vivo expanded bead-enriched, third-party, par-

tially HLA-matched Treg cells from umbilical cord blood

(UCB). These UCB Treg cells were administered into

myeloablated or nonmyeloablated recipients of two unre-

lated UCB units [36�].

Whereas aforementioned studies utilised Treg to prevent

GVHD, Trzonkowski et al. [34�] have reported their

findings from two patients with GVHD who were

treated with anti-CD3/anti-CD28 bead expanded

CD25+CD127lo Treg. One of the patients, with chronic

GVHD, responded to the therapy with alleviation of the

symptoms and reduction of immunosuppression. How-

ever, in the case of the second patient with acute, grade IV

GVHD, only transient improvement was observed. Nota-

bly, in the case of the patient treated successfully with

cellular Treg therapy, only 1 � 105 Treg cells/kg body

weight was sufficient to achieve clinical improvement.

Published reports and unpublished results from other

ongoing studies indicate that Treg cellular therapy is

proving to be effective in clinical situations. Currently,

further clinical studies are being planned to apply Treg

therapy in solid organ transplantation.

Questions arising
IL-17 production by FoxP3+ cells and Treg lineage

stability

The ability of in vitro expanded Treg to convert into

cytokine producing, nonregulatory cells upon prolonged
www.sciencedirect.com
TCR stimulation [12�] has led to concerns about the

efficacy and safety of ex vivo Treg expansion protocols.

Importantly, it was demonstrated that a proportion of

circulating Treg have the capacity to secrete IL-17 and

express RORgt [37,38]. These IL-17 producing cells are

of memory phenotype and express CCR6, a marker

associated with Th17 cells. Interestingly, some authors

have shown that IL-17 producing CCR6+ Treg are as

equally suppressive as CCR6� Treg [37,38], whereas

others demonstrated a loss of suppressive function in

FoxP3+IL-17+ clones after strong TCR stimulation in

the presence of APC [39]. Although the function and

regulatory properties of these cells in vivo are still deba-

table, the possibility that they may elicit unwanted

responses when transferred to patients cannot be

excluded. However, several markers of ‘true’ Treg have

been described such as IL-1R2, LAP and GARP that may

allow additional post-expansion purification steps to be

introduced into clinical protocols to reduce the risk of

introducing cells that do not have regulatory function

[40�,41�]. Alternatively, the use of a pure, conversion

resistant Treg subpopulation (CD25+CD45RA+CD127lo)

as a starting population for expansion [12�] would also

reduce any safety concerns.

Another way to prevent conversion into Th17 cells may

be to use pharmacologic intervention during ex vivo
culture. Recently, retinoic acid (RA) has been described

as inhibiting IL-17 polarisation and to promote FoxP3

expression [42]. Another pharmacologic agent, already in

use, as discussed above, is rapamycin which was demon-

strated to improve suppressive activity and FoxP3 expres-

sion in ex vivo expanded human Treg, especially when

isolated with magnetic beads [24].

Introduction of additional factors to the in vitro Treg

cultures that maintain FoxP3 expression in ex vivo
manipulated cells appears to be an attractive way of

ensuring their effectiveness and safety for the patient.

Additionally, obtaining cells with higher per cell activity

would potentially allow a significant reduction in the

number of Treg required for each clinical application.

Cancer and infection immunity

One of the concerns regarding the application of Treg in

transplant recipients is the possibility of inhibition of anti-

tumour and antiviral immunity. Theoretically, infusion

with large numbers of potent suppressor cells may present

a serious obstacle to the induction of effective immune

responses towards infectious pathogens and a reduction in

immune surveillance against tumour cells. As is often the

case with the immune system, reality may not fit with

theoretical predictions. For example, in vivo ablation of

Treg was recently demonstrated to lead to accelerated

fatal infection during mucosal herpes simplex virus in-

fection, suggesting that in some situations Treg facilitate

early protective responses to local viral infection [43].
Current Opinion in Immunology 2010, 22:662–668
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Notably, it has also been demonstrated in mice that

antigen-specific, in vivo induced Treg which were able

to induce tolerance in primary and secondary allograft

recipients did not affect anti-influenza response even

when bystander regulation was deliberately induced [44].

Numerous studies suggest that the accumulation of Treg

at tumour sites may affect anti-tumour immunity, there-

fore infusion of substantial numbers of Treg may particu-

larly influence the response towards already existing early

tumours. Notably, high numbers of Treg in the blood

have been recently associated with increased risk of new

tumour development in kidney transplant recipients with

non-malignant squamous cell carcinoma [45]. On the

other hand, immunosuppressive agents currently being

used are themselves associated with increased risk of

cancer [46]. Therefore, careful screening and monitoring

of transplant recipients eligible for Treg cellular therapy

should be performed before and after infusion in any pilot

clinical study.

Conclusion
Recent progress in understanding Treg biology and the

development of experimental mouse models has high-

lighted potential avenues in the translation of research-

based knowledge to the clinic. Insights into the biological

role of FoxP3, the effects of immunosuppression on Treg

and new protocols to expand or induce Treg provide a

knowledge base for developing clinical strategies to

achieve long-term graft survival without life-long immu-

nosuppression.
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