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Abstract

We prove a trace formula for pairs of self-adjoint operators associated to canonical
differential expressions. An important role is played by the associated Weyl function.
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1. Introduction

In this paper we prove a trace formula for canonical differential expressions of the
form

—iJ%(LZ) =zf(t,z) + V()f (t,z), =0, zeC, (1.1)

where
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and where the function k, called the potential, is C"*"-valued and with entries
in L;(0, o). The solution f(z,z) is C**-valued (typically, p will be equal to I,
n or 2m). Canonical differential expressions have a long history and have
been studied in particular by Krein and his coworkers. See e.g. [1,25,29-32]. They
play an important role in inverse scattering, generalized Fourier analysis and related
topics.

We associate to the differential expression (1.1) a pair (Hy, H-) of self-adjoint
operators as follows: they both have as domain the subspace of functions
feL%”(O, o0) which are absolutely continuous with respect to Lebesgue measure
and for which (I, — I,)f(0) = 0 and are defined by

Ho (1) =i Y 12) - ( k((z)* kff) )f(t,Z) (12)
and

10 =—ir Lo+ ( kg)* k(ot) )f(r, 2), (1.3)
respectively.

We prove that for every non-real z,

rank{(H, —zI)"' = (H_ —zI)"'} =n

and give a formula for the trace of the operator

(Hy, —zI)"' — (H_ —zI)™!

in terms of the Weyl function of the canonical differential expression, see
Theorem 1.2. The Weyl function is one of a number of functions of z associated
to (1.1) and which we called in [8] the -characteristic spectral functions
of the canonical differential expression. Two other functions which will
play an important role in the sequel are the scattering function and the spectral
function.

We gather the main properties of the spectral function in the next theorem.
We first recall that the Wiener algebra #™*" consists of the functions of the
form

o0
f(z) =D+ / e“u(t) dt, (1.4)
where DeC"™" and where ueL(*"(R). The subalgebra #"" (resp. #™"")

consists of the functions of the form (1.4) for which the support of u is in R,
(resp. in R_).
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Theorem 1.1. The canonical differential expression has a unique C***"-valued solution
O(t,z) such that ©(0,z) = Ly,. The limit
“2) P i gz (1.5)
y(z) 6(z) ) o

W(z) = (az) = B(2) " (x(z) = B(2))7'", zeR

is a spectral function for the canonical differential expression in the following sense: the
map which to f e L3"(R,) associates the function

U)E) ==t 1) [ 00 di (1.6)

1
V2n
defines a unitary map onto Ly (W):

/w S@) (1) dt:/ (U@ W () (U f)(2) dt.
0 R
Moreover,

(UsH f)(z) = z2(U4f)(2)

for fedom H,. The spectral function W is in the Wiener algebra and satisfies
W(w) =1,

See [24,17, pp. 1.6, p. 6.5] for a proof and see [22] for a direct proof when the
function W is rational. When k() = 0, we have (1, z) = ¢ and map (1.6) reduces
to the classical Fourier transform.

The Weyl function of the canonical differential expression is the unique function
N(z) analytic in the open upper half-plane, with N(oo0) = il, and such that

W(z) =Im N(z), zeR.

Thus, if W(z) =1, + [7 e up/(t)dr with uy e Ly*"(R) we have

N(z) = i{ln +2 / eupy (1) dt}.
0
We note that N is bounded in the closed upper half-plane.

Theorem 1.2. Let H, and H_ be the differential operators defined by (1.2) and (1.3).
Then for any z off the real line the operator

(Hy —zI)"' — (H_ —z1)™!
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has rank n. Let N be the Weyl function associated to the canonical differential
expression (1.1). Then,

Tr((Hy —zI)' = (H_ —zI)"") = Tr N(z)"'N'(2) (1.7)
and

det.,(H_ — zI)(H, —zI)"" = det N(z)N(z)~", zeC., (1.8)

where zoe C\R and det., is the generalized perturbation determinant associated to the
pair (Hy, H_).

The definition and properties of generalized perturbation determinants are
recalled in the appendix. The proof of the theorem is given in Section 5.2. In the
proof we will make use of results of [24]. An important role in the arguments of [24]
is played by transformations of the form

1 Im N(0)f (t)dr .
) = [ RS )
These transformations were introduced and used in [2-4] to solve the inverse
scattering problem associated to a function analytic and with a positive real part in
the open upper half-plane (i.e. a Carathéodory function). Since [24] is not widely
available we will present proofs of the results of [24] which we use. We also use
extensively the paper [17].

We also give detailed formulas in the case where the Weyl function N is rational
and analytic at infinity. This is equivalent to the fact that the spectral function W or
the scattering function is rational. Potentials k(#) corresponding to this case were
characterized in [5]. The rational case was further studied in [6-8,19-22].

If

N(z) = i(I, + ¢(z — a)"'b)
is a minimal realization of N, formula (1.7) implies that
Tr((Hy —wl) ™' — (H. —wI)™") = Tr(a — wl)™" = Tr(a* —wl)™",
and from (1.8) we obtain

_1_ det(a— wl) ™ (a* — wI)
det(a — zoI) ' (a* — zoI)’

det.,(H, — wI)(H_ — wI)

where a* = a — bc.

The outline of the paper is as follows. In Section 2 of the paper we recall the
necessary background on reproducing kernel Hilbert spaces. In Section 3 we review
some preliminaries on differential expressions of the form (1.1). Section 4 contains
the proof of a result of A. Iacob which is used in the sequel. The proof of
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Theorem 1.2 is given in Section 5. Section 6 deals with the rational case. Finally, we
review in an appendix the definition and main properties of perturbation
determinants.

A word on notation. For a function feL,(R) the Fourier transform and its
inverse are denoted by

Az) = /[R FEf(r) di - and f(z):% /R () d,

respectively.
The Hardy space of the open upper half-plane is denoted by H, and the Hardy
space of the open lower half-plane will be denoted by H,.

2. Preliminaries on reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces of analytic functions will play an important
role in this paper and we here review the basic definitions and some properties which
will be used in the sequel.

Definition 2.1. A C""-valued function K(z,w) defined for z and w in some set Q is
said to be positive in Q if it is hermitian: K(z, w) = K(w,z)*, and if for every choice
of integer r and points wy, ..., w,€Q the r x r block matrix with Z, j entry K(w,, w;) is
positive.

Associated to a positive function is a uniquely defined Hilbert space (which we will
denote by #(K)) of functions from Q into C" with the following two properties:

1. For every choice of weQ and ceC" the function z+— K(z, w)c belongs to #(K).
2. For every fe #(K) and w, ¢ as above,

<f(Z)’K(Zv W)C>.7/(K) = C*f(W). (21)

See e.g. [10,33]. The space #(K) is called the reproducing kernel Hilbert space with
reproducing kernel K(z, w). As an example take Q = C. (the open upper half-plane);
the function K(z,w) = m is positive in C, and the associated reproducing
kernel Hilbert space is the Hardy space of the open upper half-plane. Formula (2.1)
is then Cauchy’s formula for Hardy functions; see [18, p. 34]. A slight extension of

this example is:

Example 2.2. Let
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where C_ denotes the open lower half-plane. The function % is positive in

C\R and the associated reproducing kernel Hilbert space is the set of all functions of
the form
1 f(r)dt

F(z) = —
(=) 2ni Jp t—z’

where f'eL,(R) and with norm
El oy = 1AL,
This example is a particular case of Theorem 2.5. Writing f(¢) = f_(¢) +f+(¢)
where f (resp. f_) is the restriction to the real line of a function of the Hardy space

of the open upper half-plane (resp. of the Hardy space of the open lower half-plane)
and using Cauchy’s formula for Hardy functions we have

. S (2), zeCy,
F(Z)_{—.Hz), zeC_.

The following simple fact will be used a number of times in the paper and we write it
as a proposition.

Proposition 2.3. Let K(z,w) be a C"™"-valued function positive in some set Q. The
linear span of the functions z+— K (z,w)c with we Q and ceC" is dense in #(K).

Indeed, let Fe#(K) be orthogonal to all the functions K(z,w)c. By the
reproducing kernel property

(F(2),K(z,w)e) gy = FF(w) =0

and hence F(z) = 0.
Another important property we will need is the following result:

Proposition 2.4. Let K(z,w) be a C""-valued function positive in a set Q and assume

that the associated reproducing kernel Hilbert space #(K) is separable. Let
Fi(z), F2(2), ... be an orthonormal basis of # (K). Then,

F,(2)F, (w)*,

hE

K(z,w) =
/=1

where the convergence is in norm and pointwise.

See for instance [10,33] for a proof. The hypothesis of separability in the above
proposition is satisfied in particular when the kernel K(z, w) is analytic in z and w*,
as is easily seen from Proposition 2.3

In order to prove the trace formula (1.7) we first need to recall some results on the

theory of reproducing kernel Hilbert spaces with reproducing kernel %
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These spaces have been introduced by L. de Branges and we refer to [3, Section 6,
pp. 629—630] for more information and references; for the original works see [13,14].
Note that in these works functions with positive real part rather than positive
imaginary part are considered.

Let N be a C""-valued function analytic in the open upper half-plane C, and
with a positive imaginary part there. Such a function is called a Nevanlinna function,
and we will write N € %,,. The Herglotz representation theorem (see e.g. [15]) asserts

that N(z) can be expressed as
1 t
{—t TR 1} da(t), (2.2)

N(z):a—&—zb—i—l/
T JR

where ae C"™" is an hermitian matrix, be C"*" is a positive matrix and ¢ is a C""-
do(t)
241

valued increasing function such that fR <.

Theorem 2.5. Let N be a Nevanlinna function with Riesz—Herglotz representation
(2.2), and extend N via formula (2.2) to the lower open half-plane. Then,

N(z) = N(z%)*, zeC\R,
and the function

N(z) — N(w)*
K =——7

(W) 4r(z — w*)
is positive (in the sense of reproducing kernels) in C\R. Let L(N) be the associated
reproducing kernel Hilbert space of functions analytic in C\R with reproducing
Ky(z,w). Then, £ (N) is the set of functions of the form

1 | da()f (1)
F(z) =— — | —=—Z 2.

() 4nbc+2n/R t—z ' (23)

where ceC" and f e L (do), with norm
2 c*bc 112

1y = S+ 1 Ry (24)

It is invariant under the resolvent-like operators
R,F(z) = M
z—o
Proof. We have
N(Ez) —Nw)* b 1 do(1)

dn(z—w®) dn A Jy (=) —w) (2.5)
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Hence

N(ws) = N(w))*
4r(wy — w/*) P

=1,...,

b b 1\
4n  4n 1
bbb 1 = t=w
| = +—  aen| ¢ | o
. . . 4 R
1 1
b b —w,
dn 4n t—w,

From (2.5) we have

r b(3o 1) 1 do(t) [\~ G
;KN(Z’Wj)Cj_ 4 JrW/Rt—z ;t—wj‘

for every choice of reN, wy, ...,w,e C\R and ¢y, ..., ¢,€ C", which is of the form (2.3)
with

C—Zc] and f(¢) = 217[2 fjw*'

J

Moreover,

> Kn(zw)e
=

2 2

_ (o Cj) b(>) ‘J)
4n

(3 %)

Jj= J

Z(N) L% (do)

It follows by continuity that #(N) consists of the functions of the form (2.3) with
norm (2.4). O

Lemma 2.6. Let N is a C""-valued Nevanlinna function such that det N(z)#0. Then
—N~1(2) is also a Nevanlinna function and the map Fr— — N~'F is a unitary map
from Z(N) into (—N71).

Proof. Let F(z) = Z}Q%CJ be an element of ¥ (N) with wy,...,w,eC\R

and ¢y, ...,c,€C". Then
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Thus —N~!'Fe #(N~!) and we have

_ a ~Nw,) "+ N(w)
— N 'F|]? = A ¢ i *\% %
=N Fllyy1y = /’%‘:1 /N (wy) e Ep— N(w¥)*¢!

J
_Z W/—(W/)*c’?‘
dn(w, —wi)

= ||F||?9’(N)

where we used the reproducing kernel property in .#(N) and Z(N'~) to compute
the various norms.

By Proposition 2.3 the linear span of the functions z+— Ky(z, w)c (with ¢ and w as
above) is dense in #(N) and the lemma is proved. O

The operators R, satisfy the resolvent identity
(OC — B)ROCR/; = Rm — R[,y

and are continuous in % (N). Thus, when kerR, = {0} there is a closed densely
defined self-adjoint transformation H such that

R,=(H—ol)"

see [34].

The factor 4x in (2.5) should not disturb the reader. When N(z) = i the left-hand
side of (2.5) is equal to m and so the restrictions of the functions of #(N) to
the upper half-plane coincide with the functions of the classical Hardy space.

Stieltjes’ inversion formula allows us to recover the function ¢ in (2.2): assuming o

normalized by

o(ts) +o(1)

1) =
(1) :
and b = a = 0, we have
1 f
(k) —a(t;) == lim Im N(x+iy)dx
mybe
¥

(see e.g. [12]).
We also recall the formula for obtaining the matrix b in the Riesz—Herglotz
representation (2.2):

b= lim w

y—+w y
y>0



498 D. Alpay, I. Gohberg | Journal of Functional Analysis 197 (2003) 489-525

When N is continuous on the real line the function ¢ is thus absolutely continuous
with respect to the Lebesgue measure and o’(z) = Im N(z).

We also note that the space Z(N) is finite dimensional if and only if do is a jump
measure with a finite number of jumps.

We conclude this section with some simple examples.

Example 2.7. Let N(z) = 1= Then

N(z) — N(w)* _ 2

z— w* (I =2z2)(1 —w*)

and the space .Z(N) is the one-dimensional space spanned by the function z+> -

1—z*
Similarly,

~N71(z) + NI (w)* 2

z—w* (L+2)(1 4+ w*)

and the space Z(N~') is spanned by the function z»—»ﬁ and the map of

multiplication by N~! is one-to-one for #(N) onto Z(—N~"). It is also readily seen
to be an isometry.

Example 2.8. Let N(z) = —L. Then the space #(N) is the one-dimensional space
spanned by the function } and thus contains no non-zero constants. On the other
hand, —N(z)~' = z and the space £(—N~') is equal to C.

Indeed, we have

N(z) — N(w)* _ —N~1(z) + N~ Y(w)*

z — w¥ Zw* z — w¥

Example 2.9. Let

m ny

Hh—z H—z

where a,t,t,€R and m; and my are strictly positive numbers. Then the space
#(—N~") contains no non-zero constant functions if and only if a#0.

Indeed, we have

alz—t)z—t)+m(z—t)+mz—1)
i(Z — tl)(z — lz)

N(z) =

Thus lim. , + ., &~ — 0 if and only if a = 0.

z
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3. Preliminaries on canonical differential expressions

3.1. The fundamental solution

Eq. (1.1) has a C**"-valued solution O(t,z) uniquely defined by the condition
0(0,z) = I, and called the fundamental solution or matrizant. The function O(z, z)
admits an integral representation of the form

t
O(t,z) = "™ + / k(t,s)e™ ds, (3.1)
—t
where the kernel k(z,s) is continuous. See [17, (2.16), p. 150].
The first result of this section can be found in [17, p. 150]. We outline the proof for
completeness.

Proposition 3.1. Let O(t,z) be the matrizant of a canonical differential expression.
Then, the function

—J 4+ O(T,z%)*JO(T, w*)
Kr(z,w) = —27i(z — w¥)

(3.2)

is positive in the complex plane. Let # (T) denote the associated reproducing kernel
Hilbert space; the map

1 T
'»—>"z=—/ O(t,z5)*f (1) dt 3.3
er®e == [ e (3)
is a unitary operator from L3"(0,T) onto #(T).
Proof. From the differential equation (1.1) we have
T
/ 20(t, 25O (1, w*) dt
0

_ /0 T(—iJ%t;z*)— Ve, z*)>*@(1, W) di

T %)% T

i / 90WZ) 101, w*) di — / O, 4V V(1) O(1,w*) dt
0 ot 0

and similarly

(z,w®)

T . T o0
/ o(t, Z*)*w*e(t,w*) dt = —i / o(t,z*)*J 5 dt
0 0

_ / " 00 V(00w di.
0
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Hence,

T T
(z—w*)/ o(t,2*)* O (1, w*) dz:i/ %(@(l,z*)*J@(l,w*))dt
0 0
and hence

—J+0O(T,z*Je(T,w*) 1 [T - .
e e —%/0 O(t,2*)" O (1, w*) dt.

Thus the map

— . Z
f—=f \/_/ (¢, 25 (1) dt

is an isometry from the closure in L3"(0, T') of the functions of the form ¢+ @ (z, w*)¢
(where w runs through C and ¢ runs through C*") into #(T). To conclude one has

to show that the indicated closure is in fact all of L%”(O, T). Let f(¢) be orthogonal to
the indicated span. Then, in view of representation (3.1),

T ‘
/ (e‘i’Z*J + / ek (1, 5)* ds)f(t) dt=0, zeC,
0 1
T s
/ e ’( / k(t,)* ) dt=0, zeC, (3.4)
0

so that

and so

T
f(t)Jr/ k(s,0)*f(s)ds =0, 0<¢<T,

where k(t,s) is the kernel in representation (3.1). This latter is a Volterra equation
whose only solution is f(#) =0. O

The following corollary will be used in the sequel in the proof of the trace formula.

Corollary 3.2. Let T\ <T,. Then the space #(T) is isometrically included in the
space H(T5).

Indeed, let F(z)e#(T)). It can be written as

T T,
Fz) = /0 Ot, Y1 (¢) di = /0 Ot 2V F (1) dt,
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where f*(¢) = f(¢) for te[0,Ty] and f~ () = 0 for te (T}, Tz]. Thus F(z)e A (T>)
and

T
VP vy = 1Py = [ 10770
We recall the definition of the Weyl coefficient function.

Definition 3.3. The Weyl coefficient function N(z) is defined in the open upper half-
plane; it is the unique C"*"-valued function such that

/Om (iN(2)* m(j: f;n>@(z,z)*@(z,z)<2 _I';n><_ﬂlvn(z))dt<oo (3.5)

for Im z>0.

For the existence of square integrable solutions to the canonical differential
expression, see [17, Section 8, p. 204].

Proposition 3.4. Let N be the Weyl function of the canonical differential expression

(1.1). Then, —N (z)_1 is the Weyl function associated to the canonical differential
expression with potential —k(t).

Indeed, the matrizant associated to the canonical differential expression with
potential —k(¢) is JO(t,z)J. Thus, we have to prove that

]n _In

1, I, —i -1
( )( iN () )d,<oo.
I, —I, I,

Multiplying this expression on the left by iN(z)* and on the right by —iN(z) we see
that we have to verify that

/w (I, iN(z)*)(jn I” >J@(t, 2)*JJO(t,2)J
0

/ : (iN(z)~'* I,,)(I” b )J@(t,z)*]]@(t,z)]
0

n —n

I, 1, I,
dt< oo.
() (e)

This in turn is equivalent to (3.5) since

, z'N(z)*)(j” _";>J=<z'zv<z>* m(’” ¥ )
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3.2. Fourier analysis associated to a canonical differential expression

Recall that the operator H, has been defined by (1.2) and the map U, defined by
(1.6) is unitary from L3"(0, c0) onto L4(Im N) and is such that

Ui(Hof)(2) = 2(ULf)(2)
for all feL3"(0, ) such that f"eL3"(0,0) and (1, —I,)f(0)=0. The inverse

map is given by

1) = /R @(t,z)<§n>lm N(z)g(z) dz. (3.6)

n

We set U_ to be the map

\/ﬂ/ (1, I,) ( _01>@(t,z)*<10” _0] >f(t)dt. (3.7)

U_ is a unitary map from L3"(0, o0) onto L%(Im (~N~")) such that

(U-(H-f))(z) = 2(U-f)(2)

for all feL3"(0, co) such that f’eL3"(0, ) and (I, —I,)f(0) =0.
The operators (H, — wI)™" and (H_ — wI)™" can be explicitly computed using the
generalized Fourier analysis.

Proposition 3.5. Let fel3". Then,

(Hy —wI)™'f)(0)

@(z,z)<j )ImN )(Jo" Iy 1,)O (u, 2)*f (u) du)

= dz,
R Z—w

(H- —wI)™'f)(0)

JO(t,z)J (;)ImN T (I 1) O (u, 2)*If (u) du)

= / dz.
R Z—w
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It seems quite difficult to prove directly from these formulas (for instance
using the definition of the trace in terms of an orthonormal basis) that
the operator

(Hy —wl)™ — (H_ —wI)™"

has rank n.

Proposition 3.6. Let fe13"(0, o). Then,

1 * ., 1 U+ U-(Jf)
\/—Z_n/o O(t,2)"f (1) dl_§<U+f— U(Jf)>(z)'

Proof. By definition of U_ we have

(U_(F)(2) :% /0 " 1)IO( 2 I (1) di

1 « *
:E A (I, —1,)0(t,z)"f(t) dt

and so we have

Uu.f _ I, I, L 0 L
(U(ﬂ7>@%_<a _@>X(¢;hﬁ 0(1.2)1)dr

and hence the result. O

3.3. The Hilbert transform

The unitary operator M_y-1 of multiplication by —N~! from Z(N) onto
#(—N7") induces a corresponding unitary transformation in the related weighted
spaces Ly(Im N) and L,(Im (—N—")). This transformation is the counterpart of the
transformation relating orthogonal polynomials of the first and second kind in the
discrete case (see e.g. [35]) and is called the Hilbert transform in [12]. We also refer to
[11, Theorem IV, p. 548].

The following result appears in [24]; see [24, (5.52), p. 5.20].

Theorem 3.7. Let f~ be defined by

f@_A@EWM@ﬂ

N mi(t — z)

+iN(@E)f(2). (3.9)
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Then,

(Im N(1)f () dt (Im (=N(2) ")/ (1) dt
/'R mi(e—z) NE) -/R 2ni(t — z) ‘ (3.10)

Moreover, f_ is given by the formula
J-(2) = ipN*pf — igNqf , (3.11)

where p = I — q denotes the orthogonal projection from the Lebesgue space L (R) onto
the Hardy space of the open upper half-plane.

Proof. We first consider f of the form f(¢) = ; with we C, and ceC". Then

2711([ w*

/ (Im N(0)f (1) dr _ / (Im N(O))cdt  N(z) — N(w)*_

mi(t — z) R 212(t —2)(t —w¥)  2m(z—w¥)

and the Hilbert transform of ——*— b (as given by (3.9)) is equal to

2ntt w
N - Nw™  N@Ee _ Nw'e
2m(z — w¥) 2n(z —w¥)  2m(z — w*)
Hence for f() = Soamm We have /(1) = _%

The left-hand side of (3.10) is equal to nif\’(w and the right-hand side of (3.10)

4n(z—w*
is equal to

NG /R Im (=N (1) 'N(w)*edr _ NG (-N(z)—1 + N(w)-‘*> N

472 (t — z)(t — w¥) 4r(z — w¥)
_(N() = NOwe
An(z — w*)

where we have used the equality

/ Im (-N"'())dt  —N(z)"" +N(w)™ "

R 4m2(t —z)(t —w¥*) 4r(z — w¥)

The case of functions of the form m with w in the open loer half-plane is

proved in the same way and the result is proved by continuity and density.

The proof of formula (3.11) is done in the same way. We note that the operator
ipN*p — igNgq is bounded since, as already remarked, N is bounded in the closed
upper half-plane. We first consider a function f of the form f(z) = ; where

ceC” and weC,. Then (3.11) is equal to 71\;(()6

—2n1(7 w#

which coincides W1th (3.9).

wk)?
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nN(SQf;) The general case

Similarly, for f(z) = b o formula (3.11) gives f_(z) = 5

(z—w
follows by a density argument. [

When f has its components in the Hardy space of the upper half-plane and ze C

we note that
fo(z)= % /R N(lt)f*];(t)dt. (3.12)

4. A theorem of Iacob

In this section we prove a result, Theorem 4.2, taken from lacob’s thesis (see [24,
Theorem 5.5, p. 5.18]). The result is based on a result of [3], but no proofs for the
specific result we need appeared besides in [24], and we will repeat the proof. The
result in [24] is in the setting of J-inner function while here the functions we consider
are inverses of J-inner functions. This explains the difference of signs in some
formulas between the present work and [24].

We begin with a preliminary proposition. Recall that ©@(T,z) denotes the
matrizant of the canonical differential expression (1.1). We set

. @11(T,Z) @]z(T,Z)
6(T.2) = (@21(T,z) @zz(T,z)>’

where the ©;(T,z) are C"*"-valued and

E(T,z) = =0y (T,z*)* + 0n(T, %)%, (4.1)
E (T,z) = 0,(T,z*)* — 0,(T, %)%, (4.2)
F(T,z) = Oy(T,z*)* 4+ Oxn(T, z%), (4.3)
F (T,z) = 0(T,z*)" + 01»(T, %" (4.4)

Proposition 4.1. Let T >0. The following hold:

1. The function E_(T,z) is invertible in the open upper half-plane and ((z +
NE_(T,z)) ' eH".
2. The function E,(T,z) invertible in the open lower half-plane and ((z —

NE(T,z)) 'eHy"™".
3. The function
iF_(T,z)E_(T,z)"" if zeCy,,
Nr(z) =9 . -1 .
iF (T,2)EL(T,z) if zeC_

is a Nevanlinna function.
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4. For zeR it holds that
Im Np(z) = E_(T,2) " E_(T,z) ' = E(T,z) """ E(T,z)"",  (4.5)
5. and the function z+—1Im Nr(z) belongs to the Wiener algebra and takes value I, at
infinity.

A proof can be found in [17]. For completeness we outline some of the arguments.
It follows from (3.2) that the function z+ @(T, z*)* is J-expansive in the open upper
half-plane and J-unitary on the real line:

ZJ if Z€C+,
o(T,z%)*JO(T,z*)
=J if zeR.
It follows that
o(T,z%JO(T, ¥ =J

for zeC,; see e.g. [16, pp. 13-16]. Multiplying this inequality by (7, 0) on the left
and by (I, 0)* on the right we obtain

011(T,z%)0\(T,2*)* — 0x(T,2*)01(T,2*)* =1,
and so
F (T,2)*E_(T,2) + E (T,z)"F (T,z)=21,. (4.6)
Assume that E_(T,z)c = 0 for some vector ceC". Then, multiplying both sides of

(4.6) by ¢* on the left and ¢ on the right we get 0=c¢c* and so ¢ =0 and E_(T,z) is
invertible in the open upper half plane. Thus (4.6) also leads to

M>E,(T,z)”*ﬂ(ﬂ2)fl- (4.7)

We now show that the function ((z+i)E_(T,z)) ' eH2*". Let ceC" and &>0.
Using (4.7) and the Poisson formula for harmonic function we obtain

1« -1 .
/CE,(T,Z—Ha) E,(Y;,t—i—ls) Fdi< / CIm NT(t—f—l;)C
R 2+ (1+5¢) R £+ (l+¢)

T

_ ; ¢
=1 +(Sc(Im Nr(i(1+¢))c* dt
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and so

/ E (T, t+ie) " "E_(T,t+ie)”"
sup c
R

TR & dt<ne(Im Nz(i))c*
€

e>0

and so ((z +)E_(T,z)) ' eHL".
Similarly, since z+» @ (T, z*)* is J-contractive in the lower half-plane we have

J=0(T,z*)JO(T,z*)*, zeC_.
Multiplying this inequality on the left by (0 1,) and by (0 I,)* on the right we obtain
On(T,z*)Oxn(T,2*)* — 02(T,2%)0 (T, 2*)* =1,
and so
F (T,2)E.(T,z)* + E.(T,z)F.(T,z)*>21,
and so for z in the open lower half-plane we have

]VT(ZYX< — NT(Z)

2i >E+(T7Z)71*E+<T,Z)7l. (48)

Thus

Nr(z) — NT(Z)*>0
(-2
in the open lower half-plane. Eq. (4.5) is obtained by considering (4.7) and (4.8) for z
on the real line. The function z+— @ (T, z) is then unitary and the inequalities are
replaced by equalities in (4.7) and (4.8). [

Multiplying (3.2) by (I, — 1,) on the left and by (I, — I,,)* on the right we see that
the function

Ar(zow) = ET Z)E(T_’;Vi;.(zfjg’ DEAT, W) (4.9)

is positive in the complex plane. We will denote by %1 the associated reproducing
kernel Hilbert space.

Theorem 4.2. Let #(T) denote the reproducing kernel Hilbert space with reproducing
kernel Kr(z,w) defined by (3.2). Then

o)

ge%r}, (4.10)
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where
o) = ([ 42080 vy ) (.11)
In this expression
Ar(z) = (BT, B (T2 = (BT, 0EL(T,2% " (412)
and
Nr(z) = i(],, - 2/000 e“'h(T, 1) dz> (4.13)

with Ap(z) = I, — [, €“h(T,t) dt and t— h(T,t)eL*"(R).

Proof. The proof is built in a number of steps. We first give some notations. IT

denotes the projection
(L, -1,
== .

We also define the spaces (where “‘c.1.s.”” stands for the closed linear span in the space
H(T)):

H(T) =cls{Kr(z,w)(l, — )¢ weC, EeC™},

Ny ={FeH(T); (L, — I)F(z) = 0}.
We also recall that the elements of #(T) were characterized in Proposition 3.1
(see Eq. (3.3)).
Step 1: The space N = {O}
Indeed, let F(z fo ‘f (1) dt be such that
(L, —)F(z) = 0.

Then, as in the proof of Proposition 3.1 (see Eq. (3.4)) we have

(12,1—17)/; —"~*J< / k(t,s)*f )dt

But (I, — II)J = JII and I1J = J(I, — II) so that

(I, — M)e ™ = (cosh itz*J) (I, — IT) — (sinh itz*J)I1
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We are thus lead to

/OT (cosh itz*J ) (I, — IT) ( )+ /,T k(e )*1(s) ds) J—o

and

/OT (sinhitz*J)I'[<f(t) N /ITk(t,S)*f(s) ds) o

for all zeC. It follows that

f)+ /tT k(t,s)*f(s)ds =0

and so f(¢) = 0.
It follows from the previous step that #(T) = # ' (T).
Step 2: The map
Ar(z,w)e + T'r(z,w)c
Ar(z,w)e—= Y (Ar(z,w)c) = ,
7z wje= Y{Ar(zwie) (/1T(z7 w)e — I'r(z,w)e

N —

where

26, + F_(T,2)E_(T,w)* + F (T, 2)E. (T, w)* .

r =
r(zw)e —2mi(z — w¥)

extends to an isomorphism from By onto A (T).

Indeed, let & = <? > with &, and &, in C". Then,
2

K7 (z,w)(Io, — IT) (? )

2

L L \=J+O(T, O, w) 1[I, I, [¢&
2\ -1, I, —2mi(z — w¥) 2\ 1, 1, &

() (5)

(Ly — INKrp(z,w) (I — I = ;(ZZ x;) (51;52>

and

509
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Hence

Kr(z,w)(ly — ¢ =OKr(z,w) oy — M)E+ (Iy — I Kr(z,w) (Do — I)E

1 Ar(zw) +Tr(z,w) (51 + 52)
2\ Ap(z,w) = Tp(z,w) 2

and the map Y sends the linear span of the Ar(z,w)c into #(T). Moreover, for

every choice of complex numbers w; and of vectors &l = ( b ) eC? (with
2
j=1,...,r) we have (using the reproducing kernel property in J#(7") and in %)

2

/=1

H#(T)

= Z ED* (Ly — ) Ky (wy, w)) (o — I1)EV

:<«:{" FEOT +¢‘(>*>
2 2

1( Ar(ws,wp) + Tr(we,w)) 52/) + éj)
2 —/1]"(W/7 Wj) + FT(W/, Wj) 2
_y @y & + &)

7 Ar(wz, wj) >

/=1

Z/lrzw/ <£ ;éz>

A0, 40
Thus with f(z) = >, Ar(z, w/)(g‘ o2 ) we have || Y (f)[| (r) = I|f]|4, and hence the

result by density and continuity.
Step 3: It holds that

Br

—I'r(z,w) = /R W—i— INp(z)A7r(z,w). (4.14)

We prove (4.14) for z,we C,. The other cases are treated in a similar manner. We
have Ny (z) = iF_(T,z)E_(T,z)"" and so

IN7(z)Ar(z,w)

F (T,2)E_(T,w)* F.(T,2)E_(T,z) "E.(T,2)E,(T, w)
—2mi(z — w¥) * —2mi(z — w¥)
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Hence, proving (4.14) is equivalent to proving that

2L, — Fo(T,2)E((T,w)* F_(T,2)E_(T,z) "E4(T,2)E(T,w)*

—2mi(z — w¥) —2mi(z — w*)
Ar(t)Ar(t,w) dt
+ /R mi(t—z)

We now compute

dt

/ Ap()Ar(t,w)de 2/ E_(T,0)" " E_(T,t) "E_(T,0)E_(T,w)*
R mi(t — z) B (2mi(t — z))(—2mi(t — w*))
B 2/ E (T, 0y "™ E (T, ) E(T,0)E.(T,w)*
R

(2ni(t — z))(—2mi(t — w*)) drt.

Using Cauchy’s formula for Hardy function we see that

E(T,0) “E_(T,0) "E_(T,0E_(T,w)* \
(2 /R (Gnilt = 2))(=2mi(t — w*) ‘”)

_ E(T,wE_(T,0)"!

=2 /R (Camit = ) 2rilt —w)) @

2,

- 2mi(w — z¥)
so that

E_(T,0) " E_(T,t) 'E_(T,nE_(w)* , 21,
2 /R il — o) (—2mit =) T Tami(z — )

Similarly

, / E(T,0) "E(T,0) 'E((T,0E(T,w)"
R

Qri(r — 2))(—2mi(f — w¥))
_ / E (T, )" E(T,w)*

r (2mi(t — z))(—2mi(t — w¥))
 2E(T,2*) " E(T,w)*
B —27i(z — w¥)

N . .
since the function zn—»% has its components in H,. Hence to prove (4.14)

boils down to verifying that

—F(T,z) =F_(T,2)E_(T,z) 'E.(T,z) — 2E.(T,z%)""*.
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We multiply on the right both sides by E,(T,z¥)* and recall that
E(T,2)E(T,z*)* = E_(T,z)E_(T,z*)*. We are lead to check that

—F . (T,2)E(T,z*)" = F_(T,2)E_(T,z*)* - 2I,.
This in turn is easily checked by multiplying both sides of the equality
O(T,z%)*JO(T,z) = J on the left by (I, I,) and on the right by (f}) O

We note that Step 3 in the proof is the key to lacob’s result and to the trace formula.

5. The proof of the trace formula (1.7)
We will start with some preliminaries.
5.1. The spaces Bt

The next step toward the proof of the trace formula for the pair of operators
(Hy,H_) is:

Proposition 5.1. In formula (4.11) one can replace Ar by Im N(t) and Nr(z) by N(z).

Since the 41 form a nested sequence, a formal proof consists in letting 7'— oo in
(4.11). The rigourous proof makes use of various properties of the spaces #r. We
proceed in a number of steps. Recall that the space %41 was defined in Theorem 4.2.

Step 1: The space Bt is the closed linear span in L5(W) of the functions

eizl -1

z

ZH

Cy

where |t|<T and c runs in C".
For a proof see [17,24, Theorem 5.4, p. 185; Theorem 6.7, p. 6.30]. Under our
assumptions on the weight functions, we have that

81]H<W(Z)S821n, teR

and so #r, as a vector space, is the same in the L7(R) norm and in the norm of
L7(W). Hence, as a vector space, %y is the set of functions of the form

T T
/ e™g(u) du with / g(u)*g(u) du< .
-T -T

Step 2: Let T\ <T». The space A, is isometrically included in Br,.

This is a direct consequence of Corollary 3.2 and of Step 2 of the proof of
Theorem 4.2. A proof may also be found in [17, Corollary 5.2, p. 180].

Step 3: The space By is isometrically included in L (Ar).
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Indeed, the reproducing kernel A7(z,w) of B (given by (4.9)) can be written as

In — VT(Z) VT(W)*

Ar(z,w) =E_(T,z) e E—

E (T,w)¥ (5.1)

where the function Vry(z) = E_(T,z) ' E,(T,z) is inner. It follows that
Br = {F(z) = E_(T,z)G(z), GeH.O V H!}
with norm
Fll5, = 11Glly

and the result follows.

Step 4: The spaces Br are isometrically included in L5(Im N).

Indeed, from the two previous steps we have that % is isometrically included in
L,(47) for all T">T. To conclude we recall that

Im N() = lim Ap (o). (5.2)

T'—

Indeed, let ©O(t,z) denote the matrizant of the canonical differential
expression (1.1) and let E_(¢,z) and E,(z,z) be defined by (4.1) and (4.2). Then it
holds that

lim (E_(t,2)E_(t,2)*)"" =Im N(2).

t— 0
Indeed, using (1.5)

lim E_(t,z)E_(t,z)*

—> 0

= [EI%(@]](Z,Z) — @12(l,2))*(@]1(l,2) — @12(1‘,2))

= lim ((011(1,2) — ©12(1,2))*e"™)((On1(1,2) — Ona(1,2))e™ ™)

1— 0

= ((z) = B(2)*(x(2) — B(2))

and hence we have (5.2).

Step 5: Let At be as above; the inverse Fourier transform of the function Ay — Im N
vanishes in the interval (=2T,2T).

Indeed, we have for all #,5€[—T, T

eiut -1 e—ius -1

u u

/R (Im N () — A7 (u)) du = 0. (5.3)
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The function Im N(u) — A7 (u) is in the Wiener algebra and vanishes at infinity. Thus
we have

Im N(u) — Ar(u) = /R " vr(x) dx,

where the entries of vy are in L;(R). Differentiating (5.3) with respect to ¢ and s we

have
/ eili=9u (/ e ur(x) dx) du=0
R R

for t,se[—T,T]. Hence, using the properties of the inverse Fourier transform we
have that vr(x) = 0 for xe[-2T,2T]. It follows that

o0

N(u) — Nr(u) =2 / "7 (x)dx. (5.4)

T

Step 6: We now conclude the proof and first check that one can replace Ar(t) and
Nr(z) by Im N(t) and N(z), respectively, in (4.14).

By Step 1, Ar(z,w) is of the form fTT g(u)e™du where the entries of g
are in Ly(—7,T). We show that in (3.11) we can replace N by Nr. Indeed,
using (5.4)

p(N — N1)*pAr — q(N — Nr)gAr

([ o) [ o)
([ ) [ sea)

=0.

Here we used the easily verified facts that

0 T
(/ e " pr(x) a’x) / g(w)e™ duew
T 0

and

((/T:’O ei“va(x)*dx) /OT g(u)eiz”du) e _.
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Thus for weC and ceC" we have

I'r(z,w)e= — (/R Im Nfrti)(;li(;,)w)cdt_i_ IN(z)Ar(z, w)c)

— i(pN*p — qNq) Ar(z, w)e

= — (Ar(z,w)c)_ (in view of (3.11)).

Since the span of the functions of the form A(z,w)c (weC, ceC") is dense in %r
and since the operator i(pN*p — ¢Ng) is bounded, (4.11) holds for all ge 4 by
continuity.

5.2. Proof of the trace formula

We begin with a proposition. We recall that the operators U, and U_ are defined
by (1.6) and (3.7), respectively.

Proposition 5.2. Let

1 (Im N(2))x(¢t) dt

(V00 =5 [ O Lyim N ()

and

_ -1
(v = (BN POL gy () 2N )

Then

—MyV_U.J=V,U,. (5.5)

Proof. Eq. (5.5) can be rewritten as

Im (~N@ U0 [ (m NO)U S d
—NE) /R 27i(t — z) /R 27i(t — z) '

Thus we have to prove that —U_Jf is the Hilbert transform of U.f":

U Jf(z) = = (Uyf)_(2)

_ (/ (Im N)()(Uf) (1) d
R

r .
_ MONOD L NG E)



516 D. Alpay, I. Gohberg | Journal of Functional Analysis 197 (2003) 489-525

From Proposition 5.1 we replace in (4.11) A7 by Im N and Ny by N. We thus have
g = —g_ for ge #y. Comparing (3.8) and (4.10) we then obtain

(Uf).=-UJf (5.6)

for a function of support in (0,7). Thus, equality (5.5) holds for every f with
compact support and by continuity it holds for all f eL%”([RL). O

We now turn to the proof of the trace formula. We first remark that we can choose
an orthonormal basis of L3"(R, ) which consists of functions of the form

i) = (""é”) (57
and
fp():@[))’ (58)

i.e. such that Jf, = +f, and so (U.f,). = +U_f, and NV_U_f, = £V, U.f,.
The family F, = V, U,f, is an orthonormal basis of #(N) since V', U, is a unitary
transformation from L3"(R,) onto Z(N). Recall that

C(Hy — Wl)ilf‘af>L%”(R+) = <RWF7F>Z’(N)7 F=V,Uyf (5.9)
for every f €eL3"(R,) and that similarly,
{(H- — Wl)ilfaf>L§”(0_oc) =R F') gy, F =V UL
On the other hand,
(RWF' F'Y g1y = {(NR,N'NF' NF') ).
Assume that f is such that NV_U_f = + V, U.f. Then, the formula
(R (up))(2) = (Ryu)(2)o(w) + u(z)(Ry0)(2)

for u and v of appropriate dimensions and analytic in a neighborhood of the point w
leads to:

((H- - ‘4’1)71f»f>L§"<R+)
= (NR NN VLU )W), VeUrf > gy

+ (NNT' RV Uf)(2), Ve Uif > o)
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= _<(RwN)(Z)N(W)71(V+ Unf)(w), Ve Uif ) ov

+ ((Hy - wl)*lf,f>L§“<R‘)’

where we have used (5.9). Thus if /' = f, is an element of a basis of L%”(O7 o0) of the
form (5.7) or (5.8)

C((Hy —w)™' = (H_ - 14’1)71)];7f,»7>L§"(0,w)

:<N@—Nw>

zZ=w

N(w)_]Fp(w),Fp>
Z(N)

= 4n Tr{N(w) " F, (w)E,(w*)*}.

To prove the last equality, remark that Lﬁl(”) = 4nKy(z,w*) so that we have

z—

N'(w) = 4n Ky(w,w™*)

and

= (Fp,4nKy(z, w*)N(w)lep(w) Z;(N)
=4n (Fp(w)*N(w)f1 *Fp(w*)*)*

= 4Tt N(w) ' F,(w)F, (w¥)*.

By Proposition 2.4,

o0

Ky(z,w) =Y Fy(2)Fy(w)", (5.10)
0

where Fy, F», ... form an orthonornal basis of #(N). Setting z = we C\R in (5.10) we
obtain

N'(w) =4n (Z F,,(W)F],(W*)*> :
0
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So,
Te{(H, —zI)"' — (H_ —zI)""}

8

=S ) = (D) oy
0

N\~ /N@E) = Nw)

N 20:< z—w

= Z (Fy, 4nKy (2, w*)N (w) " F,(w) )
0

=47 Tr N(w)™! (i Fp(l/V)Fp(l/V*)*>
0
=TrN(w) 'N'(w)

and this finishes the proof of the trace formula (1.7). We now turn to the proof of
(1.8). First note that

%m det N(z) = Tr N(z)"'N'(z). (5.11)

See [27, Lemma, p. 129]. Next we start from (A.3):

%m det.,(H. —zI)(H, —zI)"' = Tr((H, — 1) = (H_ — zI)7").

Using (5.11) we see that (1.7) can be rewritten as
4 o det (H. —zI)(H, —z)"" = ilndetN( )
dz 20\ -T2 T dz z)

from which we obtain

Indet.,(H_ — zI)(H, —zI)"' = Indet N(z) + k

for some constant k. Hence
det., (H_ — zI)(H, — zI)”' = ¢det N(z).
The choice z = zj leads to ¢¥ = detN(zy)~" and hence we obtain (1.8). [

Definitions and the main properties of perturbation determinants are recalled in
the appendix. We also refer to the paper [26], which can be found in [28].
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6. The rational case
6.1. Introduction

In this section we study the rational case, that is the case where one (and
hence all) of the characteristic spectral functions of expression (1.1) is rational. A
rational function analytic at infinity and on the real line belongs to the Wiener
algebra:

Proposition 6.1. Let W be a C""-valued rational function analytic on the real
line and at infinity, and let W(z) = D+ C(zI — A)"'B be a minimal realization
of W. Then, W belongs to the Wiener algebra W"™" and W(z) = D — [, k(u)e™ du
where

iCe™™A(I — P)B if u>0,
k(u) =19 . :
—iCe ™ PB if u<0,

where P is the Riesz projection corresponding to the eigenvalues of A in C..

In [5] we characterized the class of potentials associated to a rational spectral
function:

Theorem 6.2. Let W(z) be a C""-valued rational function analytic and
strictly positive on the real line and such that W(oo) = I,. Then, W is the spectral

Sfunction of a canonical differential expression of the form (1.1). Let W(z) =

I, + C(Iy — zA) ™' B be a minimal realization of W. Then the potential k(t) is given by
the formula

k(1) =2C(Pe~ 2|, ,)"'PB,

where A* = A — BC and where P is the Riesz projection corresponding to the
eigenvalues of A in C,.

These potentials are called strictly exponential potentials. The next theorem,
proved in [6] and [9] expresses the spectral function in terms of a minimal realization
of the spectral factor S_(z).

Proposition 6.3. Let W(z) = S_(z)"'S_(2)™"* be the spectral function associated to

the canonical differential expression (1.1) and let S_(z) = I, + ¢(zI —a)™'b be a
minimal realization of the spectral factor S_. Then the potential associated to W is
given by

k(l) _ 2C€2ita(lm + .Q(Y _ efzita* YeZim))—l(b + iQC*),
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where Q and Y are the unique solutions of the Lyapunov equations
i(Qa™* —a*Q) =bb*,
i(Ya—d*Y) = — c*c.
One can obtain a minimal realization of N from various minimal realizations of

other spectral data associated to the weight function. The following result is taken
from [8,9].

Proposition 6.4. Let W(z) = S_(z)"'S_(z)""* be the spectral function associated to

the canonical differential expression (1.1) and let et S_(z) = I, + c(zI —a)”'b be a
minimal realization of the spectral factor S_. Then the function

N(z) = i(L, + 2(=b* + icQ)(zI, — a”**) ' ¢¥)
is analytic in the open upper half-plane and such that
W(z) =Im N(z).
6.2. The trace formula in the rational case

Let r be a rational function with no poles on the real line and vanishing at infinity.
It can be written as a finite sum of the form

— i
V(Z) - Z (Z 7 wj)njv
where the ¢;eC and the w; are not real. If H is a self-adjoint operator we define

H(H) =S G(H —wil) ™.

Theorem 6.5. Let N be a C""-valued rational function analytic in the closed upper
half-plane and at infinity and such that N(oo) = I, and with a positive real part in the
upper half-plane. Then, N is the Nevanlinna function of a canonical differential
expression. Let H, and H_ be the self-adjoint operators defined by (1.2) and (1.3)
and let

N(z) = i(I, + ¢(zI —a)~'b)

be a minimal realization of the Nevanlinna function N. Then, for any rational
function r with no poles in the closed upper half-plane and vanishing at infinity,
the operator

F(H.) - r(H_)
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has rank n and
Tr{r(H;) —r(H-)} = Trr(a) — Trr(a*),

where a* = a — bc. Finally,

1%
det:o(HJr — ZI)(H? _ Zl)fl _ det(a — 21)71(a ZI) .
det(a — zo) ™' (a* — zoI)

Proof. Let N(z) = i(I, + c¢(zI — a)~'b) be a realization of N. Then,
N'(z) = —ic(zI —a)*b
and thus, with a* = a — bc we have

NN (2) = (I — e(zI — a*)"'b)(—e(zI — a)~*b)
= —c(zl —a)h
+ c(z—a*) 'be(zl —a)?b
= —c(zl —a)h
+ c(zl —a*) a—a*)(zl —a) b

= —c(zl - ax)fl(zl — a)flb.

Hence
TrN(z) 'N'(z) =Tr(—c(zl —a*) ' (zI — a)"'b)
=Tr(zl —a) ' (=be)(zI —a*)™!
=Tr(zl —a) ' (¢ —a)(zl —a”)""
=Tr(zl —a) " (& —zI + zI — a)(z] —a*) ",
and thus

TrN(z)'N'(z) = Tr((zl —a*) ' = (zI —a) ")

521

(6.2)
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and (1.7) leads to
Tr((Hy —z) ' —(H_ —zD) Y =Tr ((a—z)"' = (@ —z)"")  (6.3)
and hence the result for r with simple poles. The general result is obtained by an

approximation argument.
We now prove (6.1). Formula (A.1) with B=a and 4 = a* gives

%m det(a —zI)(a* —zI) ' = Tr{(a* —zI)"' = (a—zI)"'}.
On the other hand, recall (A.3):

%m det.,(H. —zI)(H, —zI)"' = Tr (H, —zI)"' = (H_ —zI)"").

In view of (6.3) we have
d —~
o {Indet(a —zI)(a* - 21 4 Indet. (H. —zI)(Hy —zI)"'} =0

and hence the result. O

Appendix. Perturbation determinants

In this appendix we review some facts on perturbation determinants. First
the definition. If 4 and B are (possibly unbounded operators) such that B— 4 is

trace class, the determinant det(B — zI)(4 — zI)~' makes sense and is called the
perturbation determinant of the pair (A4,B). See [23, Chapter 4, Section 3].
Furthermore, it holds that

% Indet(B—zI)(A —zI) " = Tr{(4 —zI)"' — (B—zI)"'}, (A1)

see [27, p. 132].
One can extend the notion of perturbation determinant to the case where B — 4 is

not of trace class but where for some zoeC both (4 — zgI) ™" and (B — zI) ™" exist
and are such that (B —zol)"' — (4 — zy) ' is of trace class. One sets

det., (B—zI)(A—zI)"!

def det((B—zol)_l— ! )((A—zw“— ! )1- (A2)

Z— I Z— 2

Formula (A.1) still holds when the perturbation determinant is replaced by this
generalized perturbation determinant. See [27, p. 132]. For completeness we prove
this fact in the next proposition.
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Proposition A.1. It holds that
diln det.,(B—zI)(A—zI) ' =Tr((4A —z)"' = (B—z)7H). (A3)
zZ

In particular the value of det., does not depend, up to a multiplicative constant, on the
choice of zy and reduces to the perturbation determinant (still up to a multiplicative
constant) when B — A is of trace class.

Proof. First note that formula (A.1) holds for

By=(B—zI)"",
Ay = (A4 —z0)".
Hence,
diln det((By — zol) ™" — zI)((Ag — zod) ™" — zI) ™"
zZ
=Tr{((4o — zol) " —zI)™" = (Bo — zo) "' — zI)"'}.
Thus,

d, ~ _
- Indet., (By — zI)(dy — zI) !

d » I 4 I\
_E<(BO_ZOI) _Z—Zo> ((Ao—Z()I) _Z—Z()>

_ _ﬁn{ <(Ao —z00)” — - _IZO>1_ ((BO =) - z —IZO>1}’

where we used the rule of differentiation for composition of functions to go from the
second to the third line.
If z is also in the resolvent set of A, it is easily shown using the resolvent identity

A—zD)' = (A —z) ' = (z—z20)(A—zI) (A4 —zD)!
that

1
Z—2Zp

-1
((A—Z()I)l - ) = (z—z0) (=1 + (z — zo)(zl — A) 1),
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and similarly for B. Hence,

_%Tr ((A—zol)l— ! >l—<(B—zol)l— ! )1

(z —zp) zZ— 2 zZ— 2

L T ) (T - 2) e - A
(z — z0)

—(z— ZO)(—I ¥ (z— 20) (2] — B)_l)}

=Tr((Ad—zI)"' —(B—zI)™")

which ends the proof of (A.3). O
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