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a b s t r a c t

We study the effects of subgroup distortion in the wreath products A wr Z, where A is
finitely generated abelian. We show that every finitely generated subgroup of A wr Z
has distortion function equivalent to some polynomial. Moreover, for A infinite, and for
any polynomial lk, there is a 2-generated subgroup of A wr Z having distortion function
equivalent to the given polynomial. Also, a formula for the length of elements in arbitrary
wreath productH wrG easily shows that the groupZ2 wrZ2 has distorted subgroups, while
the lamplighter groupZ2 wrZhas no distorted (finitely generated) subgroups. In the course
of the proof, we introduce a notion of distortion for polynomials. We are able to compute
the distortion of any polynomial in one variable over Z, R or C.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The notion of subgroup distortion was first formulated by Gromov in [5]. For a group G with finite generating set T and
a subgroup H of G finitely generated by S, the distortion function of H in G is

∆G
H(l) = max{|w|S : w ∈ H, |w|T ≤ l},

where |w|S represents the word length with respect to the given generating set S, and similarly for |w|T . This function
measures the difference in the word metrics on G and on H .

As usual, we only study distortion up to a natural equivalence relation. For non-decreasing functions f and g on N, we say
that f ≼ g if there exists an integer C > 0 such that f (l) ≤ Cg(Cl) for all l ≥ 0. We say two functions are equivalent, written
f ≈ g , if f ≼ g and g ≼ f . When considered up to this equivalence, the distortion function becomes independent of the
choice of finite generating sets. If the subgroup H is infinite, then the growth of the distortion function is at least linear, and
therefore one does not extend the equivalence classes using the equivalence defined by the inequality f (l) ≤ Cg(Cl) + Cl. A
subgroup H of G is said to be undistorted if ∆G

H(l) ≈ l. If a subgroup H is not undistorted, then it is said to be distorted, and
its distortion refers to the equivalence class of ∆G

H(l).

Remark 1.1. Suppose that there exists a subsequence of N given by {li}i∈N, where li < li+1 for i ≥ 1. If there exists c > 0
such that li+1

li
≤ c , for all i ≥ 1, and f (li) ≥ g(li), then f ≽ g .

Here, we study the effects of distortion in various subgroups of the wreath products Zk wr Z, for 0 < k ∈ Z, and, more
generally, in A wr Z, where A is finitely generated abelian.

Note that wreath products Awr Bwhere A is abelian play a very important role in group theory, for many reasons. Given
any semidirect product G = CλDwith abelian normal subgroup C , then any two homomorphisms from A → C and B → D
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(uniquely) extend to a homomorphism from A wr B to G. Also, if B is presented as a factor-group F/N of a k-generated free
group F , then themaximal extension F/[N,N] of Bwith abelian kernel is canonically embedded in Zk wr B (see [7].) Wreath
products of abelian groups give an inexhaustible source of examples and counterexamples in group theory.

For instance, the group Z wr Z is the simplest example of a finitely generated (though not finitely presented) group
containing a free abelian group of infinite rank. In [6], the group Z wr Z is studied in connection with diagram groups and
in particular with Thompson’s group. In the same paper, it is shown that, for Hd = (· · · (Z wr Z) wr Z) · · · wr Z), where the
group Z appears d times, there is a subgroup K ≤ Hd ×Hd having distortion function∆

Hd×Hd
K (l) ≽ ld. In contrast to the study

of these iterated wreath products, here we obtain polynomial distortion of arbitrary degree in the group Z wr Z itself. In [1],
the distortion of Z wr Z in Baumslag’s metabelian group is shown to be at least exponential, and an undistorted embedding
of Z wr Z in Thompson’s group is constructed.

In this note, rather than embedding the group Z wr Z into larger groups, or studying multiple wreath products, we will
study distorted and undistorted subgroups in thewreath products Awr Zwith A finitely generated abelian. Themain results
are as follows.

Theorem 1.2. Let A be a finitely generated abelian group.

1. For any finitely generated infinite subgroup H ≤ A wr Z there exists m ∈ N such that the distortion of H in A wr Z is

∆A wr Z
H (l) ≈ lm.

2. If A is finite, then m = 1; that is, all subgroups are undistorted.
3. If A is infinite, then, for every m ∈ N, there is a 2-generated subnormal subgroup H of A wr Z having distortion function

∆A wr Z
H (l) ≈ lm.

The following will be explained in Section 2.3.

Corollary 1.3. For everym ∈ N, there is a2-generated subgroupH of the free n-generatedmetabelian group Sn,2 having distortion
function

∆
Sn,2
H (l) ≽ lm.

Corollary 1.4. If we let the standard generating set for Z wr Z be {a, b}, then the subgroup Hm = ⟨b, [· · · [a, b], b], . . . , b]⟩,
where the commutator is (m−1)-fold, is m−1 subnormal, isomorphic to the whole groupZ wr Z, with distortion lm. In particular,
the normal subgroup ⟨b, [a, b]⟩ has quadratic distortion.

Corollary 1.4 is proved at the end of this paper. Because the subgroup ⟨[a, b], b⟩ ofZ wr Z is normal, it follows by induction
that the distorted subgroup Hm is subnormal.

Remark 1.5. There are distorted embeddings from the group Z wr Z into itself as a normal subgroup. For example, the map
defined on generators by b → b, a → [a, b] extends to an embedding, and the image is a quadratically distorted subgroup
by Corollary 1.4. By Lemma 2.5, Z wr Z is the smallest example of a metabelian group embeddable to itself as a normal
subgroup with distortion.

Corollary 1.6. There is a distorted embedding of Z wr Z into Thompson’s group F .

Under the embedding of Remark 1.5, Z wr Z embeds into itself as a distorted subgroup. It is proved in [6] that Z wr Z
embeds to F . Therefore, Corollary 1.6 is true.

It is interesting to contrast Theorem 1.2 part (2) with the following, which will be discussed in Section 4. Throughout
this paper, we use the convention that Zn represents the finite group Z/nZ.

Proposition 1.7. The group G = Zn wr Zk, for n ≥ 1, has a finitely generated subgroup H with distortion at least lk.

Some of the techniques to be introduced in this paper include some computations with polynomials. We will use the
theory of modules over principal ideal domains in Section 10 to reduce the problem of subgroup distortion in Zk wr Z
to the consideration of certain 2-generated subgroups in Z wr Z. Every such subgroup is associated with a polynomial, and
thereforewe need to define and compute the distortion of an arbitrary polynomial, as in Theorem8.6. All of these techniques
are used in conjunction with Theorem 3.4, which provides a formula for computing the word length in an arbitrary wreath
product and makes computing the subgroup distortion more tangible in the examples we consider.

2. Background and preliminaries

2.1. Subgroup distortion

Here we provide some examples of distortion as well as some basic facts to be used later on.
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Example 2.1. 1. Consider the three-dimensional Heisenberg group H3
= ⟨a, b, c|c = [a, b], [a, c] = [b, c] = 1⟩. It has

cyclic subgroup ⟨c⟩∞ with quadratic distortion, which follows from the equation c l
2

= [al, bl].
2. The Baumslag–Solitar group BS(1, 2) = ⟨a, b|bab−1

= a2⟩ has cyclic subgroup ⟨a⟩∞ with at least exponential distortion,
because a2

l
= blab−l.

However, there are no similar mechanisms distorting subgroups in Z wr Z. Therefore, a natural conjecture would be that
freemetabelian groups or the groupZ wr Z do not contain distorted subgroups. This conjecturewas brought to the attention
of the authors by Denis Osin. The result of Theorem 1.2 shows that the conjecture is not true.

The following facts are well known and easily verified. When we discuss distortion functions, it is assumed that the
groups under consideration are finitely generated.

Lemma 2.2. 1. If H ≤ G and [G : H] < ∞, then ∆G
H(l) ≈ l.

2. If H ≤ K ≤ G, then ∆K
H(l) ≼ ∆G

H(l).
3. If H ≤ K ≤ G, then ∆G

H(l) ≼ ∆G
K ((∆K

H(l)).
4. If H is a retract of G, then ∆G

H(l) ≈ l.
5. If G is a finitely generated abelian group, and H ≤ G, then ∆G

H(l) ≈ l.

2.2. Wreath products

We consider the wreath products A wr B of finitely generated groups A = gp⟨S⟩ = ⟨{y1, . . . , ys}⟩ and B = gp⟨T ⟩ =

⟨{x1, . . . , xt}⟩. We introduce the notation that A wr B is the semidirect productWλB, whereW is the direct product ×g∈BAg ,
of isomorphic copies Ag of the group A. We view elements ofW as functions from B to Awith finite support, where, for any
f ∈ W , the support of f is supp(f ) = {g ∈ B : f (g) ≠ 1}. The (left) action ◦ of B on W by automorphisms is given by the
following formula: for any f ∈ W , g ∈ B and x ∈ B, we have that (g ◦ f )(x) = f (xg).

Any element of the group Awr B may be written uniquely as wg , where g ∈ B, w ∈ W . The formula for multiplication
in the group A wr B is given as follows. For g1, g2 ∈ B and w1, w2 ∈ W , we have that (w1g1)(w2g2) = (w1(g1 ◦ w2))(g1g2).
In particular, B acts by conjugation on W in the wreath product: gwg−1

= g ◦ w.
Therefore, the wreath product is generated by the subgroups B and A1 ≤ W , where non-trivial functions from A1 have

support {1}. In what follows, the subgroup A1 is identified with A, and so Ag = gAg−1, and S∪T is a finite set of generators in
Awr B. In particular,Z wr Z is generated by a and b, where a generates the left (passive) infinite cyclic group and b generates
the right (active) one.

Here, we observe that a finitely generated abelian subgroup of G = Awr B with finitely generated abelian A and B is
undistorted. It should be remarked that the authors are aware that the proof of the fact that abelian subgroups of Zk wr Z
are undistorted is available in [6]. In that paper, it is shown that Zk wr Z is a subgroup of the Thompson group F , and that
every finitely generated abelian subgroup of F is undistorted. However, our observation is elementary, and so we include it.

Lemma 2.3. Let A and B be finitely generated abelian groups. Then every finitely generated abelian subgroup H of A wr B is
undistorted.

Proof. It follows from the classification of finitely generated abelian groupsG that every subgroup S is a retract of a subgroup
of finite index in G, and so we are done if H is a subgroup of A or B, or if H ∩ W = {1}, by Lemma 2.2. Therefore, we assume
that H ∩W ≠ {1}. Since H is abelian, this implies that the factor-group HW/W is finite. Then, it suffices to prove the lemma
for H1 = H ∩ W , since [H : H1] ≤ ∞. Because H1 is finitely generated, it is contained in a finite product of conjugate copies
of A. That is to say, H1 ⊂ A′ for a wreath product A′ wr B′

= WλB′, where B′ has finite index in B. We are now reduced to our
earlier argument, thus completing the proof. �

Remark 2.4. In fact, under the assumptions of Lemma 2.3, H is a retract of a subgroup having finite index in A wr B.

We now return to one of the motivating ideas of this paper, and complete the explanation of Remark 1.5.

Lemma 2.5. The group Z wr Z is the smallest metabelian group which embeds to itself as a normal distorted subgroup in the
following sense. For any metabelian group G, if there is an embedding φ : G → G such that φ(G) E G and φ(G) is a distorted
subgroup in G, then there exists some subgroup H of G for which H ∼= Z wr Z.

Proof. By Lemma 2.2, we have that the group G/φ(G) is infinite, else φ(G) would be undistorted. Being a finitely generated
solvable group, G/φ(G) must have a subnormal factor isomorphic to Z. Because φ(G) ∼= G, one may repeat this argument to
obtain a subnormal series in G with arbitrarily many infinite cyclic factors. Therefore, the derived subgroup G′ has infinite
(rational) rank.

Since the group B = G/G′ is finitely presented, the action of B by conjugation makes G′ a finitely generated left Bmodule.
Hence, G′

= ⟨B ◦ C⟩ for some finitely generated C ≤ G′. Because it is a finitely generated abelian group, B = ⟨bk⟩ · · · ⟨b1⟩ is a
product of cyclic groups. Therefore, for some i, we have a subgroup A = ⟨⟨bi−1⟩ · · · ⟨b1⟩ ◦ C⟩ of finite rank in G′, but ⟨⟨bi⟩ ◦ A⟩

has infinite rank. Then A has an element a such that the ⟨bi⟩-submodule generated by a has infinite rank, and so it is a free
⟨bi⟩-module. It follows that a and b, where bi = bG′, generate a subgroup of the form Z wr Z. �
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2.3. Connections with free solvable groups

In [7],Magnus shows that, if F = Fk is an absolutely free group of rank kwith normal subgroupN , then the group F/[N,N]

embeds into Zk wr F/N = Zk wr G. This wreath product is a semidirect productWλG, where the action of G by conjugation
turnsW into a free left Z[G]-module with k generators. For more information in an easy to read exposition, refer to [8].

Remark 2.6. The monomorphism α : F/[N,N] → Zk wr G is called the Magnus embedding.

We let Sk,l denote the k-generated derived length l free solvable group.

Lemma 2.7. If k, l ≥ 2, then the group Sk,l contains a subgroup isomorphic to Z wr Z.

Proof. It is well known (and follows from the Magnus embedding) that any non-trivial a ∈ S(l−1)
k,l and b /∈ S(l−1)

k,l generate
Z wr Z. �

It should be noted that, by results of [10], the groupZ wr Z2 cannot be embedded into any freemetabelian or free solvable
groups.

Subgroup distortion has connections with the membership problem. It was observed in [5] and proved in [3] that, for
a finitely generated subgroup H of a finitely generated group G with solvable word problem, the membership problem is
solvable in H if and only if the distortion function ∆G

H(l) is bounded by a recursive function.
By Theorem 2 of [11], the membership problem for free solvable groups of length greater than two is undecidable.

Therefore, because of the connections between subgroup distortion and the membership problem just mentioned, we
restrict our primary attention to the case of free metabelian groups. It is worthwhile noting that the membership problem
for free metabelian groups is solvable (see [9]).

Lemma 2.7 motivates us to study distortion in Z wr Z in order to better understand distortion in free metabelian groups.
Distortion in free metabelian groups is similar to distortion in wreath products of free abelian groups, by Lemma 2.7 and the
Magnus embedding. In particular, if k ≥ 2, then

Z wr Z ≤ Sk,2 ≤ Zk wr Zk.

Thus, by Lemma 2.2, given H ≤ Z wr Z, we have

∆Z wr Z
H (l) ≼ ∆

Sk,2
H (l).

This explains Corollary 1.3. On the other hand, given L ≤ Sk,2, then we have

∆
Sk,2
L (l) ≼ ∆Zk wr Zk

L (l).

Based on this discussion, we ask the following. An answer would be helpful in order to more fully understand subgroup
distortion in free metabelian groups.

Question 2.8.
What effects of subgroup distortion are possible in Zk wr Zk for k > 1?

3. Canonical forms and word metric

Here, we aim to further understand how the length of an element of a wreath product Awr B depends on the canonical
form of this element. Let us start with G = Zk wr Z = Wλ⟨b⟩, where Zk

= gp{a1, . . . , ak}.
Because the subgroupW of Zk wr Z = WλZ is abelian, we also use additive notation to represent elements ofW .

Remark 3.1. When Z wr Z = ⟨a⟩ wr ⟨b⟩, we use module language to write any element as

w =

∞−
i=−∞

mi(bi ◦ a) = f (b)a = f (x)a,

where f (x) =

∞−
i=−∞

mixi is a Laurent polynomial in x, and the sums are finite. Similarly, if A is a finitely generated abelian

group, then, by the definition of Awr Z, an arbitrary element in Awr Z is of the form

wbt =


k−

i=1

fi(x)ai


bt ,

where the fi(x) are Laurent polynomials and the ai generate A. This form is unique if A = Zk is a free abelian with basis
a1, . . . , ak.
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We will use the notation that (w)i equals the conjugate bwb−i for i ∈ Z and w ∈ W . The normal form described in
Remark 3.1 for elements of Awr Z is necessary to obtain a general formula for computing the word length.

Remark 3.2. An arbitrary element of A wr Z may be written in a normal form, following [2], as
(u1)ι1 + · · · + (uN)ιN + (v1)−ϵ1 + · · · + (vM)−ϵM


bt ,

where 0 ≤ ι1 < · · · < ιN , 0 < ϵ1 < · · · < ϵM , and u1, . . . , uN , v1, . . . , vM are elements in A\{1}.

The following formula for the word length in A wr Z is given in [2].

Lemma 3.3. Given an element in A wr Z having normal form as in Remark 3.2, its length is given by the formula

N−
i=1

|ui|A +

M−
i=1

|vi|A + min{2ϵM + ιN + |t − ιN |, 2ιN + ϵM + |t + ϵM |},

where | ∗ |A is the length in the group A.

The formula in Lemma 3.3 becomes more intelligible if one extends it to wreath products A wr B of arbitrary finitely
generated groups. We want to obtain such a generalization in this section since we consider non-cyclic active groups in
Section 4. We fix the notation that, with respect to the symmetric generating set T = T−1, the Cayley graph Cay(B) is
defined as follows. The set of vertices is all elements of G. For any g ∈ G, t ∈ T , g and gt are joined by an edge pointing from
g to gt whose label is t .

Any u ∈ A wr B can be expressed as follows:

(b1 ◦ a1) . . . (br ◦ ar)g, (1)

where g ∈ B, w = (b1 ◦ a1) . . . (br ◦ ar) ∈ W , 1 ≠ aj ∈ A, bj ∈ B, and for i ≠ jwe have bi ≠ bj. The expression (1) is unique,
up to a rearrangement of the (commuting) factors bj ◦ aj.

For any u = wg ∈ Awr B with canonical form as in Eq. (1), we consider the set P of paths in the Cayley graph Cay(B)
which start at 1, go through every vertex b1, . . . , br , and end at g . We introduce the notation that

reach(u) = min{||p|| : p ∈ P},

route(u) = the particular p ∈ P realizing reach(u) = ||p||.

We also define the norm of any such representative w ofW by

||w||A =

r−
j=1

|aj|S .

We have the following formula for word length, which generalizes that given for the case where B = Z in [2]. (Caution:
The right-action definition of a wreath product is incompatible with the standard definition of a Cayley graph in the proof
of Theorem 3.4.)

Theorem 3.4. For any element u = wg ∈ A wr B, we have that

|wg|S,T = ||w||A + reach(u),

where u = (b1 ◦ a1) . . . (br ◦ ar)g is the canonical form of Eq. (1).

Proof. Wewill use the following pseudo-canonical (non-unique) form in the proof. This is just the expression of Eq. (1) but
without the assumption that all the bj are distinct or the aj are non-trivial.

For any element u ∈ A wr B which is expressed in pseudo-canonical form, we may define a quantity depending on the
given factorization by

Ψ ((b1 ◦ a1) . . . (br ◦ ar)g) =

r−
j=1

|aj|S + |b1|T + |b−1
1 b2|T + · · · + |b−1

r−1br |T + |b−1
r g|T .

First, we show that, for u in canonical form (1), it holds that |u|S,T ≥ ||w||A + reach(u).
By the choice of generating set {S, T } of A wr B, we have that any element u ∈ Awr Bmay be written as

u = g0h1g1 · · · hmgm, (2)

wherem ≥ 0, gi ∈ B, hj ∈ A, g0 and gm can be trivial, but all other factors are non-trivial. We may choose the expression (2)
so that |u|S,T =

∑m
j=1 |hj|S +

∑m
i=0 |gi|T . Observe that we may use Eq. (2) to write

u = (x1 ◦ h1) . . . (xm ◦ hm)g, (3)

where g = g0 . . . gm and xj = g0 . . . gj−1, for j = 1, . . . ,m.
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Then, we have by definition that, for the pseudo-canonical form (3),

Ψ ((x1 ◦ h1) . . . (xm ◦ hm)g) =

m−
j=1

|hj|S + |x1|T + |x−1
1 x2|T + · · · + |x−1

m−1xm|T + |x−1
m g|T

=

m−
j=1

|hj|S +

m−
i=0

|gi|T = |u|S,T . (4)

It is possible that, in the form of Eq. (3), some xi = xj for 1 ≤ i ≠ j ≤ m. When taking u to the canonical form
wg = (b1 ◦ a1) . . . (br ◦ ar)g of Eq. (1), we claim that

||w||A ≤

m−
j=1

|hj|S (5)

and that
reach(u) ≤ |x1|T + |x−1

1 x2|T + · · · + |x−1
m−1xm|T + |x−1

m g|T . (6)
Obtaining the canonical form requires a finite number of steps of the following nature. We take an expression such as

(x1 ◦ h1) . . . (xi ◦ hi) . . . (xi ◦ hj) . . . (xm ◦ hm)

and replace it with

(x1 ◦ h1) . . . (xi ◦ hihj) . . . (xj−1 ◦ hj−1)(xj+1 ◦ hj+1) . . . (xm ◦ hm).

The assertion of Eq. (5) follows, because

|hihj|S ≤ |hi|S + |hj|S .

Eq. (6) is true, because

|x−1
j−1xj+1|T ≤ |x−1

j−1xj|T + |x−1
j xj+1|T ,

which implies that

|b1|T + |b−1
1 b2|T + · · · + |b−1

r−1br |T + |b−1
r g|T ≤ |x1|T + |x−1

1 x2|T + · · · + |x−1
m−1xm|T + |x−1

m g|T .

Finally, we have that

reach(u) ≤ |b1|T + |b−1
1 b2|T + · · · + |b−1

r−1br |T + |b−1
r g|T ,

because the right-hand side is the length of a particular path in P: the path which travels from 1 to b1 to b2, . . ., to br to g .
It follows that the length of this path is at least as large as the length of route(u).

Thus, for a canonical form u = (b1 ◦ a1) . . . (br ◦ ar)g , we see by Eqs. (4)–(6) that

||w||A + reach(u) ≤ Ψ ((x1 ◦ h1) . . . (xm ◦ hm)g) = |u|S,T .

To obtain the reverse inequality, take u = (b1 ◦ a1) . . . (br ◦ ar)g in Awr B in canonical form. By the definition, route(u)
will be a path that starts at 1, goes in some order directly through all of b1, . . . , br , and ends at g .

We may rephrase this to say that, for some σ ∈ Sym(r), there is a path p = route(u) in P such that |p|T =

|bσ(1)|T + |b−1
σ(1)bσ(2)|T + · · · + |b−1

σ(r−1)bσ(r)|T + |b−1
σ(r)g|T . In other words,

reach(u) = |bσ(1)|T + |b−1
σ(1)bσ(2)|T + · · · + |b−1

σ(r−1)bσ(r)|T + |b−1
σ(r)g|T .

Moreover, in the wreath product, we have that

u = (bσ(1) ◦ aσ(1)) · · · (bσ(r) ◦ aσ(r))g

= bσ(1)aσ(1)b−1
σ(1)bσ(2)aσ(2) · · · b−1

σ(r−1)bσ(r)aσ(r)b−1
σ(r)g.

This implies that

|u|S,T ≤ |bσ(1)|T + |aσ(1)|S + |b−1
σ(1)bσ(2)|T + · · · + |aσ(r)|S + |b−1

σ(r)g|T

=

r−
j=1

|aj|S + reach(u) = ||w||A + reach(u). �

4. Distortion in Zp wr Zk

We begin with the following result, the proof of which exploits the formula of Theorem 3.4.
Proposition 4.1. The group Z2 wr Z2 contains distorted subgroups.
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Fig. 1. The l2 vertices (left) and the rectangle with perimeter 2l + 2(l − 1) (right).

This is interesting in contrast to the case of Z2 wr Z, which has no effects of subgroup distortion. The essence in the
difference comes from the fact that the Cayley graph of Z is one-dimensional, and that of Z2 is asymptotically two-
dimensional, which gives us more room to create distortion using Theorem 3.4.

We will use the following notation in the case of G = Z2 wr Z2: a generates the passive group of order 2, while b and c
generate the active group Z2.

The canonical form of Eq. (1) will be denoted by

((g1 + · · · + gk)a)g

for g1, . . . , gk distinct elements of Z2 and g ∈ Z2. We may do this because any non-trivial element of Z2 is just equal to the
generator a.

Lemma 4.2. Let H ≤ G be generated by a non-trivial element w ∈ W as well as the generators b, c of Z2. Then H ∼= G.

We know that W =


g∈Z2

⟨g ◦ a⟩ is a free module over Z2[Z2
]. Therefore, we may think of W as being the Laurent

polynomial ring in two variables, say, x for b and y for c . We can use the module language to express any element as
w = f (x, y)a = (xi1yj1 + · · · + xikyjk)a, where for p ≠ qwe have that xipyjp ≠ xiqyjq . This corresponds to the canonical form
w = (g1 + · · · + gk)a, where gp = bipc jp for p = 1, . . . , k.

We now have all the required facts to prove Proposition 4.1.

Proof of Proposition 4.1. LetG = Z2 wr Z2
= gp⟨a, b, c⟩ andH = gp⟨b, c, w⟩, wherew = [a, b] = (1+x)a. By Lemma4.2,

we have that H ∼= G. Let

fl(x) =

l−1−
i=0

xi and gl(x) = (1 + x)fl(x).

The element fl(x)fl(y)w ∈ H is in canonical form, when written in the additive group notation as
∑l−1

i,j=0 b
ic j ◦ w.

By Theorem 3.4, we have that its length in H is at least l2 + l2, since the support of it has cardinality l2, and the length of
an arbitrary loop going through l2 different vertices is at least l2 (Fig. 1).

Now, we compute the length of fl(x)fl(y)w in G. We have that

fl(x)fl(y)w = (1 + x)fl(x)fl(y)a = gl(x)fl(y)a =

[ l−1−
i=0

(yi + yixl)
]
a.

Theorem 3.4 shows that |fl(x)fl(y)w|G = 2l+2(l−1)+2l. This is because the shortest path in Cay(Z2) starting at 1, passing
through 1, c, . . . , c l−1 and bl, cbl, . . . , c l−1bl, and ending at 1, is given by traversing the perimeter of the rectangle, and so
gives the length of 2(l − 1) + 2l.

Therefore, the subgroup H is at least quadratically distorted. �

Remark 4.3. The subgroup H is not normal in G, because the element aca−1 is not in H .

The proof of Proposition 4.1 can be generalized as follows. Consider the groupG = Zn wr Zk
= gp⟨a, b1, . . . , bk⟩ for n ≥ 2

and k > 1. Then the subgroup H = gp⟨w, b1, . . . , bk⟩, where w = (1 − x1) · · · (1 − xk−1)a = [...[a, b1], b2], . . . , bk−1], has
distortion at least lk. This is a restatement of Proposition 1.7.
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By (the analogue of) Lemma 4.2, we have that H ∼= G, and so we can compute lengths using Theorem 3.4. Consider
the element fl(x1) · · · fl(xk)w in H . Then it has length in H at least equal to lk + lk, because the path in Cay(Zk) arising from
Theorem 3.4would need to pass through at least lk vertices: b1α1 · · · bkαk for αi ∈ {0, . . . , l−1}, i = 1, . . . , k. In the group G,

fl(x1) · · · fl(xk)w = gl(x1) · · · gl(xk−1)fl(xk)a.

This has linear length, which follows because the vertices of the support are placed along the edges of a k-dimensional
parallelotope, such that the length of any edge of the parallelotope is at most l.

5. Estimating word length

Although the notion of equivalence has only been defined for functions from N to N, we would like to define a notion
of equivalence for functions on a finitely generated group. We say that two functions f , g : G → N are equivalent if there
exists C > 0 such that, for any x ∈ G, we have

1
C
f (x) − C ≤ g(x) ≤ Cf (x) + C .

If there is a function f : G → N such that f ≈ | · |G, then, for any subgroup H of G, ∆G
H(l) ≈ max{|x|H : x ∈ H, f (x) ≤ l}.

We need to establish a looser way of estimating lengths in Z wr Z than the formula introduced in Lemma 3.3. Recall that
this group has standard generators a ∈ W (passive) and b (active).

Here, we call exemplary any subgroup H = ⟨b, w⟩ ≤ Z wr Z, where w ∈ W\1. We have w = h(x)a, where
h(x) =

∑t
j=0 djx

j, and d0 ≠ 0. This follows without loss of generality by conjugating of w by a power of b. Thus we associate
a polynomial h(x) ∈ Z[x] with any exemplary subgroup H .

Lemma 5.1. The mapping a → w, b → b extends to a monomorphism of the wreath product Z wr Z onto the exemplary
subgroup.

Proof. This follows because, in this case, W is a free module with one generator a over the domain Z[⟨b⟩], w = h(x)a, and
the mapping u → h(x)u (u ∈ W ) is an injective module homomorphism. �

Then, for any element g ∈ H , wemaywrite g = f (x)w = (f (x)h(x)a)bn, where f (x) =
∑s+p

q=s zqx
q is a Laurent polynomial.

Denote by S(f ) the sum
∑s+p

q=s |zq|. For this element, consider the norms

e(g) = S(fh) and eH(g) = S(f ).

Letting ι(g) = max{t + s + p, 0}, ε(g) = min{s, 0}, ιH(g) = max{s + p, 0}, εH(g) = min{s, 0}, we define uH(g) =

ιH(g) − εH(g) and u(g) = ι(g) − ε(g).
Consider the function

δ(l) = max{eH(g) : g ∈ H ∩ W , e(g) ≤ l and u(g) ≤ l}.

The following lemma shows that we may simplify computations of word length in exemplary subgroups.

Lemma 5.2. Let H = ⟨b, w⟩ ≤ Z wr Z be an exemplary subgroup. Then, we have that

∆Z wr Z
H (l) ≈ δ(l).

Proof. Recall that, by Lemma 3.3, we have the following formulas. For g ∈ H with the notation established above, we have
that

|g|H = eH(g) + min{−2εH(g) + ιH(g) + |n − ιH(g)|, 2ιH(g) − εH(g) + |n − εH(g)|}

and

|g|Z wr Z = e(g) + min{−2ε(g) + ι(g) + |n − ι(g)|, 2ι(g) − ε(g) + |n − ε(g)|}.

The following inequality follows from the definitions:

max{e(g), u(g), |n|} ≤ |g|Zr wr Z. (7)

Similarly, we have that

|g|H ≤ eH(g) + 2uH(g) + |n| and |g|Z wr Z ≤ e(g) + 2u(g) + |n|. (8)

Observe that, for g ∈ H ∩ W , we have that

|g|H ≥ max{eH(g), uH(g)}. (9)

Observe that

max{uH(g) : g ∈ H, u(g) ≤ l} ≤ l. (10)
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Thus,

∆Z wr Z
H (l) ≤ max{eH(g) : g ∈ H, e(g) ≤ l, u(g) ≤ l}
+max{2uH(g) : g ∈ H, u(g) ≤ l} + max{|n| : g ∈ H, |n| ≤ l} ≤ δ(l) + 3l.

The first inequality follows from Eq. (7), and the second from Eq. (8).
On the other hand, we have that

∆Z wr Z
H (l) ≥ max{eH(g) : g ∈ H ∩ W , e(g) ≤ l/4, u(g) ≤ l/4}
−max{uH(g) : g ∈ H ∩ W , e(g) ≤ l/4, u(g) ≤ l/4} ≥ δ(l/4) − l/4.

The first inequality follows from Eq. (8), the second from Eq. (9), and the third from Eq. (10).
Thus ∆Z wr Z

H (l) and δ(l) are equivalent. �

6. Distortion of polynomials

In order to understand distortion in exemplary subgroups of Z wr Z, we will introduce the notion of distortion of a
polynomial.

Definition 6.1. Let R be a subring of a field with a real valuation, and consider the polynomial ring R[x]. We will define the
norm function S : R[x] → R+, which takes any f (x) =

∑n
i=0 aix

i
∈ R[x] to S(f ) =

∑n
i=0 |ai|. For any h ∈ R[x] and c > 0, we

define the distortion of the polynomial h from N to N by

∆h,c(l) = sup{S(f ) : deg(f ) ≤ cl, and S(hf ) ≤ cl}. (11)

Remark 6.2. Taking into account the inequality S(hf ) ≤ cl, one can easily find some explicit upper bounds Ci = Ci(h, c, l)
for themoduli of the coefficient at xi of f (x) in formula 6.1, startingwith the lowest coefficients. Therefore, the supremum in
Eq. (11) is finite. Furthermore, if R = Z, R, or C, then the supremum is taken over a compact set of polynomials of bounded
degree with bounded coefficients, and since S is a continuous function, one may replace sup by max in Definition 6.1.

Note that the distortion does not depend on the constant c , up to equivalence, and so we will consider ∆h(l).
The following fact makes concrete our motivation for studying the distortion of polynomials.

Lemma 6.3. Let H be an exemplary subgroup ⟨b, w⟩ ≤ Z wr Z, and w = h(x)a for h = d0 + · · · + dtxt ∈ Z[x]. Then

∆h(l) ≈ ∆Z wr Z
H (l).

Proof. By Lemma5.2,we have that∆Z wr Z
H (l) ≈ δ(l) = max{eH(g) : g ∈ H∩W , e(g) ≤ l, u(g) ≤ l}. Let gl = fl(x)w ∈ H∩W

be such that δ(l) = eH(gl). There exists n ∈ Z such that ḡl = bnglb−n
∈ H and ḡl = f̄l(x)w, where f̄l(x) is a regular polynomial.

It is easy to check that eH(gl) = eH(ḡl), e(gl) = e(ḡl) and u(ḡl) ≤ u(gl). Now, observe that deg(f̄l) ≤ u(ḡl) ≤ u(gl) ≤ l and
S(hf̄l) = e(ḡl) = e(gl) ≤ l. Therefore, ∆h(l) ≽ S(f̄l) = eH(ḡl) = eH(gl) ≈ ∆Z wr Z

H (l).
On the other hand, let us choose any polynomials fl(x) such that deg fl ≤ l, S(hfl) ≤ l, and ∆h(l) = ∆h,1(l) = S(fl). Then,

by Lemma 3.3, |fl(x)w|H ≥ S(f ) = ∆h(l), while

|fl(x)w|Z wr Z = |fl(x)h(x)a|Z wr Z ≤ S(hf ) + 2l ≤ 3l.

It follows that ∆Z wr Z
H (l) ≽ ∆h(l), and the lemma is proved. �

7. Lower bounds on polynomial distortion

Given any polynomial h =
∑t

j=0 djx
j
∈ Z[x], d0, dt ≠ 0with complex, real, or integer coefficients,we are able to compute

the equivalence class of its distortion function.

Lemma 7.1. The distortion ∆h(l) of h with respect to the ring of polynomials over Z, R, or C is bounded from below by lκ+1, up
to equivalence, where c is a complex root of h of multiplicity κ and modulus 1.

Proof. Let c be a complex root of h of multiplicity κ and modulus 1. That is,

h(x) = (x − c)κ h̃(x)

over C. Let

vl(x) = xl−1
+ cxl−2

+ · · · + c l−2x + c l−1.

Then the product

h(x)vκ+1
l (x) = (xl − c l)κ h̃(x)vl(x)
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satisfies S(hvκ+1
l ) = O(l), because S(vl) = O(l). On the other hand, because |c| = 1, we have that S(vκ+1

l ) ≥ |vl(c)κ+1
| =

lκ+1. This implies that, if c ∈ R, i.e., c = ±1, then ∆h(l) ≽ lκ+1, where the distortion is considered over C, R, or Z.
We will show that a similar computation holds over R and over Z even in the case when c ∈ C − R. Let c̄ be the complex

conjugate of c. By hypothesis that c /∈ R, we know that c̄ ≠ c. Then c̄ = c−1 is a root of h(x) of multiplicity κ as well, and

h(x) = (x − c)κ(x − c̄)κH(x),

where H(x) has real coefficients. Consider the product vl(x)v̄l(x), where

v̄l(x) = xl−1
+ c̄xl−2

+ · · · + c̄ l−1.

A simple calculation shows that each of the coefficients of this product is a sum of the form−
i+j=k

c ic̄ j =

−
i+j=k

c i−j
= ck + ck−2

+ · · · + c−k.

This is a geometric progressionwith common ratio c2 ≠ 1. Therefore, themodulus of every such coefficient is at most 2
|1−c2|

,
and so S(vlv̄l) is O(l). This computation implies that the products

h(x)vκ+1
l (x)v̄κ+1

l (x) = (xl − c l)κ(xl − c̄ l)κH(x)vl(x)v̄l(x)

have the sum of the moduli of their coefficients O(l).
The polynomial vκ+1

l (x)v̄κ+1
l (x) has real coefficients. There is a polynomial Fl(x) with integer coefficients such that each

coefficient of Fl(x) − vκ+1
l (x)v̄κ+1

l (x) has modulus at most 1. Thus S(hFl) is also O(l).
We will show that the sums of moduli of coefficients of Fl(x) grow at least as lκ+1 on a subsequence from Remark 1.1. It

suffices to obtain the same property for vκ+1
l (x)v̄κ+1

l (x). Since |c| = 1, we have that the sum of themoduli of the coefficients
of vκ+1

l (x)v̄κ+1
l (x) is at least

|vκ+1
l (c)v̄l

κ+1(c)| = lκ+1
|v̄l

κ+1(c)|.

We will show that there exists a subsequence {li} such that, on this sequence,

|v̄κ+1
li

(c)| ≥
1
2
.

We have that

v̄l(c) = c l−1
+ c l−2c̄ + · · · + c̄ l−1

= c l−1
+ c l−3

+ · · · + c1−l,

because c̄ = c−1. Therefore, |v̄l(c)| = |1 + c2 + · · · + c2l−2
|, and, similarly, |f̄l+1(c)| = |1 + c2 + · · · + c2l|. One of these

two numbers must be at least one half, because |v̄l(c) − v̄l+1(c)| = |c2l| = 1. Thus either l or l + 1 can be included in the
sequence {li}, and all required properties are shown. �

8. Upper bounds on the distortion of polynomials

In order to obtain upper bounds on the distortion of polynomials, we require some facts from linear algebra. Fix an integer
k ≥ 1, and let n > 0 be arbitrary.

Lemma 8.1. Let Y1, . . . , Yn, C2, . . . , Cn be k × 1 column vectors. Suppose that the sum of the moduli of all coordinates of
C2, . . . , Cn is bounded by some constant c, and that the modulus of each coordinate of Y1 and Yn is also bounded by c. Suppose
further that we have the relationship

Yi = AYi−1 + Ci, i = 2, . . . , n, (12)

where A is a k × k matrix, in Jordan normal form, having only one Jordan block. Then the modulus of each coordinate of arbitrary
Yi, 2 ≤ i ≤ n − 1 is bounded by dcnk−1, where d depends on A only. When the eigenvalue of A does not have modulus 1, the
modulus of each coordinate of arbitrary Yi, 2 ≤ i ≤ n − 1 is bounded by cd, where d depends on A only. All matrix entries are
assumed to be complex.

Proof. Let λ be the eigenvalue of A, so that A =


λ 0 0 . . . 0
1 λ 0 . . . 0
...

. . .
. . .

...
0 0 . . . 1 λ

 .

We will consider several cases.

• First, suppose that |λ| < 1.
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From Eq. (12) we derive

Yi = A(AYi−2 + Ci−1) + Ci = (A)2Yi−2 + ACi−1 + Ci = · · ·

= (A)i−1Y1 + (A)i−2C2 + · · · + ACi−1 + Ci. (13)

The following formula for Ar is well known, because A is assumed to be a Jordan block; it may also be checked easily using
induction. We have that

Ar
=


λr 0 0 . . . 0

rλr−1 λr 0 . . . 0
r(r−1)

2! λr−2 rλr−1 λr . . . 0
...

. . .
. . .

...
r!

(r−(k−1))!(k−1)!λ
r−(k−1) . . . r(r−1)

2! λr−2 rλr−1 λr

 ,

with the understanding that, if r < k − 1, any terms of the form
r
j


λr−j where r < j are 0. An arbitrary non-zero element

of the matrix Ar is of the form
r
j


λr−j for some j ≤ k − 1. Let as,t(r) denote the s, t entry of Ar . Then as,t(r) is either zero or

of the form
r
j


λr−j, for some 0 ≤ j ≤ k − 1, depending on s and t . Then

i−
r=1

|as,t(r)| ≤

∞−
r=1

|as,t(r)| =

∞−
r=1

rj


λr−j
 ,

which is a constant depending on A and not on i, because the series on the right is convergent when |λ| < 1. Let

c1 = max
1≤s,t≤k


∞−
r=1

|as,t(r)|


.

Let Ā be the k × k matrix whose s, t entry is
∑

∞

r=1 |as,t(r)|, and let the column C̄ be obtained by placing in the jth row the
sum of the moduli of the entries of the jth row of all Ci and Y1. Then every entry of C̄ is bounded by 2c. Observe that the
modulus of every entry in the right-hand side of (13) is bounded by an entry of ĀC̄ , which is in turn bounded by 2cc1, which
does not include any power of n at all.

• Let |λ| > 1.

Because λ−1 is an eigenvalue of A−1, there exists a decomposition A−1
= SJS−1, where

J =


1
λ

0 0 . . . 0
1 1

λ
0 . . . 0

...
. . .

. . .
...

0 0 . . . 1 1
λ

 .

Letting Y ′

i = S−1Yi and C ′

i = S−1Ci, we see by Eq. (12) that

Y ′

n−r = J rY ′

n + J rC ′

n + J r−1C ′

n−1 + · · · + JC ′

n−r+1,

for r = 1, . . . , n−2. Observe that the sum of modules of coordinates of Y ′
n−r is less than or equal to ksc , where s depends on

S (and hence on A) only. Similarly, the sum of all moduli of all coordinates of C ′

2, . . . , C
′
n is bounded above by ksc. This case

now follows just as the previous one to obtain constant upper bounds on the moduli of the entries in Y ′

2, . . . , Y
′

n−1. Finally,
the modulus of any coordinate of Yn−r is bounded by ks times the modulus of a coordinate of Y ′

n−r .

• Let |λ| = 1.

In this case, we have thatrj


λr−j
 =


r
j


=

r(r − 1) · · · (r − (j − 1))
j!

≤ r(r − 1) · · · (r − (j − 1)) ≤ r j ≤ nk−1.

It follows from Eq. (13) that every entry of Yi is bounded above by 2cnk−1. �

Lemma 8.2. Let Y1, . . . , Yn, C2, . . . , Cn be k × 1 column vectors. Suppose that the sum of the moduli of all coordinates of
C2, . . . , Cn is bounded by some constant c, and that the modulus of each coordinate of Y1 and Yn is also bounded by c. Suppose
further that we have the relationship

Yi = AYi−1 + Ci, i = 2, . . . , n,
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where A is a k × k matrix. Then the modulus of each coordinate of arbitrary Yi, 2 ≤ i ≤ n − 1, is bounded by dcnκ−1, where d
depends on A only, and κ ≤ k is the maximal size of any Jordan block of the Jordan form of A having eigenvalue with modulus 1.

Proof. There exists a Jordan decomposition, A = SA′S−1.
Let S−1

= (si,j)1≤i,j≤k and let s = max |si,j|. Then, for C ′

i = S−1Ci and Y ′

i = S−1Yi, we have that

Y ′

i = A′Y ′

i−1 + C ′

i . (14)

By hypothesis, the sum of themoduli of all coordinates of C ′

2, . . . , C
′
n is bounded by ksc = c ′, and the coordinates of Y ′

1 and Y ′
n

are bounded by c ′ as well. As wewill explain, our problem can be reduced to the similar problem for Y ′

i in (14). Suppose that
the moduli of coordinates of every Y ′

i are bounded by dc ′nκ−1, where d depends on A only. Then, letting S = ( ˜si,j)1≤i,j≤k and
s̃ = max | ˜si,j|, we have by definition of Y ′

i that an arbitrary element of Yi hasmodulus bounded above by ks̃dc ′nκ−1
= d′cnκ−1,

where d′
= k2ss̃d only depends on A′, as required.

Lemma 8.1 says that, if A′ has only one Jordan block, then the bound is constant if the eigenvalue does not have modulus
1. Otherwise, we have in this case that k = κ , and the claim is true. If there is more than one Jordan block present in A′, the
problem is decomposed into at most k subproblems, each with only one Jordan block of size smaller than k. Again, we are
done by Lemma 8.1. �

Wewill use Lemma 8.2 to prove the following fact, which requires establishing some notation prior to being introduced.
Let d0, . . . , dt ∈ Z, where d0, dk ≠ 0. Let the (n + k) × n matrix M have jth column, for j = 1, . . . , n, given by
[0, . . . , 0, d0, d1, . . . , dk, 0, . . . , 0]T , where d0 first appears as the jth entry in this jth column. Given the matrix M , we may
also construct the matrix

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 . . . 0 1
a1 a2 . . . ak−1 ak,

 (15)

where aj = −
dk−j+1

d0
, for j = 1, . . . , k. Let κ be the maximal size of a Jordan block of the Jordan form of A having eigenvalue

with modulus 1.

Lemma 8.3. Suppose that X = [x1, x2, . . . , xn]T is a solution to the system of equationsMX = B, where B = [b1, b2, . . . , bn+k]
T .

Then it is possible to bound the moduli of all coordinates x1, . . . , xn of the vector X such that |xi| ≤ cbnκ−1, where b =
∑

j{|bj|}
for 1 ≤ j ≤ n + k and the constant c depends upon d0, . . . , dk only.

Prior to proving Lemma 8.3, we prove an easier special case.

Lemma 8.4. It is possible to bound the coordinates x1, . . . , xk of the vector X from Lemma 8.3 from above by bγ̃ , where
b =

∑
j{|bj|} and γ̃ = γ̃ (d0, . . . , dk−1).

Proof. By Cramer’s Rule, we have the explicit formula that

|xi| =

det(Li)det(L)

,
where L is the k× k upper left submatrix ofM corresponding to the first k equations, and Li is obtained by replacing column
i in L with [b1, . . . , bk]T . Because det(L) = dk0, it suffices to show that the desired bounds exist for det(Li); that is, we must
show that there exists a constant γ̃ depending on d0, . . . , dk−1 only such that | det(Li)| ≤ bγ̃ for i = 1, . . . , k. By expanding
along the ith column in Li, we find that

det(Li) = ±b1f1(d0, . . . , dk−1) ± b2f2(d0, . . . , dk−1) ± · · · ± bkfk(d0, . . . , dk−1),

where, for each i = 1, . . . , k, fi is a function of d0, . . . , dk−1 only, obtained as the determinant of a submatrix containing
none of b1, . . . , bk. The proof is complete by the triangle inequality. �

Note that the |xj| for j = n− k+ 1, . . . , n are similarly bounded by bγ for the same b and some γ = γ (d0, . . . , dk−1), as
in Lemma 8.4. It is clear according to Lemma 8.4 that we may assume that |xi| ≤ bγ for the same γ = γ (d0, . . . , dk−1), for
all i = 1, . . . , k, n − k + 1, . . . , n.

We proceed with the proof of Lemma 8.3.

Proof. It suffices to obtain upper bounds for |xi| when n − k ≥ i ≥ k + 1.
For such indices, we have that

dkxi−k + dk−1xi+1−k + · · · + d0xi = bi.

In other words,

xi = ξi + a1xi−k + a2xi+1−k + · · · + akxi−1,
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where ξi =
bi
d0

and aj = −
dk−j+1

d0
. Let Xi = [xi−k+1, . . . , xi]T and let Ξi = [0, . . . , 0, ξi]T . Then, for the matrix A of Eq. (15),

we have the recursive relationship

Xi = AXi−1 + Ξi,

for i = k, . . . , n. Observe that the matrix A depends on d0, . . . , dk only, and that the sum of the moduli of the entries in all
Ξi are bounded by b

|d0|
.

We see by Lemma 8.4 that Lemma 8.2 applies to our situation. Therefore, the moduli of coordinates of arbitrary Xi,
k + 1 ≤ i ≤ n − k are bounded by dc(n − k + 1)κ−1

≤ dcnκ−1, where d depends only on d0, . . . , dk, c = max{ b
|d0|

, γ b}. �

Lemma 8.5. Let h(x) = d0 + · · · + dtxt , where d0, dt ≠ 0. Then the distortion of h is at most lκ+1, where κ is the maximal size
of a Jordan block of the Jordan form of

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 . . . 0 1

−
dt
d0

−
dt−1
d0

. . . −
d2
d0

−
d1
d0


of Eq. (15), with eigenvalue having modulus 1.

Proof. Consider any f =
∑s+p

q=s zqx
q, as in Definition 6.1. Then, consider hf =

∑s+p+t
j=s yjxj. The coefficients yj are given by

the matrix equationMZ = Y , where Z = [zs, . . . , zs+p]
T , Y = [ys, . . . , ys+p+t ]

T and

M =



d0 0 0 . . . 0
d1 d0 0 . . . 0
d2 d1 d0 . . . 0
... . . .

. . .
. . .

...
dt dt−1 . . . d1 . . . 0
0 dt . . . d2 . . . 0
...

. . .
...

0 . . . 0 dt dt−1
0 . . . 0 0 dt


is a (p + t + 1) × (p + 1) matrix.

By Lemma 8.3, we have, for each q = s, . . . , s + p, that |zq| ≤ cy(p + 1)κ−1, where c = c(d0, . . . , dt), y =
∑

j |yj| ≤ l.
Therefore,

∆h(l) ≤ S(f ) =

s+p−
q=s

|zq| ≤ c(l + 1)κ+1. �

The following theorem shows that the upper and lower bounds are the same, and so we can compute exactly the
distortion of a polynomial.

Theorem 8.6. Let h(x) = d0 + · · ·+ dtxt be a polynomial in Z[x]. Then the distortion of h is equivalent to a polynomial. Further,
the degree of this polynomial is exactly 1 plus the maximal multiplicity of a (complex) root of h(x) having modulus 1.

Proof. On the one hand, Lemma 7.1 shows that the distortion is bounded from below by the polynomial of degree 1 plus
the maximal multiplicity κ of a root of h(x) having modulus 1. On the other hand, the characteristic polynomial χ(x) of the
matrix A in Lemma 8.5 equals xt +

d1
d0
xt−1

+ · · · +
dt−1
d0

x +
dt
d0

= xth(x−1)/d0. And so the real polynomials χ(x) and h(x)
have the same roots with modulus 1 (and with the same multiplicities). Since the size of a Jordan block does not exceed the
multiplicity of the root of the characteristic polynomial, we have ∆h(l) ≼ lκ+1, by Lemma 8.5. The theorem is proved. �

Remark 8.7. Theorem 8.6 will be used here for polynomials with integer coefficients, but it is valid (with the same proof)
for polynomials with complex or real coefficients.

Theorem 8.6 and Lemma 8.5 imply the following.

Corollary 8.8. The distortion of any exemplary subgroup H of Z wr Z is equivalent to a polynomial. The degree of this polynomial
is exactly 1 plus the maximal multiplicity of a (complex) root having modulus 1 of the polynomial h(x) associated with H.
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9. Tame subgroups

For every k ≥ 1, the wreath product Z wr Z has subgroupsWλ⟨bk⟩ isomorphic to Zk wr Z, and so we are forced to study
distortion in the groups Zk wr Z even though we are interested in Z wr Z only. Let a1, . . . , ak; b be canonical generators of
Zk wr Z. If a subgroup H of G = Zk wr Z is generated by b, w1, . . . , wk, where every wi belongs to the normal closureWi of
ai (Wi = the submodule Z[⟨b⟩]ai ofW ), then we say that H is a tame subgroup of Zk wr Z.

If wi ≠ 1, then the subgroup Hi is an exemplary subgroup of the wreath product Gi = Wiλ⟨b⟩ ∼= Z wr Z.

Lemma 9.1. For the tame subgroup H, we have that

∆G
H(l) ≈

k−
i=1

∆
Gi
Hi

(l).

Proof. Observe thatHi ↩→ H is an undistorted embedding, due to that fact thatHi is a retract ofH (and similarly forGi ↩→ G).
Therefore, by Lemma 2.2, we have that

∆
Gi
Hi

(l) ≼ ∆G
Hi

(l) ≼ ∆G
H(l),

for every i, and therefore ∆G
H(l) ≽

∑k
i=1 ∆

Gi
Hi

(l).
To prove the other inequality, we consider an element u = vbt ∈ H with |u|G ≤ l. Then there is a unique decomposition

v = v1 + · · · + vk, where vi ∈ Hi, and, for ui = vibt , we have ui ∈ Hi, since H is tame. Then, we have |ui|Gi ≤ |u|G ≤ l, since
Gi is a retract of G. Therefore, the required inequality will follow from the inequality |u|H ≤

∑
i |ui|Hi . This inequality is true

indeed by Theorem 3.4, because reachH(u) ≤
∑

i reachHi(ui), since suppH(u) ⊂ ∪isuppHi
(ui), and ||v||H ≤

∑
i ||vi||Hi , since

H is a tame subgroup of G. �

Corollary 9.2. Every tame subgroup of Zk wr Z has a polynomial distortion.

Proof. The statement follows from Corollary 8.8 and Lemma 9.1. �

10. Some modules

To get rid of the word ‘tame’ in the formulation of Lemma 9.2, we will need few remarks about modules. The following
is well known (see also [4]).

Lemma 10.1. The ring F [⟨b⟩] is a principal ideal domain if F is a field.

Lemma 10.2. Suppose that W is a submodule of a free module V of rank k over a (commutative) principal ideal ring R. Then V is
a free module of rank l ≤ k, and modules V and W have bases e′

1, . . . , e
′

l and f ′

1, . . . , f
′

k , respectively, such that, for some u′

i ∈ R,

e′

i = u′

if
′

i , i = 1, . . . , l.

First, we apply this statement to the following special case of Theorem 1.2 Part (2).

Lemma 10.3. If p is a prime, then any finitely generated subgroup H of G = Zk
p wr Z containing the generator b is undistorted.

Proof. By Lemma 2.2, it suffices to show that H has finite index in a retract K of G.
Since p is a prime, Zp is a field. This implies, by Lemma 10.1, that the ring R = Zp[⟨b⟩] is a principal ideal ring.
Let V = H∩W . Then V is a free R-module by Lemma 10.2, andwe have that V andW have bases e1, . . . , em and f1, . . . , fk,

respectively, form ≤ k such that

ei = gifi, i = 1, . . . ,m, (16)

for some polynomials gi ∈ R\0. Thus we can choose the generators for G and H to be {b, f1, . . . , fl} and {b, e1, . . . , em},
respectively, and H is a subgroup of the retract K of G, where K is isomorphic to Zm

p wr Z and is generated by {b, f1, . . . , fm}.
Now, V is a submodule of the Zp[⟨b⟩]-module W ′ generated by {f1, . . . , fm}, and the factor-module W ′/V is a direct sum of
cyclic modules ⟨fi⟩/⟨gifi⟩. Hence,W ′/V is finite, since it is easy to see that each ⟨fi⟩/⟨gifi⟩ has finite order at most pdeg gi . Since
the subgroup H contains b, the index of H in K is also finite. �

We return to our discussion of module theory. Let H ≤ Zk wr Z be generated by b, as well as any elements w1, . . . , wk ∈

W . Let V be the normal closure of w1, . . . , wk in Zr wr Z, i.e., the Z[⟨b⟩]-submodule of W generated by w1, . . . , wk. Let
V = V ⊗Z Q andW = W ⊗Z Q. Observe thatW and V are free modules over Q[⟨b⟩] of respective ranks k and l ≤ k.

Remark 10.4. It follows from Lemma 10.2 that there exist 0 < m, n ∈ Z with (me′

i) = ui(nf ′

i ), where ei = me′

i ∈ V , fi =

nf ′

i ∈ W , ui ∈ Z[⟨b⟩]. Moreover, the modules generated by {e1, . . . , el} and {f1, . . . , fk} are free.

Remark 10.5. There is a bijective correspondence between the set of finitely generated Z[⟨b⟩] submodules N of Z[⟨b⟩]k and
the set of subgroups K = Nλ⟨b⟩ of Zk wr Z such that the finite set of generators of K is of the form b, w1, . . . , wk, wi ∈ W .
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Remark 10.6. Let V1 and W1 be generated as submodules over Z[⟨b⟩] by the elements from Remark 10.4: e1, . . . , el and
f1, . . . , fk, respectively. Let H1 and G1 be subgroups of Zr wr Z generated by {b, V1} and {b,W1}, respectively. It follows by
Remark 10.4 that G1 ∼= Zk wr Z and H1 ∼= Zl wr Z.

Remark 10.7. Observe that under the correspondence of Remark 10.5 each generator ei of the group H1 is in the normal
closure of only one generator fi of G1, i.e., H1 is a tame subgroup of G1.

Lemma 10.8. There exist 0 < n′,m′
∈ N such that n′W ⊂ W1 ⊂ W and m′V ⊂ V1 ⊂ V .

Proof. By Remark 10.5, we have that V is a finitely generated Z[⟨b⟩] module with generators w1, . . . , wk. For each wi, we
have that the elementwi⊗1 ∈ V . Therefore, by Lemma 10.2, there are λi,j ∈ Q[⟨b⟩] such thatwi =

∑l
j=1 λi,je′

j . First, observe
thatmwi =

∑l
j=1 λi,jej, because ei = me′

i ∈ V .
Next, there exists Mi ∈ N such that Mimwi =

∑l
j=1 µi,jej ∈ V1, where µi,j ∈ Z[⟨b⟩]. Let m′

= M1 . . .Mkm. Then, for any
v ∈ V , we have that v =

∑k
i=1 viwi, where vi ∈ Z[⟨b⟩], and, therefore, m′v ∈ V1, as required. A similar argument works for

obtaining n′. �

Lemma 10.9. Let Zk wr Z = G = Wλ⟨b⟩ and let K = ⟨⟨w1, . . . , ws⟩⟩
G

≤ G be the normal closure of elementswi ∈ W. Suppose
that there exists n ∈ N and a finitely generated subgroup K ′

≤ K such that nK ≤ K ′. Then

∆G
⟨b,K ′⟩

(l) ≈ ∆G
⟨b,K⟩

(l).

Proof. We will use the notation that K1 = gp⟨K , b⟩, K ′

1 = gp⟨K ′, b⟩, K ′′

1 = gp⟨nK , b⟩. Observe that the mapping
φ : G → G : b → b, w → nw for w ∈ W is an injective homomorphism which restricts to an isomorphism K1 → K ′′

1 . An
easy computation which uses Lemma 3.3 and the definition of φ shows that, for any g ∈ K1, we have that

|g|G ≤ |φ(g)|G ≤ n|g|G, (17)

where the lengths are computed in G with respect to the usual generating set {a1, . . . , ak, b}.
Observe that, under the map φ, we have that

for x ∈ K1, |x|K1 = |φ(x)|K ′′
1
, (18)

where the lengths in K ′′

1 are computed with respect to the images under φ of a fixed generating set of K1.
By their definitions, we have the embeddings

K ′′

1 ≤ K ′

1 ≤ K1
φ

↩→ K ′′

1 . (19)

By Eq. (19), there exists k′ > 0 depending only on the chosen generating sets of K1 and K ′

1 such that

for any x ∈ K ′

1, |x|K1 ≤ k′
|x|K ′

1
. (20)

It also follows by Eq. (19) that there exists a constant k > 0 depending only on the chosen generating sets of K ′′

1 and K ′

1 such
that

for any x ∈ K ′′

1 , |x|K ′
1

≤ k|x|K ′′
1
. (21)

First, we show that ∆G
K ′′
1
(l) ≼ ∆G

K1
(l).

Let g ∈ K ′′

1 be such that |g|G ≤ l and |g|K ′′
1

= ∆G
K ′′
1
(l). Then there exists g ′

∈ K1 such that φ(g ′) = g . Therefore, it follows

that∆G
K ′′
1
(l) = |g|K ′′

1
= |φ(g ′)|K ′′

1
= |g ′

|K1 ≤ ∆G
K1

(l). The first and second equalities follow by definition, the third by Eq. (18),

and the inequality is true because, by Eq. (17), we have that |g ′
|G ≤ |φ(g)|G = |g|G ≤ l.

We claim that ∆G
K1

(l) ≼ ∆G
K ′
1
(l).

Let g ∈ K1 be such that |g|K1 = ∆G
K1

(l). Then |g|K1 ≤ |φ(g)|K1 ≤ k′
|φ(g)|K ′

1
≤ k′∆G

K ′
1
(nl), which follows from Eqs. (17)

and (20) and by definition.
On the other hand, we will show that ∆G

K ′
1
(l) ≼ ∆G

K ′′
1
(l). Let g ∈ K ′

1 be such that |g|K ′
1

= ∆G
K ′
1
(l). Then |g|K ′

1
≤ |φ(g)|K ′

1
≤

k|φ(g)|K ′′
1

≤ k∆G
K ′′
1
(nl), which follows from Eqs. (17) and (21) and by definition.

Therefore, we have that ∆G
K1

(l) ≼ ∆G
K ′
1
(l) ≼ ∆G

K ′′
1
(l) ≼ ∆G

K1
(l). �

We say that H is a subgroup with b in a wreath product A wr ⟨b⟩ if H = ⟨b, w1, . . . , ws⟩, where w1, . . . , ws ∈ W .

Lemma 10.10. Let H be a subgroup with b in G = Zk wr Z. Then the distortion of H in Zk wr Z is equivalent to the distortion of
a tame subgroup H1 of a wreath product G1 = Zl wr Z, l ≤ k.
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This follows from the results of Section 10. Recall that the tame subgroup H1 of the group G1 was defined in Lemma 10.6,
and these groups were associated to the given H ≤ G. It follows from Lemmas 10.8 and 10.9 that

∆G
G1(l) ≈ ∆G

G(l) ≈ l and ∆G
H1

(l) ≈ ∆G
H(l),

and therefore ∆
G1
H1

(l) ≈ ∆G
H(l).

Corollary 10.11. The distortion of every subgroup with b in Zk wr Z is polynomial.

Proof. This follows from Corollary 9.2 and Lemma 10.10. �

11. Distortion in A wr Z

In this section, we will reduce the distortion in subgroups of A wr Z where A is finitely generated abelian to that in
subgroups of Zk wr Z only.

Lemma 11.1. Let A be a finitely generated abelian group, and consider G = A wr Z = A wr ⟨b⟩. Assume that k is the torsion-free
rank of a. If H is a subgroup with b in G, then the distortion of H in G is equivalent to that of a subgroup with b in Zk wr Z.

Proof. There exists a series of subgroups

A = A0 > A1 > · · · > Am ∼= Zk,

for k ≥ 0, where Ai−1/Ai has prime order for i = 1, . . . ,m.
We induct onm. Ifm = 0, then A ∼= Zk, and the claim holds.
Now, letm > 0. Observe that A1 is a finitely generated abelian group with a series A1 > · · · > Am ∼= Zk of lengthm − 1.

Therefore, by induction, any subgroup with b in G2 = A1 wr Z has distortion equivalent to that of a subgroup with b in
Zk wr Z, for some k.

By Lemma 10.3, all subgroups with b of G1 = (A/A1) wr Z are undistorted. Denote the natural homomorphism by
φ : G → G1. Let

U =


⟨b⟩

A1 = ker(φ).

Observe that U · ⟨b⟩ ∼= G2. The product is semidirect because U is a normal subgroup which meets ⟨b⟩ trivially, and it is
isomorphic to the wreath product by definition: the action of b on the module


⟨b⟩

A1 is the same.

LetR = Z[⟨b⟩]. Observe thatR is aNoetherian ring. This follows frombasic algebra becauseZ is a commutativeNoetherian
ring. Therefore, W is a finitely generated module over the Noetherian ring R, and hence is Noetherian itself. Thus, the R-
submodule H ∩ U is finitely generated. Let {w′

1, . . . , w
′
r} generate H ∩ U as an R-module. Let {b, w1, . . . , ws} be a set of

generators of H modulo U; that is, the canonical images of these elements generate the subgroup H1 = HU/U ∼= H/H ∩ U
of G1. Then the set {b, w1, . . . , ws, w

′

1, . . . , w
′
r} generates H . Furthermore, the collection {b, w′

1, . . . , w
′
r} generates the

subgroup H2 = (H ∩ U) · ⟨b⟩ of G2.
Let g ∈ H have |g|G ≤ l. Then the image g1 = φ(g) inG1 belongs toH1, because g ∈ H , and has length |g1|G1 ≤ l. It follows

by Lemma 10.3 that H1 is undistorted in G1. Therefore, there exists a linear function f : N → N (which does not depend
on the choice of g) such that |g1|H1 ≤ f (l). That is to say, there exists a product P of at most f (l) of the chosen generators
{b, w1, . . . , ws} of H1 such that P = g−1

1 in H1. Taking preimages, we obtain that gP ∈ U .
Because H is a subgroup of G, there exists a constant c depending only on the choice of finite generating set of H such

that, for any x ∈ H , we have that

|x|G ≤ c|x|H . (22)

It follows by Eq. (22) that

|gP|G ≤ |g|G + |P|G ≤ |g|G + c|P|H ≤ l + cf (l). (23)

Observe that gP ∈ H2. This follows because gP ∈ U by construction, and g ∈ H by choice. Further, P ∈ H , because it is
a product of some of the generators of H . Since H2 = (H ∩ U) · ⟨b⟩, we see that gP ∈ H2. Using the fact that G and G2 are
wreath products together with the length formula in Lemma 3.3, we have that, for any x ∈ G2,

|x|G2 ≤ |x|G. (24)

By induction, the finitely generated subgroup H2 of G2 has distortion function F(l) equivalent to that of a subgroup H̃2

with b in Zk wr Z, for some k. That is, F(l) = ∆
G2
H2

(l) ≈ ∆Zk wr Z
H̃2

(l). In particular, for any x ∈ H2,

|x|H2 ≤ F(|x|G2). (25)
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Since gP ∈ H2, we have that

|gP|H2 ≤ F(|gP|G2) ≤ F(|gP|G) ≤ F(l + cf (l)).

The first inequality follows from Eq. (25), the second from Eq. (24), and the last from Eq. (16).
Because H2 ≤ H , there is a constant k such that, for any x ∈ H2, |x|H ≤ k|x|H2 .
Combining all previous estimates, we compute that

|g|H ≤ |gP|H + |P|H ≤ k|gP|H2 + f (l) ≤ kF(l + cf (l)) + f (l).

Thus, at this point, we have shown that ∆G
H(l) ≼ F(l) = ∆

G2
H2

(l), since f is linear. On the other hand, ∆G
H2

(l) = ∆G
H(l), by

Lemma 10.9. By Lemma 2.2, we have that ∆
G2
H2

(l) ≼ ∆G
H2

(l), and so ∆G
H(l) ≈ ∆

G2
H2

(l) ≈ ∆Zk wr Z
H̃2

(l). �

Corollary 11.2. For any finitely generated abelian group A, the distortion of every subgroup H with b in A wr Z is polynomial. H
is undistorted if A is finite.

Proof. This follows from Lemma 11.1 and Corollary 10.11. �

12. Completion of the proof of Theorem 1.2

Lemma 12.1. Let G be a group having normal subgroup W and cyclic G/W = ⟨bW ⟩. Then any finitely generated subgroup H of
G may be generated by elements of the form w1bt , w2, . . . , ws, where wi ∈ W.

The proof is elementary, and follows from the assumption that G/W is cyclic.

Remark 12.2. It follows that any finitely generated subgroup in A wr Z = Wλ⟨b⟩ can be generated by elements
w1bt , w2, . . . , ws, where wi ∈ W .

Definition 12.3. For a fixed finitely generated abelian group A and any t > 0, the group Lt is the subgroup of Awr Z
generated by the subgroupW and by the element bt .

Lemma 12.4. If A is a fixed r generated abelian group, then Lt ∼= At wr Z, where At
= A


· · ·


A (t times).

Proof. The statement follows from Remark 3.1 with
At

= A1


Ab


· · ·


Abt−1 . �

Lemma 12.5. For any w ∈ W, there is an automorphism Lt → Lt identical on W such that wbt → bt , provided that t ≠ 0.

Proof. This follows because the actions by conjugation of bt and wbt onW coincide. �

Lemma 12.6. Let H be a finitely generated subgroup of A wr Z not contained inW, where A is finitely generated abelian. Then the
distortion of H in A wr Z is equivalent to the distortion of a subgroup H ′ with b in A′ wr Z, where A′ ∼= At is also finitely generated
abelian.

Proof. By Lemma 12.1, the generators of H may be chosen to have the form w0bt , w1, . . . , ws, where wi ∈ W . Therefore,
for this value of t , we have that H is a subgroup of Lt . Using the isomorphisms of Lemmas 12.4 and 12.5, we have that H
is a subgroup of At wr Z = A′ wr Z generated by the image of btw0, w1, . . . , ws under the two isomorphisms: elements
b, x1, . . . , xs. Finally, because [Awr Z : Lt ] < ∞, we have by Lemma 2.2 that the distortion of H in Awr Z is equivalent to
the distortion of its image in At wr Z. �

Proof of Theorem 1.2. Theorem 1.2 Parts (1) and (2) follow from Lemma 2.3, if the subgroup H is abelian. Otherwise, they
follow from Corollary 11.2 and Lemma 12.6.

Now, we complete the proof of Theorem 1.2, Part (3). Let A be a finitely generated abelian group of rank k. Consider the
2-generated subgroup H ≤ Z wr Z constructed as follows. Let m ∈ N. Consider h(x) = (1 − x)m−1. Then the distortion of
the polynomial h is seen to be equivalent to lm, by Lemma 8.6. By Lemma 6.3, this means that the 2-generated subgroup
⟨b, (1 − x)m−1a⟩ = Hm ≤ Z wr Z has distortion ∆Z wr Z

Hm
(l) ≈ lm. The subgroup Z wr Z is a retract of A wr Z if A is infinite.

Therefore, the distortion of Hm in Z wr Z and in Awr Z are equivalent, by Lemma 2.2. �

Remark 12.7. If we adopt the notation that the commutator [a, b] = aba−1b−1, then we see that, in Z wr Z, the element
of W corresponding to the polynomial (1 − x)m−1a is [· · · [a, b], b], . . . , b], where the commutator is (m − 1)-fold. This
explains Corollary 1.4.
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