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Hyaluronan (HA) synthesis is a tightly regulated process and is partly controlled by the microenvironment (e.g.,
lactate concentration). Experimental evidence has indicated that the melanoma cells that synthesize large
amounts of HA exhibit enhanced tumor cell growth and increased metastatic capacity compared to those
expressing smaller amounts. Because most studies have examined HA expression on melanoma cells in vitro,
we compared the patterns of HA expression by B16-F1 and B16-F10 melanoma cells in vitro and in situ. Cell
surface HA expression was assessed with the HA-binding peptide Pep-1. B16-F1 melanoma cells showed
significantly higher levels of Pep-1 binding compared with B16-F10 cells in vitro. On the other hand, expression
levels of HA were comparable between B16-F1 and B16-F10 melanoma cells in cryostat sections. These results
show that B16-F1 cells express high levels of HA in vitro and in vivo, while B16-F10 cells express high
concentrations of HA only in the context of skin tumors. Finally, B16-F10 melanoma cells, but not B16-F1 cells,
expressed high concentrations of HA after stimulation with lactate. We propose that components of the tumor
microenvironment (e.g., lactate) can induce melanoma cells to express HA and thus acquire an aggressive
phenotype.
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INTRODUCTION
Hyaluronan (HA) is an unbranched, nonsulfated glycosami-
noglycan composed of repeating subunits of D-N-acetylgluco-
samine and D-glucuronic acid. Although originally con-
sidered an inert structural biopolymer, HA is now known to
be involved in numerous biological activities, including: (a)
fertilization (Sliwa, 1999; Zhuo et al., 2001), (b) embryonic
development (Camenisch et al., 2000), (c) wound healing
(Jameson et al., 2005), and (d) leukocyte trafficking (Mum-
mert et al., 2000). HA has also been implicated in the
progression of many types of cancer, including breast cancer
(Aaltomaa et al., 2002; Udabage et al., 2005), prostate cancer
(Wernicke et al., 2003), and malignant melanoma (Zhang
et al., 1995; Karjalainen et al., 2000).

HA is synthesized by the HA synthases (HAS) which utilize
uridine diphosphate-glucuronic acid and uridine diphosp-
hate-N-acetylglucosamine as substrates. Three HAS enzymes
(designated as HAS1, HAS2, and HAS3) have been identified
in humans and mice. These enzymes have distinct catalytic
activities (HAS34HAS24HAS1) as well as their final
products. HAS3 polymerizes short stretches of disaccharide

chains, while HAS1 and HAS2 synthesize relatively long
stretches (reviewed in Weigel et al., 1997). Various stimuli
(e.g., phorbol esters, tumor growth factor b, platelet-derived
growth factor, retinoic acid, epidermal growth factor, and
tumor growth factor a) have been shown to modulate HA
synthesis in subsets of skin cells (fibroblasts and keratino-
cytes) (Tammi et al., 1989; Agren et al., 1995; Ogawa et al.,
1998; Pienimaki et al., 2001).

Over the past several years, there has been significant
interest in the functions of HA in tumor progression (reviewed
in Toole, 2002). In fact, HA has been suggested to play
several important roles in tumor biology, including: (a) tumor
growth (Kosaki et al., 1999; Xu et al., 2003), (b) angiogenesis
(Deed et al., 1997; Trochon et al., 1997; Savani et al., 2001),
(c) tumor cell invasion (Fieber et al., 2004), and (d) metastasis
(Zhang et al., 1995). The concentration and distribution of
HA may also be important for tumor cell behavior. For
example, melanoma cells that express high concentrations of
cell surface HA exhibit enhanced motility (Ichikawa et al.,
1999) and increased metastatic capacity (Zhang et al., 1995)
compared to those expressing smaller amounts.

Despite the potential importance of HA in tumor progres-
sion, most studies have examined HA expression in vitro and
have not examined the impact of the tumor microenviron-
ment on melanoma cell HA expression. As previous reports
(Winkelhake and Nicolson, 1976) have shown that B16-F10
melanoma cells have a more malignant phenotype (i.e.,
enhanced metastatic potential and increased invasive proper-
ties) relative to B16-F1 melanoma cells, we compared their
HA expression profiles in vitro and in situ. Herein, we report
that B16-F1 melanoma cells expressed HA polymers on their
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surfaces abundantly, while B16-F10 melanoma cells showed
little, if any, HA expression in vitro. On the other hand, B16-
F10 tumors were indistinguishable from B16-F1 tumors in
terms of HA expression levels as well as HA distribution
patterns in situ. As lactate is found in tumors at high
concentrations and has been shown to stimulate HA synthesis
by fibroblasts (Stern et al., 2002), we investigated the
potential of lactate to stimulate melanoma cells to synthesize
HA. B16-F10 melanoma cells, but not B16-F1 melanoma
cells, expressed soluble HA and cell surface HA in high
concentrations when cultured in the presence of lactate. HA
polymers were bound on both B16-F1 and B16-F10
melanoma cell surfaces at least partially by CD44. Finally,
profiles of CD44 mRNA showed that lactate induced splice
variant transcripts in B16-F10 melanoma cells, but not in
B16-F1 cells. Our results may suggest that components in the
tumor microenvironment (e.g., lactate) can stimulate subsets
of melanoma cells to synthesize HA, alter CD44 expression
and thus acquire an aggressive phenotype.

RESULTS
Expression of HAS mRNAs

We first examined the potential of B16-F1 and B16-F10
melanoma cells to express the mRNAs for HA synthesis
(HAS1–3). Results of the RT-PCR showed that the mRNAs for
all the three HAS (HAS1–3) were present, indicating the
potential for both B16-F1 and B16-F10 melanoma cells to
synthesize HA (Figure 1).

Expression of HA by melanoma cells in vitro

B16-F1 and B16-F10 melanoma cells transfected with green
fluorescent protein (GFP) were grown in Lab-Tek chambers
and stained for HA 24 hours later using biotinylated Pep-1 as
our probe. Previous studies have shown that Pep-1 is a HA-
specific probe (Zmolik and Mummert, 2005). As shown in
Figure 2, Pep-1 showed significant binding to the surfaces of
B16-F1 melanoma cells (Figure 2a), but not B16-F10
melanoma cells (Figure 2b). Binding of Pep-1 to B16-F1
melanoma cells was specific for HA, as shown by the
dramatic reduction in Pep-1 binding following pretreatment

with Streptomyces hyaluronidase (HA’se) (Figure 2a). Further-
more, we failed to detect binding of the scrambled peptide
control to B16-F1 and B16-F10 melanoma cells (Figure 2a
and b), showing the specificity of the Pep-1 amino acid
sequence for molecular interaction with HA.

Expression of HA by melanoma tumors in situ

As described in the Introduction, a number of studies have
suggested a role for HA in the growth and metastasis of tumor
cells in vitro and in vivo. In order to test the impact of the
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Figure 1. Expression of mRNA for HAS enzymes. B16-F1 and B16-F10

melanoma cells were examined for the expression of HAS1–3 mRNAs by

RT-PCR. Data shown are the ethidium bromide-stained PCR products

separated on a 1% agarose gel.
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Figure 2. Expression of HA on the surfaces of melanoma cells. (a) B16-F1

and (b) B16-F10 melanoma cells were fixed in paraformaldehyde and stained

by anti-green fluorescent protein (GFP), Pep-1, and the scrambled control.

Some samples were pretreated with Streptomyces HA’se to show HA

specificity. Images are of original magnification�200 (Bar¼ 100mm).
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tumor microenvironment on HA synthesis by melanoma
cells, we next examined the expression of HA in situ.

Cryostat sections of B16-F1 melanoma tumors showed
high concentrations of HA associated with the surfaces of
tumor cells. Pep-1 binding to tumors was reduced signifi-
cantly by pretreating tissue sections with Streptomyces
HA’se, showing HA specificity. Once again, we failed to
detect staining with the scrambled peptide control, showing
the requirement for the Pep-1 amino acid sequence for HA
binding (Figure 3a). In contrast to results obtained in vitro,
Pep-1 showed dramatic binding to B16-F10 melanoma
tumors that was comparable with the staining intensities
obtained for B16-F1 tumors (Figure 3b). These results show
that B16-F1 melanoma cells constitutively expressed HA
polymers in vitro and in situ, while B16-F10 melanoma cells
expressed high concentrations of HA only in the context of
the tumor microenvironment. Hence, the local environment
of some tumor cell types may induce HA synthesis.

It has been previously shown that soluble factors and
physical interactions between melanoma cells and fibroblasts
can augment HA synthesis (Knudson et al., 1984; Edward,
2001). Thus, it is possible that HA synthesized by fibroblasts
may be responsible for the HA content that we observed in
situ. To further examine this possibility, we evaluated HA
synthesis by B16-F1 and B16-F10 cells when cultured in the
absence and presence of mouse fibroblasts. Briefly, tumor
cells were grown in an anchorage-independent manner to
form three-dimensional cell layers termed spheroids. Im-
portantly, spheroids mimic in vivo tumor growth in regard to
pH (Avarez-Pérez et al., 2005), oxygen tension, and nutrient
gradients (Walenta et al., 2000). We found that B16-F1 and
B16-F10 melanoma cells synthesized comparable concentra-
tions of HA (B20 mg/104 cells). Multicellular B16-F10 tumor
spheroids containing fibroblasts produced only slightly more
HA than B16-F10 spheroids lacking the fibroblast component
(22.270.3 mg/104 cells vs 20.870.6 mg/104 cells, respec-
tively; Po0.05). Similarly, B16-F1 multicellular spheroids
produced slightly more HA than B16-F1 spheroids alone,
though the difference was insignificant (20.470.6 mg/104

cells vs 20.072.3 mg/104 cells, respectively; P40.05). These
results show the potential of the B16 melanoma cells
themselves to synthesize most of their own HA under
conditions in the tumor microenvironment.

Lactate production by melanoma cell monolayers, tumors, and
spheroids
Tumors produce lactate under both aerobic and hypoxic
conditions. Moreover, lactate has been shown to stimulate
some cell types to synthesize HA (Stern et al., 2002). Thus,
we tested if B16-F1 and B16-F10 melanomas produced
lactate in vitro and ex vivo. First, we measured concentra-
tions of lactate in the supernates of B16-F1 and B16-F10
cultures. A lactate dehydrogenase assay showed that lactate
concentrations were comparable between B16-F1 (19 mg/ml)
and B16-F10 (14 mg/ml) melanoma cells cultured as mono-
layers. Next, we measured lactate concentrations in tumors
ex vivo. Differences between the sizes of B16-F1 melanoma
tumors (191733 mg) and B16-F10 melanoma tumors

(211788 mg) were insignificant (P40.05). Both B16-F1 and
B16-F10 tumors showed significantly higher concentrations
of lactate compared to normal skin (Figure 4a). On the other
hand, B16-F10 tumors contained significantly higher concen-
trations of lactate compared with B16-F1 tumors (Po0.01,
Figure 4a).
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Figure 3. HA expression profiles in melanoma tumors. (a) Cryostat sections

of B16-F1 and (b) B16-F10 tumors in mouse ear skin were stained with

anti-GFP, Pep-1, and the scrambled control. Nuclei of cells (blue) were
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Streptomyces HA’se to show HA specificity. Images are of original

magnification� 400 (Bar¼100 mm).
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As lactate concentrations determined ex vivo most likely
include lactate produced by stromal cells and contaminating
skin cells in addition to the lactate production by melanoma
cells, we next evaluated lactate produced in spheroid
cultures of B16-F1 and B16-F10 melanoma cells. B16-F1
and B16-F10 spheroids both secreted lactate (Figure 4b).

However, B16-F10 spheroids secreted significantly more
lactate than B16-F1 spheroids (Po0.01). These results are
consistent with the notion that B16-F10 cells produce more
lactate than B16-F1 melanoma cells in the context of the
tumor microenvironment.

Induction of HA synthesis by exogenous lactate

Based on our findings that B16-F10 melanoma cells express
HA in the tumor microenvironment (where concentrations of
lactate are high) but not in vitro (where lactate concentrations
were relatively low), we hypothesized that the high lactate
concentrations present in tumors stimulated B16-F10 mela-
noma cells to synthesize HA. To test this concept, we
examined the impact of lactate to stimulate B16-F1 and B16-
F10 melanoma cells to synthesize HA. Synthesis of HA
polymers by melanoma cells was first assessed based on the
uptake of 3H-glucosamine. As shown in Figure 5a, B16-F1
melanoma cells synthesized similar concentrations of HA
even when cultured in the presence of 20 mM lactate
(P40.05). By contrast, B16-F10 melanoma cells synthesized
significantly more HA when cultured in the presence of
20 mM lactate (Po0.05). These results suggest that B16-F10
cells, but not B16-F1 melanoma cells, can be induced to
synthesize HA polymers upon exposure to lactate. Next, we
cultured B16-F1 and B16-F10 melanoma cells in Lab-Tek
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Figure 4. Lactate concentrations in melanoma tumors and spheroids.

(a) Normal skin, B16-F1 tumors, and B16-F10 tumors were harvested from

perfused C57BL/6 mice and the lactate contents determined with a lactate

dehydrogenase assay. (b) B16-F1 and B16-F10 melanoma cells were grown as
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(*Po0.05; **Po0.01) assessed by the Student’s t-test.
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Figure 5. Impact of lactate on HA synthesis by melanoma cells. (a) B16-F1 and B16-F10 melanoma cells were metabolically labeled with 3H-glucosamine in
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B16-F10 melanoma cells were cultured with and without lactate and examined for the expression of HAS1–3 mRNAs by RT-PCR. Data shown are the ethidium

bromide-stained PCR products separated on a 1% agarose gel.
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chambers containing graded concentrations of lactate. B16-
F10 melanoma cells, but not B16-F1 melanoma cells,
expressed HA in a dose-dependent manner (data not shown),
with the highest HA expression at 20 mM lactate (Figure 5b).
These results show that lactate can stimulate B16-F10
melanoma cells to express HA. Importantly, the pH of the
culture media with 20 mM lactate was similar to the pH of
culture media without the addition of lactate (pH 6.9770.03
vs 7.0570.03, respectively). Next, we examined the poten-
tial of lactate to induce surface expression of HA in human
WM-115 and WM-266-4 melanoma cells. Both WM-115 and
WM-266-4 expressed low concentrations of HA. Moreover,
HA expression was variable, with not all of the melanoma
cells expressing this polymer. Unlike B16-F10 melanoma
cells, we failed to detect surface expression of HA after
lactate stimulation in either WM-115 or WM-266-4 cells
(data not shown). These results show that not all melanoma
cells express HA in response to induction by lactate.

To investigate the possibility that lactate altered HA
synthesis in B16-F10 melanoma cells by regulating transcrip-
tion of the HAS genes, we compared the mRNA profiles of
HAS1, HAS2, and HAS3 in B16-F1 and B16-F10 melanoma
cells. We found that the mRNA profiles of HAS1–3 were
similar between B16-F1 and B16-F10 melanoma cells even
after stimulation with lactate (Figure 5d). These results suggest
that lactate does not alter transcription of the HAS genes.

Finally, as a first step in identifying other factors that could
induce melanoma cells to synthesize HA, we have investi-
gated the role of retinoic acid in stimulating HA expression in
B16-F10 melanoma cells in vitro. Retinoic acid is known
to stimulate HA synthesis possibly by regulating the HAS2
gene (Prehm, 1980; Saavalainen et al., 2005). However, we
found that retinoic acid did not induce the expression of HA
in B16-F10 melanoma cells in vitro (data not shown).

Potential role of CD44 to serve as a HA receptor on melanoma
cells

CD44 is a major cell surface receptor for HA and has been
shown to retain HA on the surfaces of some cell types (Nandi
et al., 2000). Moreover, CD44 may play a role in regulating
HA synthesis on melanoma cell surfaces (Lüke and Prehm,
1999). Thus, we investigated the potential of CD44 to serve
as a receptor for HA on B16-F1 and B16-F10 melanoma cells.
As shown in Figure 6a, expression levels of CD44 were
comparable between B16-F1 and B16-F10 tumors in situ.
These results show that CD44 remained expressed by
melanoma cells in the context of the tumor microenviron-
ment. Next, we cultured B16-F1 and B16-F10 melanoma
cells in media containing different concentrations of lactate.
Expression levels of CD44 were not altered at any of the
tested concentrations of lactate, as measured by FACS (Figure
6b). As shedding of CD44 from the surfaces of cells results in
decreased FACS staining, we interpreted these results to
suggest that lactate does not induce cleavage of CD44 from
the surfaces of B16-F1 or B16-F10 melanoma cells (Bazil and
Horejsi, 1992; Annabi et al., 2005). Next, B16-F1 and B16-
F10 melanoma cells were cultured in the presence of 20 mM

lactate in Lab-Tek chambers. As shown in Figure 6c, CD44

signals (red) and HA signals (blue) significantly overlapped
(purple in the merged images). These results strongly suggest
that CD44 serves as a receptor for retaining HA on the
surfaces of B16-F1 and B16-F10 melanoma cells.

CD44 is a family of glycoproteins produced by expression
of variant exons and post-translational modifications (re-
viewed in Zhou et al., 1999). As molecular interaction of HA
with CD44 isoforms generated by the expression of splice
variants may impact the behavior of tumor cells in vivo, we
examined the CD44 profiles of B16-F1 and B16-F10
melanoma cells after lactate stimulation. Both B16-F1 and
B16-F10 melanoma cells expressed the standard CD44
isoform when cultured in medium alone. On the other hand,
lactate stimulation of B16-F10 melanoma cells resulted in the
appearance of bands for CD44 splice variants in addition to
the standard CD44 isoform. Lactate did not alter the mRNA
profile of CD44 in B16-F1 melanoma cells (Figure 6d). These
results may suggest that lactate generates different CD44
isoforms in B16-F10 cells that could potentially contribute to
the malignant phenotype of this melanoma cell line.

DISCUSSION
HA is a high-molecular-weight glycosaminoglycan expressed
by many different tumor cell types, including malignant
melanomas. Far from an inert structural biopolymer, HA also
has multiple roles in tumor progression, including tumor
growth and metastasis. As HA expression is a tightly regulated
process, it is important to determine how the tumor
microenvironment impacts the synthesis of HA by melanoma
cells. Identification of factors in the tumor microenvironment
that stimulate HA synthesis may represent targets for
therapeutic intervention or serve as markers for prognosis.

We have investigated the expression levels and distribu-
tion patterns of HA by B16-F1 and B16-F10 melanoma cells
in vitro and in situ. Our results show that B16-F1 melanoma
cells express HA polymers in vitro and in the context of the
tumor microenvironment. By contrast, B16-F10 melanoma
cells expressed high concentrations of HA in situ but not in
vitro. Based on these observations, we conclude that the
tumor microenvironment can stimulate some melanoma cell
types to express HA and thus acquire an aggressive
phenotype. Alternatively, these results could be interpreted
to suggest that HA is not a marker for aggressive tumor cell
behavior, because both aggressive (B16-F10) and relatively
non-aggressive (B16-F1) melanoma cells expressed compar-
able concentrations of HA in vivo and after stimulation with
lactate in vitro. We propose that HA expression by itself may
not be sufficient for malignant cell behavior. Instead, over-
expression of HA coupled with molecular interaction with
the appropriate CD44 isoform may be required for HA-
mediated tumor cell behavior. For example, Bourguignon
et al. (2003) found that a variant form of CD44 (CD44v3)
binds to HA, leading to activation of phosphatidylinositol-3-
kinase and Akt signaling, thus promoting the tumor cell
phenotype of breast tumor cells. Interestingly, we found that
lactate results in the expression of variably spliced mRNAs for
CD44 in B16-F10 melanoma cells. Based on these results, we
propose that lactate induces HA synthesis and alters the
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expression of CD44 isoforms in B16-F10 melanoma cells,
thus leading to their aggressive behavior. We are currently
cloning these splice variants into vectors to learn their
molecular identities by sequencing.

What factor(s) stimulate melanoma cells to express HA in
the context of the tumor microenvironment? As a first attempt

to identify a factor that stimulates melanoma cells to express
HA, we tested the possibility that lactate induces melanoma
cells to synthesize HA in vitro. Our rationale for choosing
lactate was based on the following: (a) the content of lactate
in tumors is known to be enhanced due to hypoxia and/or the
Warburg effect (Brizel et al., 2001), and (b) lactate has been
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shown to stimulate some cell types (e.g., fibroblasts) to
synthesize HA (Stern et al., 2002). We first tested lactate
concentrations in B16-F1 and B16-F10 tumors and found that
both tumor types contained enhanced concentrations of
lactate relative to normal mouse skin. Interestingly, B16-F10
tumors contained significantly more lactate than B16-F1
tumors. Thus, the lactate content of melanoma tumors may
be determined by the melanoma cell types that compose the
tumor. Addition of exogenous lactate to B16-F10 cultures,
but not B16-F1 cultures, stimulated melanoma cells to
synthesize soluble HA polymers as well as express high
concentrations of surface-associated HA. Cell surface reten-
tion of HA was at least partially mediated by CD44 in both
B16-F1 and B16-F10 melanoma cells, as assessed under
fluorescence microscopy. These results show that some
melanoma cell types (i.e., B16-F10 but not B16-F1) initiate
HA synthesis in response to lactate. As HA expression has
been reported to confer an aggressive phenotype to tumor
cells, it is tempting to speculate that lactate-responsive
melanoma cells would in turn correlate with enhanced tumor
progression. In support of this concept, Brizel et al. (2001)
have reported that a high concentration of lactate in tumors is
correlated with an increased risk of metastasis in head-and-
neck cancer. On the other hand, our results with WM-115
and WM-266-4 melanoma cells shows that lactate does not
enhance HA expression in all melanoma cell types. There-
fore, lactate may promote aggressive tumor cell behavior in
an HA-independent fashion in some melanoma cells.

What mechanisms account for lactate-induced HA synth-
esis by B16-F10 cells but not B16-F1 melanoma cells? Results
of the RT-PCR showed that mRNAs for HAS1–3 were
expressed in both B16-F1 and B16-F10 melanoma cells even
after stimulation with lactate. Therefore, differences in HA
synthetic capacity between these two melanoma cells due to
gain or loss of biosynthetic enzymes appear unlikely. More
importantly, B16-F10 melanoma cells expressed cell-asso-
ciated and soluble HA polymers at concentrations that were
comparable with B16-F1 melanoma cells after stimulation
with lactate. Lüke and Prehm (1999) have shown that the
regulation of the HA synthetic machinery is highly complex
and is at least partially controlled by CD44 proteolysis and
dissociation of nascent HA chains from the cell membrane.
Thus, one possible explanation for our results is that lactate
induced proteolysis of CD44 from the surfaces of B16-F10
cells, triggering HA synthesis. However, levels of CD44
expressed by B16-F10 melanoma cells were not significantly
altered after stimulation with lactate, as shown by FACS.
A number of CD44 isoforms can be generated (due to
expression of splice variants or post-translational modifica-
tions), which differ markedly in their molecular interaction
with HA (reviewed in Zhou et al., 1999). For example,
phosphorylation of CD44 can reduce HA-binding activity
and may promote HA synthesis (Lüke and Prehm, 1999).
Thus, lactate may induce expression of a CD44 variant,
which initiates HA synthesis in B16-F10 melanoma cells via
altered molecular interaction with HA polymers. Our RT-PCR
results showed that B16-F10 melanoma cells expressed splice
variants of CD44 transcripts after lactate treatment. Finally,

enzymatic digestion of HA from the membrane surface has
been reported to enhance rates of HA synthesis (Philipson
et al., 1985; Larnier et al., 1989). Therefore, a third possibility
is that lactate stimulates the expression of HA’ses in B16-F10
melanoma cells. HA’se-mediated digestion of the low levels
of HA constitutively expressed by B16-F10 melanoma cells
could then trigger deposition of newly synthesized HA on the
surfaces of melanoma cells, as well as secretion of soluble
HA polymers. Interestingly, Formby and Stern (2003) have
recently shown that lactate significantly increased mRNAs
for two known HA’ses (HA’se-1 and -2) and suggested
that lactate may augment HA synthesis by digesting
cell-associated HA.

We should note that the tumor milieu is complex in terms
of cellular content (tumor cells, interstitial fibroblasts, and
infiltrating cells of the immune system), growth factors, and
extracellular matrix components. Thus, it is possible that
factors other than lactate contribute to HA expression by
melanoma tumors in vivo. For example, Edward et al. (2005)
has recently shown that melanoma cells grown on contracted
collagen lattices, but not on tissue culture plates, express high
concentrations of HA in vitro. Collagen is found in the
microenvironment of some melanoma tumors (Brown et al.,
2003), and thus may play a role in stimulating melanoma
cells to synthesize HA.

In conclusion, we have shown that the tumor microenvir-
onment can stimulate some melanoma cell types to
synthesize HA. Lactate, a major metabolite in melanoma
tumors, is a potential candidate for stimulating a subset(s) of
melanoma cells to synthesize HA in the context of skin
tumors. Our results provide a technical and conceptual
framework to further investigate the effect of the tumor
microenvironment on HA synthesis by melanoma cells as
well as other tumor cell types.

MATERIALS AND METHODS
Animals and cell lines

C57BL/6 mice (6–8 weeks) were obtained from breeding colonies

maintained at the University of Texas Southwestern Medical Center.

All animal experiments were approved by the Institutional Review

Board at the University of Texas Southwestern Medical Center. The

B16-F1 and B16-F10 murine melanoma cells and WM-115 and

WM-266-4 human melanoma cells were purchased from American

Type Culture Collection (Manassas, VA) and maintained as

suggested by the supplier. Finally, NS47 mouse fibroblasts were

maintained as described previously (Xu et al., 1995).

Preparation of enhanced green fluorescent protein melanoma
cells

The pHRGFP-1 vector (Stratagene, Inc., La Jolla, CA) containing the

humanized recombinant GFP gene was cloned as a BamHI/EcoRI

fragment into the pcDNA3.1 expression vector (Invitrogen, Carlsbad,

CA). B16-F1 and B16-F10 melanoma cells were transfected with the

GFP/pcDNA3.1 vector using the SuperFect reagent (Qiagen,

Valencia, CA) as described by the manufacturer. Transfected cells

were selected in medium containing hygromycin (500 mg/ml) and

fluorescent cells collected by FACS. B16-F1 cells and B16-F10

melanoma cells expressing GFP were used for all experiments.
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Generation of spheroids
B16-F1 and B16-F10 melanoma spheroids were generated similarly

as in a report described before (Walker et al., 2004). Briefly, 4� 103

melanoma cells in a volume of 200 ml were cultured on top of

solidified agar (0.75% wt/vol) in 96-well plates for 9 days. For

multicellular spheroids, melanoma cells were mixed in a 3:1 ratio of

B16 cells to fibroblasts and cultured on agar as above.

RT-PCR analyses

Total RNA was isolated from melanoma cells and the mRNA reverse

transcribed using the iScriptTM cDNA synthesis kit (Bio-Rad,

Hercules, CA) according to the directions from the manufacturer.

Primers and reaction conditions for detecting HAS1–3 were as

described previously (Mummert et al., 2002). In order to detect

CD44 splice variants, we used primers flanking variant exons 1–10 as

described previously (Yu et al., 1996).

Peptide synthesis

Pep-1 (GAHWQFNALTVR) or the scrambled peptide control

(WRHGFALTAVNQ) was synthesized by Invitrogen using standard

fMOC chemistry as described previously (Zmolik and Mummert,

2005). Briefly, an amidated and biotinylated lysine residue was

included at the C-terminus of the linker sequence (GGGS). Stock

solutions were prepared by dissolving peptides in dH2O to 1 mg/ml

and were stored at �201C.

Immunocytochemistry

B16-F1 and B16-F10 cells expressing GFP were grown in wells of

Lab-Tek chamber slides (Nalge Nunc International, Rochester, NY)

at 371C and 5% CO2 for 24 hours. After washing three times in PBS,

cells were fixed with 4% paraformaldehyde for 30 minutes at 41C.

Fixed cells were blocked with PBS containing 5% BSA and 5%

normal goat serum for 1 hour at room temperature before permea-

bilizing with 0.1% Triton X-100 for 15 minutes at room temperature.

GFP was detected by incubating cells with goat anti-GFP antibody

(BD Pharmingen, San Diego, CA; 1:200 dilution) overnight at 41C,

followed by a 1-hour incubation at room temperature with

fluorescein 5 isothiocyanate (FITC)-conjugated rabbit anti-goat

antibody (Zymed Laboratories, South San Francisco, CA; 1:200

dilution). For detection of cell surface HA, fixed cells were incubated

with biotinylated Pep-1 (5 mg/ml) or the biotinylated scrambled

peptide control (5 mg/ml) for 1 hour at 371C before permeabilization

with Triton X-100. Bound peptides were detected with phycoerythrin

(PE)-conjugated streptavidin diluted 1:200 for 1 hour at room

temperature. Some samples were digested with Streptomyces HA’se

(Sigma Aldrich, St Louis, MO) at 100 U/ml or mock treated with

enzyme buffer alone (100 mM sodium acetate, pH 5.0) overnight at

41C before adding biotinylated peptides to assess HA specificity.

In order to assess surface expression of CD44, cells were fixed in

paraformaldehyde as above, blocked with 5% BSA, and incubated

for 1 hour at room temperature with PE-conjugated anti-CD44

monoclonal antibody IM7 (BD Pharmingen) or PE-conjugated

isotype control (BD Pharmingen) (both diluted 1:100 in 5% BSA).

Next, cells were permeabilized with 0.1% Triton X-100 and GFP

expression assessed with goat anti-GFP antibody exactly as

described above. To assess the molecular interaction of CD44 with

HA, fixed cells were incubated with biotinylated Pep-1 or

biotinylated scrambled peptide control as described above. Bound

peptides were detected with Alexa Fluor 350-conjugated streptavi-

din (Molecular Probes (Invitrogen), Eugene, OR) diluted 1:500 for

1 hour at room temperature. Some samples were digested with

Streptomyces HA’se (100 U/ml) or mock treated with enzyme buffer

alone (100 mM sodium acetate, pH 5.0) overnight at 41C before

adding biotinylated peptides to assess HA specificity.

Immunohistochemistry

Melanoma cells expressing GFP were inoculated subcutaneously

into the ears (106 cells/ear) of C57BL/6 mice. When tumors reached

B3 mm in diameter mice were killed, the ears embedded in optimal

cutting temperature compound (Sakura Finetek, Torrance, CA), snap

frozen in liquid N2, and cryostat sections prepared (8 mm thick).

Cryostat sections were fixed for 30 minutes at 41C in 4%

paraformaldehyde, followed by blocking for 15 minutes in 0.1 M

glycine at room temperature. After washing the slides with PBS,

tissues were blocked for an additional 1 hour at room temperature

with 5% BSA and 5% normal goat serum in PBS. Tissues were

permeabilized with 0.1% Triton X-100 for 15 minutes at room

temperature and incubated overnight at 41C with goat anti-GFP

diluted 1:50. After washing the slides in PBS, samples were

incubated with FITC-conjugated rabbit anti-goat antibody diluted

1:50 and incubated for 1 h at room temperature. Finally, the nuclei

of cells were stained with Hoechst 33258 (Molecular Probes) as

described by the manufacturer. In order to detect HA associated with

tumor cell surfaces, samples were incubated with biotinylated Pep-1

(5mg/ml) or the biotinylated scrambled peptide control (5 mg/ml) for

1 hour at room temperature before permeabilization. Bound peptides

were detected with PE-conjugated streptavidin diluted 1:200. Some

samples were digested with Streptomyces HA’se (100 U/ml) or mock

treated with enzyme buffer alone (100 mM sodium acetate, pH 5.0)

before adding biotinylated peptides to assess HA specificity.

Estimation of lactate concentrations in tumors and spheroids
Melanoma tumors established in the abdominal skin of C57BL/6

mice (grown to B6 mm in diameter) were excised after first perfusing

the animals. Tumors were snap frozen in liquid N2, ground to a

powder using a mortar and pestle, and suspended in 1 ml of PBS.

After centrifugation to remove insoluble material, the concentrations

of lactate were determined with a lactate dehydrogenase assay

(R-BiopharmAG, Darmstadt, Germany). Concentrations of lactate

were calculated exactly as described by the manufacturer and

expressed as milligrams of lactate per 100 milligrams of tumor weight.

To estimate the concentrations of lactate secreted by spheroids,

we collected supernates from day 9 cultures. Lactate concentrations

in the culture supernates were determined using the lactate

dehydrogenase assay as described above. To normalize lactate

concentrations with respect to cell numbers, B16-F1 and B16-F10

spheroids were dispersed by incubating in trypsin/EDTA for

5 minutes at 371C and cells counted under microscopy with a

hemacytometer. Results were expressed as micrograms of lactate per

104 cells.

HA production by spheroids

Supernates from B16 melanoma spheroids or from multicellular

spheroids (composed of melanoma cells and fibroblasts) were

collected from day 9 cultures. The concentration of HA polymers

was determined using the biotinylated hyaluronic acid binding
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protein assay as described before (Kongtawelert and Ghosh, 1990).

hyaluronic acid binding protein was purchased from Seikagaku

Corp. (Tokyo, Japan) and biotin labeled with N-hydroxysuccinimido

biotin (Pierece Chemical Co., Rockford, IL) as described by the

manufacturer.

Impact of lactate on HA synthesis

To assess the impact of lactate on HA synthesis, B16-F1 and B16-F10

melanoma cells were cultured in media containing 20 mM lactate

(Sigma Aldrich) and 3H-glucosamine (Amersham Biosciences,

Piscataway, New Jersey) at 1 mCi/ml. Culture supernates were

collected 20 hours later and digested for 5 hours with bovine

pancreatic protease (30 U/ml) at 371C. After boiling, half of each

sample was digested for 16 hours with Streptomyces HA’se (10 U/

ml), while the other half was mock treated with buffer alone (100 mM

sodium acetate, pH 5.0). Samples were again boiled and glycos-

aminoglycans precipitated by adding an equal volume of 2%

cetylpyridinium chloride/0.04 M NaCl in the presence of carrier HA

(100mg/ml). Pellets were dissolved in 4.0 M guanidine-HCl, pre-

cipitated with ethanol, and radioactivities measured in a b-counter.

Finally, to examine the effect of lactate on HA expression, we grew

B16-F1 and B16-F10 melanoma cells in Lab-Tek chambers with

media containing graded doses of lactate (2.5, 10, and 20 mM).

Melanoma cells were fixed and stained for surface-associated HA

moieties as described above.

Impact of lactate on CD44 expression

To test the impact of lactate on the expression of CD44, B16-F1 and

B16-F10 melanoma cells were cultured in media containing graded

concentrations of lactate (2.5, 10, and 20 mM). After 20 hours, cells

were harvested and incubated with PE-conjugated anti-CD44

monoclonal antibody IM7 or PE-conjugated isotype control (both

antibodies were diluted 1:1000) in PBS containing 1% fetal calf

serum. Antibodies were incubated with cells on ice for 30 minutes,

washed in PBS containing 1% fetal calf serum, and subjected to

FACS.

Statistics

Groups were compared pairwise using either the two-tailed

Student’s t-test or the two-tailed Mann–Whitney U-test. Differences

between groups were considered significant for Po0.05.
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Figure S1. Effect of lactate on HA synthesis by human melanoma cells.

Figure S2. Impact of retinoic acid on HA expression by B16-F10 melanoma
cells.
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