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Polyunsaturated fatty acids (PUFAs) have important pharmacological effects on mammalian cells.
Here, we show that carboxyl group-containing PUFAs inhibit lysophosphatidic acid (LPA)-induced
focal adhesion formation, thereby inhibiting migration and adhesion. Carboxyl group-containing
PUFAs inhibit LPA-induced calcium mobilization, whereas ethyl ester-group containing PUFAs have
no effect. In addition, carboxyl group-containing PUFAs functionally inhibit LPA-dependent RhoA
activation. Given these results, we suggest that PUFAs may inhibit LPA-induced calcium/RhoA
signaling pathways leading to focal adhesion formation. Carboxyl group-containing PUFAs may
have a functional role in this regulatory mechanism.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction ment, tumor cell invasion and metastasis [3,4]. To attain motility,
Cancer is a disease of complex etiology, defined as uncontrolled
growth of cells. The transformation of normal cells to cancerous
involves three distinct phase: initiation, promotion, and progres-
sion [1]. During the initiation and promotion steps, cancer cells
attain several cancerous features caused by genetic changes. At
the end of tumorigenesis, cancer cells acquire the ability to spread
to distant organs through so-called metastasis. The major leading
cause of the high mortality rates associated with cancer is metas-
tasis. Indeed, metastases are the cause of 90% of cancer patients’
deaths [2]. Therefore, cancer therapies should be focused on not
only tumor development but also metastasis.

Migration is a key process for normal physiologies such as
embryonic development, immune function, and angiogenesis. It
is also associated with inflammatory diseases, vascular impair-
a cell must coordinate a number of different extracellular stimuli
into appropriate cellular responses. The cell is polarized in the
direction of migration by extending lamellipodial and/or filopodial
protrusions. Nascent adhesions are acquired by assembly of the
branched actin network of the lamellipodium. This process allows
the maturation of adhesions to anchor the protrusion. These adhe-
sions also provide the traction forces necessary to pull the cell body
forward and break adhesions at the rear of the cells. Perturbation
of any of these events affects the migratory ability of the cells [5].

Cell adhesion is regulated by a complex of proteins that local-
izes to sites of focal adhesions (FAs) [6]. Vinculin is a key regulator
of FAs [7], and targeted disruption of vinculin reduces adhesion to
a variety of extracellular matrix (ECM) proteins, increases migra-
tion rates, and results in fewer and smaller adhesions compared
with wild-type cells [8]. Despite the profound role of vinculin in
cell adhesion and motility, the molecular mechanisms by which
vinculin exerts these distinct effects are poorly understood.

Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are
essential fatty acids for mammals, indicating that mammals can
neither synthesize nor interconvert omega-3 and omega-6.
Therefore, they have to be consumed in the daily diet as vegetable
oils and fish oils. Appropriate ingestion of omega-6/omega-3 is
recommended for human health [9,10]. Some evidence suggests
that omega-3 is beneficial in prevention of colon [11] and prostate
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cancer [12,13]. Omega-6 and omega-3 have a carbon–carbon
double bond at the sixth carbon and third carbon from the methyl
end of the carbon chain, respectively [14]. However, little is known
about structure- and chain length-relationship in the regulation of
cancer cell migration. In the present study, we explored the effect
of omega-3 and omega-6 on cancer cell migration and adhesion,
and suggest that LPA-induced cancer cell migration and adhesion
is regulated by the carboxylic acid group of omega-3 and omega-
6 through the calcium/CaM/CaMKII signaling pathway.

2. Materials and methods

2.1. Reagents and antibodies

Reagents and antibodies used in this study were described in
Supplementary file.

2.2. Cell culture and Western blotting

SKOV-3 cell culture and Western blotting were performed as
described in a previous report [15].

2.3. RhoA activation assay

The level of active GTP-bound RhoA was determined by
pulling-down GTP-bound RhoA with GST-Rhotekin-RBD coupled
to glutathione-agarose beads. Cells were stimulated with LPA for
5 min and then lysed with lysis buffer containing 50 mM Tris (pH
7.5), 1% Nonidet P-40, 150 mM NaCl, 5 mM MgCl2, 10% glycerol,
1 mg/ml leupeptin, 1 mg/ml aprotinin and 1 mM phenylmethylsul-
fonyl fluoride. Lysates were centrifuged, and supernatants were
incubated with beads coupled to GST-Rhotekin-RBD for 2 h at
4 �C. Beads were washed with lysis buffer and GTP-loaded RhoA
was eluted with sample buffer. The amount of active RhoA was
determined by Western blot analysis.

2.4. Migration assay

SKOV-3 cells were grown and serum-starved for 10 h before
plating on a ChemoTx chamber (Neuro Probe Inc.). Cells were
detached with trypsin-EDTA and washed with serum-free RPMI.
For the migration assay, the bottom side of the ChemoTx mem-
brane (8-lm pore size) was coated with type I collagen for
30 min, and 1 � 104 serum-starved cells in 50 ll volume were
placed on the top side of ChemoTx membrane per each well.
Migration was induced by placing the cells on an overlaid Che-
moTx membrane on top of serum-free medium for 10 h. The Che-
moTx membrane was fixed with 4% paraformaldehyde, and non-
migratory cells on the top side of the membrane were removed
by gently wiping with a cotton swab. The membrane was stained
with DAPI, and migrating cells were counted under the fluores-
cence microscope at 10� magnification (Carl Zeiss).

2.5. Adhesion assay

To explore the effect of omega-3 on adhesion ability of SKOV-3
cells, 96-well plates (Falcon, Becton-Dickinson, Mountain View,
CA) were incubated with collagen type I for 12 h, then blocked with
PBS containing 0.2% BSA for 50 min at 37 �C. SKOV-3 cells were
trypsinized and suspended in the presence or absence of omega-
3 in LPA at a density of 1 � 105 cells/ml, and 0.1 ml of the cell
suspension was then added to each well of the plates. After 2 h,
unattached cells were removed by rinsing twice with PBS. Attached
cells were counted under the microscope at �100 magnification
after staining with DAPI.
2.6. Immunocytochemistry

SKOV-3 cells were grown in 6-well plates on coverslips, serum-
starved for 12 h, and then stimulated with LPA (10 lM). Cells were
fixed with 4% paraformaldehyde, permeabilized with 0.2% Triton
X-100, and incubated with anti-vinculin and rhodamine-phalloidin
for an hour followed by DAPI and Alexa Fluor 488-conjugated
secondary antibody for 30 min. Samples were mounted with
anti-fading reagent (2% N-propylgalate in 80% glycerol/
phosphate-buffered saline solution), and images were obtained
with a confocal microscope at 40� magnification and enlarged
2X in silico (OLYMPUS FV-1000).

2.7. Measurement of intracellular calcium concentration

Intracellular calcium concentration was measured using fura-2/
AM, a calcium-sensitive fluorescent dye, as described previously
[16]. Briefly, a total of 1 � 106 SKOV-3 cells were incubated with
3 mM fura-2/AM at 37 �C in fresh serum-free RPMI medium with
stirring for 50 min. Cells (1 � 105) were aliquotted into Locke’s
solution (154 mM NaCl, 5.6 mM KCl, 1.2 mM MgCl2, 5 mM HEPES,
pH 7.3, 10 mM glucose, 2.2 mM CaCl2, and 0.2 mM EGTA) for each
assay. Fluorescent emission at 500 nm was measured at excitation
wavelength of 340/380 nm.

2.8. Statistical analysis

Results are expressed as the means ± S.D. of two independent
experiments (n = 3 for each experiment). When comparing two
groups, an unpaired Student’s t-test was used to address differ-
ences. P-values < 0.05 were considered significant and indicated
by ⁄.

3. Results

3.1. LPA-induced cancer cell migration is regulated by carboxyl group-
containing omega-3 and omega-6

LPA was originally identified as a tumor-stimulating factor that
promotes cancer cell migration [17,18]. Likewise, our results also
showed that LPA strongly induced the migration of SKOV-3 cells
(Fig. 1A and B). To elucidate the potential role of omega-3 and
omega-6 during LPA-induced cancer cell migration, we examined
the effect of various omega-3 and omega-6 analogs on the LPA-
induced SKOV-3 cell migration (Fig. 1C). LPA-induced SKOV-3 cell
migration was attenuated by pre-treatment with carboxyl group-
containing omega-3 and omega-6 such as linoleic acid (LA), arachi-
donic acid (AA), a-linolenic acid (LNA) and EPA. However, ethyl
linoleate (ELA), AA ethyl ester, a-ethyl linolenate (ELN) and EPA
ethyl ester which have the ethyl ester structure were not effective
(Fig. 1D). These results suggest that carboxyl group-containing
omega-3 and omega-6 play crucial roles in LPA-induced cancer cell
migration.

3.2. Carboxyl group-containing omega-3 regulates cancer cell
migration and adhesion

Adhesion of cells to a substrate is necessary for cell spreading
and migration. Therefore, we validated the effect of LNA on
LPA-dependent cancer cell migration and adhesion. As shown in
Fig. 2A and B, LPA-induced cancer cell migration and adhesion
were abolished by LNA, whereas ELN was not effective. Since cell
adhesion is regulated by adhesion-associated proteins such as
FAK, integrin, talin, paxillin, and vinculin, we examined morpho-
logical changes by staining cells with actin and vinculin. As shown



Fig. 1. Carboxylic moiety of PUFAs retains its inhibitory activity on LPA-induced SKOV-3 cell migration. (A and B) LPA-dependent SKOV-3 cell migration was determined in a
time- and dose-dependent manner. (C) Chemical structure of PUFAs. LA, linoleic acid; ELA, ethyl linoleate; AA, arachidonic acid; AA-EE, arachidonic acid ethyl ester; LNA, a-
linolenic acid; ELN, a-ethyl linolenate; EPA, eicosapentaenoic acid; EPA-EE, eicosapentaenoic acid ethyl ester. (D) LPA-induced migration of SKOV-3 cells was determined in
the absence or presence of various PUFAs (10 lM). ⁄P < 0.05.
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in Fig. 2C, actin stress fiber and focal adhesion formation were
strongly induced by treatment with LPA. LNA completely blocked
LPA-induced actin stress fiber and focal adhesion formation,
whereas ELN did not affect LPA-induced morphological changes.
Moreover, pretreatment of SKOV-3 cells with LNA significantly
blocked actin stress fiber formation and induced shrinkage. These
results suggest that LNA inhibits SKOV-3 cell adhesion and migra-
tion through regulation of focal adhesion formation.

3.3. LNA blocks LPA-induced calcium mobilization

It has been reported that LPA substantially evokes calcium mobi-
lization and regulates migration [19]. Since our results showed that
LPA-induced SKOV-3 cell migration was inhibited by LNA, we next
examined the effect of LNA on LPA-dependent calcium mobilization.
As shown in Fig. 3A, LPA-induced calcium mobilization was inhib-
ited by LNA in a dose-dependent manner. In contrast, ELN did not
affect LPA-induced calcium mobilization. To assess that LNA-depen-
dent inhibition of calcium mobilization is responsible for cancer cell
migration, we determined the effect of L-type calcium channel
blocker (nifedipine) on the LPA-induced SKOV-3 cell migration
and adhesion. As shown in Fig. 3B, nifedipine significantly but not
completely blocked LPA-induced calcium mobilization. Likewise,
stimulation of SKOV-3 cells with nifedipine significantly blocked
LPA-induced migration and adhesion (Fig. 3C and D). These results
suggest that LNA suppresses LPA-induced SKOV-3 cell migration
and adhesion through inhibition of calcium mobilization.

3.4. LNA suppresses calcium-dependent RhoA activation

In order to explore the role of calcium mobilization in LPA-
dependent cancer cell migration, we observed whether calmodulin
(CaM), which is a key regulator of the calcium mobilization
signaling pathway, is involved in the LPA-induced SKOV-3 cell
migration. LPA-induced SKOV-3 cell migration and adhesion were
markedly attenuated by CaM antagonist W7 (Fig. 4A and B). More-
over, W7 also abolished the focal adhesion formation (Fig. 4C). To
ascertain the molecular mechanism by which CaM regulates the
LPA-induced migration, we next examined the participation of
CaM-dependent protein kinase II (CaMKII) on the LPA-induced
migration of SKOV-3 cells. As shown in Fig. 4A and B, CaMKII-
specific inhibitor (KN93) completely blocked LPA-induced SKOV-
3 cell migration and adhesion, whereas KN92, an inactive analog
of KN93, had no effect. In addition, LPA-dependent focal adhesion
formation was abrogated by KN93 but not by KN92 (Fig. 4C). Since
RhoA regulates stress fiber formation and thereby enhances cell
migration, we performed a pull-down assay to assess how LNA
affects LPA-induced RhoA activity. As shown in Fig. 4D, LPA-
induced RhoA activity was abrogated by LNA, nifedipine, W7, and
KN93. However, ELN and KN92 did not affect LPA-induced RhoA
activation. These results suggest that carboxyl group-containing
omega-3 controls CaMKII as well as the RhoA signaling pathway,
thereby regulating LPA-induced SKOV-3 cell migration and
adhesion.

4. Discussion

In the present study, we explored the ability of omega-3 and
omega-6 structures differentially regulate LPA-induced cancer cell
migration and adhesion. Many reports suggest that LPA is a major
component of ascites from ovarian cancer patients and an
important predictor of cancer diagnosis [18,20]. Indeed, LPA drasti-
cally stimulated migration of SKOV-3 ovarian cancer cells (Fig. 1A
and B). Thus, modulation of LPA-induced cancer cell migration
and adhesion seems to be an important issue in cancer biology.

Around eighty percent of cancer patients die with metastasis.
Metastasis begins with cell migration and adhesion during
intravasation and extravasation, understanding migration and
adhesion is thus crucial for development of cancer therapeutics.
Appropriate ingestion of PUFAs such as omega-6/omega-3 has



Fig. 2. LNA suppresses LPA-dependent SKOV-3 cell migration and adhesion in a dose-dependent manner. (A and B) LPA-dependent migration and adhesion of SKOV-3 cells
were determined in the absence or presence of the indicated concentration of LNA or ELN. (C) SKOV-3 cells were pretreated with LNA (10 lM) or ELN (10 lM) followed by
stimulation with LPA (10 lM) for 3 min. Cells were stained with DAPI, rhodamine-phalloidin, and vinculin antibody. Images were captured with confocal laser microscopy at
40� magnification and enlarged 2X in silico. Focal adhesions were indicated by arrow heads. ⁄P < 0.05.
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recently been suggested to have some beneficial effect on colon
and prostate cancer patients [11–13]. However, the underlying
mechanism for this beneficial effect on cancer patients is still
unclear. Therefore, we investigated the role of various PUFAs on
LPA-induced cancer cell migration and adhesion. As a result, we
identified LA, AA, LNA, and EPA as negative regulators of LPA-
induced cancer cell migration and adhesion (Figs. 1D, 2A and B).
Thus, it seems that PUFAs may have beneficial effects for cancer
patients through modulation of cancer cell migration and
adhesion.

One important issue arising from this study is the structural
properties of PUFAs. It has been reported that different PUFAs have
unique cognate receptors. For example, short chain fatty acids
(FAs) are specific agonists for GPR41 and GPR43 [21] and med-
ium-chain FAs for GPR84 [22]. Long-chain FAs can activate
GPR40 [23] and GPR120 [24]. In particular, it has been reported
that GPR120 is an omega-3 receptor mediating potent anti-
inflammatory and insulin-sensitizing effects [25]. In addition to
these structural properties of chain length, our results demon-
strated that the carboxyl group is a crucial moiety for the
inhibitory effect of PUFAs. For instance, LNA potently suppressed
LPA-induced migration, adhesion, focal adhesion formation, and
calcium mobilization whereas ELA which contains an ethyl ester
group at the carboxyl terminus, had no effect (Figs. 1D, 2, and 3).
Likewise, LA, AA, and EPA suppressed LPA-induced migration of
SKOV-3. However, their ethyl ester form did not have this
suppressive effect on LPA-induced SKOV-3 cell migration
(Fig. 1D). Therefore, it is likely that the carboxyl terminal group
of PUFAs has functional activity in the inhibition of LPA-induced
cancer cell migration. In this regard, it is worthwhile to evaluate



Fig. 3. LNA blocks LPA-induced calcium mobilization. (A) SKOV-3 cells were pre-incubated with the indicated concentration of LNA or ELN for 20 min and then stimulated
with LPA (10 lM). Calcium mobilization was measured as described in ‘Section 2’. (B) SKOV-3 cells were pre-treated with indicated concentration of nifedipine prior to
stimulation with LPA (10 lM), and calcium mobilization was determined. (C and D) LPA-induced migration and adhesion of SKOV-3 cells were measured in the absence or
presence of LNA (10 lM), ELN (10 lM), and L-type calcium channel blocker (nifedipine, 100 lM). ⁄P < 0.05.
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the effect of the carboxyl group on the biological activity of fatty
acid binding receptors.

A complex signaling mechanism regulates cell adhesion and
spreading [26], and integration of these signals leads to assembly
of focal adhesion proteins such as talin and vinculin to attachment
and spreading of cells [27–31]. In line with this, our results also
showed that LPA drastically regulated focal adhesion formation
(Figs. 2C and 4C). Calcium mobilization is a key regulatory mecha-
nism for LPA-induced focal adhesion formation. For example, LPA
stimulates calcium mobilization in a variety of cells [32] and acti-
vates focal adhesion kinase and paxillin [33]. The inhibitory mech-
anism of LNA seems to be related with calcium mobilization. In
fact, LPA-induced calcium mobilization was completely blocked
by LNA, whereas the ethyl ester form of LNA (ELN) was not effec-
tive (Fig. 3A). Furthermore, blocking of calcium mobilization by
L-type calcium channel blocker (nifedipine) also significantly
blocked LPA-induced SKOV-3 cell migration and adhesion (Fig. 3C
and D). Thus, the carboxyl group-containing omega-3 may exert
its effect on LPA-mediated cancer cell migration and adhesion via
calcium mobilization.
One possible mediator for calcium mobilization is the CaM/
CaMKII signaling pathway. Indeed, it has been reported that activa-
tion of the CaM/CaMKII signaling pathway plays a key role in
LPA-induced migration hBMDS cells [34]. Likewise, several lines
of evidence support that LPA-dependent SKOV-3 cell migration is
mediated by the CaM/CaMKII signaling pathway. First, blocking
calcium mobilization with L-type calcium channel blocker or LNA
significantly attenuated LPA-induced SKOV-3 cell migration and
adhesion (Fig. 3C and D). Second, direct inhibition of CaM (W7)
or CaMKII (KN93) significantly blocked LPA-induced SKOV-3 cells
migration and adhesion whereas the inactive form of KN93
(KN92) was not effective (Fig. 4A and B). Therefore, the CaMKII sig-
naling pathway may be important for LPA-induced SKOV-3 cell
migration as well as adhesion, and carboxyl group-containing
omega-3 may exert its inhibitory effect on calcium mobilization
and thus on CaMKII activation.

The activation of Rho GTPase is the most important determinant
for many types of cell migration [35,36]. Activated RhoA eventually
controls stress fibers and assembly of focal adhesion complexes
such as vinculin [37–39]. It has been reported that intracellular



Fig. 4. LNA suppresses LPA-induced focal adhesion formation and RhoA activation. (A and B) SKOV-3 cells were pre-treated with LNA (10 lM), ELN (10 lM) nifedipine
(100 lM), W7 (CaM inhibitor, 5 lM), KN93 (CaMKII inhibitor, 2.5 lM), or KN92 (inactive analog of KN93, 2.5 lM), and LPA-induced migration and adhesion were determined.
(C) Under the same conditions as A and B, cells were stained with DAPI, rhodamine-phalloidin, and vinculin antibody. Images were captured with confocal laser microscopy at
40� magnification and enlarged 2X in silico. Focal adhesions were indicated by arrow heads. (D) SKOV-3 cells were pretreated with various inhibitors for 20 min then
stimulated with LPA (10 lM) for 3 min. Activation of RhoA was determined by measuring the amount of GTP-bound RhoA as described in ‘Section 2’. ⁄P < 0.05.
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calcium redistributes Rho GTPase localization and regulates axonal
guidance in neuronal cells [40]. In correlation with this, inhibition
of calcium mobilization or CaMKII drastically regulated LPA-
induced focal adhesion formation in SKOV-3 cells (Fig. 4C). In
particular, LNA significantly abolished LPA-induced focal adhesion
formation whereas the ethyl ester form of LNA (ELN) was not effec-
tive. These results might account for the involvement of Rho
GTPase in the regulation of LPA-induced focal adhesion formation
in SKOV-3 cells. Indeed, LPA-dependent activation RhoA was
significantly abolished by calcium channel blocker or inhibitors
of CaMKII signaling pathways (Fig. 4D). Notably, LNA also blocked
LPA-dependent RhoA activation whereas ethyl ester form of
LNA (ELN) had no effect. Therefore, these results suggest that
omega-3 regulates cancer cell migration through inactivation of
RhoA signaling pathways. Currently, downstream signaling path-
way of RhoA is still ambiguous. However, recent evidences suggest
that phospholipase D (PLD) is overexpressed in the cancer tissues
and its PLD-dependent cancer cell migration is regulated by small
G proteins such as Arf, Rac, and Rho [41]. Therefore, it is possible
that PUFAs regulates PLD activity through modulation of upstream
small G proteins such as RhoA.

In conclusion, cancer cell migration is suppressed by PUFAs
such as omega-3 and omega-6 and the carboxylic moiety is
important for functional activity. Inhibition of calcium mobiliza-
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tion and subsequent activation of CaMKII/RhoA signaling pathway
might be the mechanistic pathway for inhibition of focal adhesion
formation as well as migration. These results provide mechanistic
insight into the inhibition of cancer cell migration based on struc-
tural properties.
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