
New directions in fuzzy automata

Mansoor Doostfatemeh *, Stefan C. Kremer

Department of Computing and Information Science, University of Guelph, Guelph, Ont., Canada N1G 2W1

Received 1 January 2004; received in revised form 1 July 2004; accepted 1 August 2004

Available online 18 September 2004

Abstract

Automata are the prime example of general computational systems over discrete spaces.

The incorporation of fuzzy logic into automata theory resulted in fuzzy auotomata which

can handle continuous spaces. Moreover, they are able to model uncertainty which is inherent

in many applications. Deterministic Finite-state Automata (DFA) have been the architecture,

most used in many applications, but, the increasing interest in using fuzzy logic for many new

areas necessitates that the formalism of fuzzy automata be more developed and better estab-

lished to fulfill implementational requirements in a well-defined manner. This need is due to

the fact that despite the long history of fuzzy automata and lots of research being done on

that, there are still some issues which have not been well-established and issues which need

some kind of revision. In particular, we focus on membership assignment, output mapping,

multi-membership resolution, and the concept of acceptance for fuzzy automata. We develop

a new general definition for fuzzy automata, and based on that, develop well-defined and

application-driven methodologies to establish a better ground for fuzzy automata and pave

the way for forthcoming applications.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Automata theory; General fuzzy automata; Membership assignment; Zero-weight transition;

Multi-membership resolution; Output mapping; Acceptance; Conditional acceptance

0888-613X/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.ijar.2004.08.001

* Corresponding author. Tel.: +1 519 824 4120x56404; fax: +1 519 837 0323.

E-mail address: mdoostfa@uoguelph.ca (M. Doostfatemeh).

International Journal of Approximate Reasoning

38 (2005) 175–214

www.elsevier.com/locate/ijar

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82736223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Automata have a long history both in theory and application [1–7]. Automata are

the prime example of general computational systems over discrete spaces [8]. Among

the conventional spectrum of automata (i.e. Deterministic Finite-state Automata
(DFA), Non-deterministic Finite-state Automata (NFA), Probabilistic (stochastic)

Automata (PA), and Fuzzy-Finite-state Automata (FFA)), DFA have been the most

applied automata to different areas [9–11]. See [12] for more applications. DFA have

been shown to be an appropriate tool for modeling systems and applications which

can be realized as a finite set of states (including some final states) and transitions

between them depending on some input strings 1 e.g. all logic circuits from a simple

AND gate to the control unit of a supercomputer. In this paper, we are focussing on

Fuzzy Finite-state Automata (FFA), which incorporate fuzziness into the internal
state representation and output of these computational systems. Fuzzy automata

not only provide a systematic approach to handle uncertainty in such systems, but

also are able to handle continuous spaces [15].

There is an increasing interest in using fuzzy logic in many new areas. Fuzzy logic

[16] is a very efficient method for handling imprecision which is an intrinsic property

of many systems [17]. It provides a nice systematic approach to incorporating

approximate reasoning into such systems (in the way humans do) [18,19]. Moreover,

fuzzy implementations of many applications are not only cheaper and faster but also
make them more understandable for operators and end-users of the systems [20–

27,17,28–31].

Fuzzy automata and their counterparts fuzzy grammars, combine the capabilities

of automata and language theory with fuzzy logic in an elegant way [32–35]. They

have been shown to be very useful for areas which are well-known to be handled

by discrete mathematics and probabilistic approaches, e.g. structural matching meth-

ods [36], logical design [37]. In general, fuzzy automata provide an attractive system-

atic way for generalizing discrete applications [38,39,37,40,41]. Moreover, fuzzy
automata are able to create capabilities which are hardly achievable by other tools

[42]. On the other hand, the contribution of FFA to neural networks (more specif-

ically recurrent NNs) has been considerable, and dynamical fuzzy systems are getting

more and more popular and useful [43–46]. It seems that the demand for using FFA

will increase considerably in coming years.

In spite of the long history and lots of research being done on fuzzy automata, it

still seems that there are some issues which have not been well-established and issues

1 It is noticeable that our approach is based on the key concept of state and the behavior of the

automaton is state-determined. Hence, an automaton in the scope of our approach is a discrete-time,

discrete-state-space, and state-determined machine. But, there is a more general approach where the

current state and inputs (and consequently the next state) are not necessarily well-defined [8]. Instead of

discrete and well-defined states and inputs, we have the probability distributions of the states and/or the

inputs. This gives rise to the concepts of hyperstates and hyperinputs. However, for the approach we are

taking, these are not applicable. For a more detailed discussion on the role of these concepts in modern

system theory and their comparison with conventional theory see [8,13,14].

176 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

which need some kind of revision. These issues show up mostly for applicational as-

pects of FFA, specially when we talk about the direct representation and justification

of FFA.

The rest of the paper is organized as follows: in Section 2 we present the required

background, addressing some of the shortages of fuzzy automata, and present some
conventions and definitions which are necessary. We also compare the realm of con-

ventional automata emphasizing the generality of fuzzy automata. Our contributions

are introduced in Section 3. They include: (1) augmented transition function, (2)

multi-membership resolution, (3) output mapping, (4) analysis of the continuous

operation of fuzzy automata, and (5) a new general definition for fuzzy automata

(GFA: General Fuzzy Automata). In Section 4 we give some examples illustrating

the capabilities achievable from these contributions. The paper ends with some con-

cluding remarks, discussion, and future work in Section 5.

2. Background

In this section, we first define the basic concepts of fuzzy logic. Then, we show the

insufficiency of the literature in this regard, establish some new terminology and

summarize the conventional spectrum of automata in a comparative sense.

2.1. Fuzzy logic basics

Two basic concepts are very crucial in this paper: fuzzy sets and fuzzy power sets.

There are different definitions and notations used in the literature. However, we take

the approach of Klir and Yuan [17] and define these concepts as follows:

Definition 1. A fuzzy set lQ defined on a set Q (discrete or continuous), is a function

mapping each element of Q to a unique element of the interval [0,1].

lQ : Q ! ½0; 1� ð1Þ

Then, the fuzzy power set of Q denoted as eP ðQÞ, is the set of all fuzzy subsets lQ,
which can be defined on the set Q.

eP ðQÞ ¼ flQ j lQ : Q ! ½0; 1�g ð2Þ

For example, if Q is the set of the states of a fuzzy automaton eF which has three

states, and possible membership values (mv) which may be attributed to these states

are {0.1,0.3, 0.4,0.6, 0.7,0.95}, then:

Domain of lQ ¼ Q ¼ fq1; q2; q3g

Range of lQ ¼ f0:1; 0:3; 0:4; 0:6; 0:7; 0:95g

Then, at different times t1, t2, . . . as eF is operating, states q1, q2, and q3 may take

different mv�s. e.g. lt1
Qðq1Þ ¼ 0:3; lt1

Qðq2Þ ¼ 0:7; lt2
Qðq3Þ ¼ 0:6, etc.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 177

However, as will be seen, one of the interesting characteristics of fuzzy automata

is the possibility of overlapping (simultaneous) transitions to the same state upon the

same input symbol, but from different current states (see Fig. 1). This will lead to
what we have called multi-membership (a next state is being forced to take several

different membership values at the same time). To refer to multi-membership states

we use a new notation lqi
with or without t.

To summarize, we state the following two conventions:

Convention 1. lt(qm) refers to the single mv of state qm at time t.

Whenever, time is unambiguous, we omit t and write simply: l (qm). For example,
from Fig. 1 we can write: lt3ðq1Þ ¼ 0:9, or if it is understood, l(q1) = 0.9.

Convention 2. ltqm refers to the set of mv�s associated with the multi-membership

state qm at time t.

Again, in case of no confusion, we may write: lqm
, e.g. in Fig. 1, we have:

lt4
q2
¼ f0:2; 0:4; 0:5g or lq2

¼ f0:2; 0:4; 0:5g as it is unambiguous.

In Section 3.2, we will show how lt
qm

is resolved to lt(qm). See multi-membership
resolution algorithm.

2.2. Insufficiency of the fuzzy automata literature

We believe that the current literature and background for fuzzy automata is not

established well enough to characterize the operation of the automaton and thus ful-

fill the implementational requirements in a well-defined manner. We exemplify this

shortage with the definition of a FFA. The following definition is generally accepted
as a formal definition for FFA [33,47,46].

q
0

q
1

q
2

q
5

0 , 0.5

0 , 0.4

0 , 0.2

µt3(q
0
) = 0.5

µt3(q
5
) = 0.1

µt3(q
1
) = 0.9

µt4 = {0.2. 0.4, 0.5}
q2

Fig. 1. Multi-membership of state q2 at time t4. See Example 1.

178 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

Definition 2. A Fuzzy Finite-state Automaton (FFA) eF is a 6-tuple denoted as:eF ¼ ðQ;R; d;R; Z;xÞ, where:

Q is a finite set of states, Q = {q1,q2, . . . ,qn}.
R is a finite set of input symbols, R = {a1,a2, . . . ,am}.
R 2 Q is the (possibly fuzzy) start state of eF .
Z is a finite set of output symbols, Z = {b1,b2, . . . ,bk}.
d:Q · R · Q ! (0,1] is the fuzzy transition function which is used to map a state

(current state) into another state (next state) upon an input symbol, attributing

a value in the fuzzy interval (0,1] to the next state.

x:Q ! Z is the output function which is used to map a (fuzzy) state to the output

set. 2

As can be seen, associated with each fuzzy transition, there is a membership value

(mv) in (0,1] interval. We call this membership value the weight of the transition. The

transition from state qi (current state) to state qj (next state) upon input ak is denoted

as d(qi,ak,qj).
3 Hereafter, we use this notation to refer both to a transition and its

weight. Whenever d(qi,ak,qj) is used as a value, it refers to the weight of the transi-

tion. Otherwise, it specifies the transition itself.

There are two important problems which should be clarified in the definition of

FFA. One is the assignment of membership values to the next states and the other
is how output mapping is performed:

(1) State Membership assignment: There are two issues within state membership

assignment, which need more elaboration. The first one is how to assign a mv

to a next state upon the completion of a transition. Secondly, how should we

deal with the cases where a state is forced to take several membership values

simultaneously via overlapping transitions?

2 Omlin et al. use the same definition both in [47,46]. While the use of an output map is somehow

justifiable in [47], as it talks about the deterministic representation of FFA in recurrent neural networks,

the need for that is not clear in [46], and it seems that x (output map) is just included to keep consistency

with the general definition of an automaton. On the other hand, Mordeson and Malik present several

definitions of FFA in their book [33]. They all contain, Q, R, d, and Z, but only in one of them is x (output

map) considered. Also, in their approach, start state is not of significance, while we do believe that a start

state, specifically a fuzzy start state can affect the operation of a FFA significantly and produces quite

different and more reasonable results.
3 It should be noted that in [47,46] the transition mapping (d) is represented as a relation, i.e.

d :Q · R · (0,1] ! Q. Thus, a transition from state qi to state qj upon input ak with the transition weight

Wijk is denoted by: d(qi,ak,Wijk) = qj [47,46]. But, since one of our main purposes is to develop a clear

methodology for assigning membership values to states based on input strings, we follow [33] and

represent the transition mapping as a function, i.e. d: Q · R · Q ! [0,1] to put emphasis on the attribution

of membership value. Thus the above transition will be denoted as d (qi,ak,qj) =Wijk. We use the term

‘‘function’’ here to imply that every value in the domain is related to a unique value in the range. This

constraint makes mv assignment consistent with other fuzzy set formulations. It also allows us to simplify

our definitions and subsequent derivations without loss of generality.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 179

(2) Output mapping: The most important questions concerning the generation of

output, are: What is the significance of the output map in fuzzy automata?

Can we ignore that and still be able to deal with applications which do need dif-

ferent output labels?

The two issues of membership assignment can be seen in the following example.

Example 1. Consider the Fuzzy Finite-state Automaton (FFA) eF as:eF ¼ ðR;Q;R; Z; d;xÞ
where:

R = {0,1}: set of input symbols.

Q = {q0,q1,q2,q3,q4,q5}: set of states.

R = {q0}: set of initial states. We assume the mv of q0 is 1 at the beginning (i.e

lt0ðq0Þ ¼ 1:0).
Z = {accept}: set of output labels.

d :Q · R · Q ! (0,1]: transition function.

x :Q! Z: output map.

Here, there is a single output label. Although it can be called anything, accept seems

to be more reasonable and consistent with the traditional automata terminology.

The automaton eF and its transition table are shown in Fig. 2 and Table 1,
respectively.

q0

q1

q2

q3

q4

q5

1
,0

.5

Start:

0
, 0

.2

0 , 0.5

1 , 0.3

1
, 0

.5

0 , 0.4

1 , 0.9

0
, 0.9

1
, 0

.1

1 , 0.9

0 , 0.1

0
, 0

.60
, 0

.20
, 1

1 , 0
.2

0 , 0.6

0 , 0.45

1 , 0.6

1
,0

.5

1
, 0

.8

0 , 0.7

1 , 0.1

µt (q)=1

Fig. 2. Illustration of FFA of Example 1. A transition from the current state to the next state is shown by

an arrow and the numbers on each arrow show the input symbol and the weight of transition respectively,

separated by a comma ‘‘,’’. Thus, ‘‘1,0.2’’ shows that the transition occurs upon input ‘‘1’’ and the

transition weight is ‘‘0.2’’.

180 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

Consider now the operation of eF upon input string ‘‘0110’’. The transitions are

shown in Table 2.

To assign mv�s to next states in this example, we use a currently accepted

method which takes the weight of the transition [46,33]. We call this method tran-

sition-based membership. The disadvantage of transition-based membership and a

more general method for assigning mv�s to the states will be discussed in

Section 3.1.

Using transition-based membership, the mv of a next state upon each input is the
weight associated with the corresponding transition. Assuming that eF started oper-

ation at time t0, up to the third input symbol (i.e. ‘‘011’’) all (next) states take a un-

ique mv, as there is a single transition to each state upon each symbol. e.g.

lt1
q1
¼ f0:2g; lt1

q2
¼ f0:5g; lt2

q1
¼ f0:9g; lt3

q3
¼ f0:6g, etc. Since, associated with each

state, there is a single mv, that can be assigned as the mv of that state at the specified

time. Thus, in the above cases for example, the mv of q1 at time t1 is 0.2, i.e.

lt1ðq1Þ ¼ 0:2. Similarly, lt1ðq2Þ ¼ 0:5; lt2ðq1Þ ¼ 0:9; lt3ðq3Þ ¼ 0:6. But, after the

fourth symbol (‘‘0’’) we have several states with overlapping transitions to them.
For example q1 is to take the mv 0.2 by the transition d(q0,0,q1) = 0.2 , while at

the same time, the transition d(q5,0,q1) = 1.0 forces it to 1.0, i.e. lt4
q1
¼ f0:2; 1:0g. Also

q2 at time t4 has three associated mv�s simultaneously, lt4
q2
¼ f0:2; 0:4; 0:5g (see Fig.

1). Similarly, q4 has three simultaneous associated transitions, lt4
q4
¼ f0:6; 0:7; 0:9g In

many situations, we may need to assign a single mv to each state, at any time (e.g. we

may need lt4ðq1Þ; lt4ðq2Þ, and lt4ðq4Þ in these examples). What should the mv of

these states be at the specified times?

Table 1

Transition table of FFA in Example 1

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 181

We call this problem multi-membership, which is one of the issues that has not

been well-addressed in the literature and needs more elaboration. This will be the

subject of Section 3.2.

2.3. Establishing a terminology for FFA

The terminology which is currently used for fuzzy automata, is essentially the

same as the one used for other conventional automata such as DFA and PA. For
example, it is not quite reasonable to use terms such as current state and next state

for a FFA, as they are fuzzy and not unique. It is more sensible to talk about the set

of current fuzzy states, the set of next fuzzy states, etc.

In the following, we will define some terminology to make the boundary between

fuzzy automata and other types of automata more distinct, while at the same time

the generality of fuzzy automata will be seen.

As we know, in the transition d(qm,ak,qj), qm is traditionally known as the cur-

rent state and qj as the next state. But, for the fuzzy automata, we suggest to use
the terms successors and predecessors for the reasons which will become clear as

we proceed.

Convention 3. Unless otherwise specified, by successors and predecessors of a state

qm we mean states which follow qm or are followed by qm, respectively, within the

context of a single input symbol.

Usually we need to refer to the set of all transitions in a fuzzy automaton (the set
which specifies the domain of the function d).

Table 2

Transitions of FFA in Example 1 upon input string ‘‘0110’’

182 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

Convention 4. The set of all transitions of a fuzzy automaton eF , is denoted as DeF .
However, whenever it is understood we eliminate the subscript, and write simply D.

To show which states will be activated upon an input symbol from a specific state

qm, we define the set of successors of qm as follows.

Definition 3 (Successor set). The successor set of a state qm on input symbol ak
denoted as Qsucc(qm,ak), is the set of all states qj which will be reached via transitions

d(qm,ak,qj).

Qsuccðqm; akÞ ¼ fqj j dðqm; ak; qjÞ 2 Dg ð3Þ

It is sometimes desirable to define the successor set of a state subject to a

threshold.

Definition 4 (Threshold successor set). The s1/s2 successor set of a state qm on input

symbol ak denoted as Qsucc(qm,ak,s1/s2), is the set of all successors of qm like qj such
that s1 6 d (qm,ak,qj) 6 s2.

Qsuccðqm; ak; s1=s2Þ ¼ fqjjdðqm; ak; qjÞ 2 D ^ s1 6 dðqm; ak; qjÞ 6 s2g ð4Þ

Similarly, we can define the predecessor set (Qpred(qm,ak)), and threshold predecessor

set (Qpred(qm,ak,s1/s 2)) of a state as follows:

Qpredðqm; akÞ ¼ fqj j dðqj; ak; qmÞ 2 Dg ð5Þ

Qpredðqm; ak; s1=s2Þ ¼ fqj j dðqj; ak; qmÞ 2 D ^ s1 6 dðqj; ak; qmÞ 6 s2g ð6Þ

In other words, qm is the (threshold) successor of its (threshold) predecessors

Qpredðqm; akÞ ¼ fqj j qm 2 Qsuccðqj; akÞg ð7Þ

Qpredðqm; ak; s1=s2Þ ¼ fqj j qm 2 Qsuccðqj; ak; s1=s2Þg ð8Þ

It is obvious that:

Qsuccðqm; ak; s1=s2Þ � Qsuccðqm; akÞ � Q ð9Þ

Qpredðqm; ak; s1=s2Þ � Qpredðqm; akÞ � Q ð10Þ
It is also noticeable that the 0/s, s/1, and s/s successor/predecessor sets of state qm
give all successors/predecessors of qm whose transition weights are less than or equal

to s, greater than or equal to s, and exactly equal to s, respectively. Successor sets are
specified as follows. Predecessor sets are quite similar.

Qsuccðqm; ak; 0=sÞ ¼ fqjjdðqm; ak; qjÞ 2 D ^ dðqm; ak; qjÞ 6 sg ð11Þ

Qsuccðqm; ak; s=1Þ ¼ fqjjdðqm; ak; qjÞ 2 D ^ dðqm; ak; qjÞ P sg ð12Þ

Qsuccðqm; ak; s=sÞ ¼ fqjjdðqm; ak; qjÞ 2 D ^ dðqm; ak; qjÞ ¼ sg ð13Þ

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 183

Definition 5 (Active state set). Knowing that the entered input prior to time t has

been ak, active states at time t are those states to which there is at least one

transition on the input symbol ak. Then, the fuzzy set of all active states at t

(ordered pairs of states and their mv�s) is called active state set at time t, and is

denoted as Qact(t).

For example, in Fig. 2, assuming that the entered input at time t0 is ‘‘0’’, we

have:

Qactðt1Þ ¼ fðq1;lt1ðq1ÞÞ; ðq2; lt1ðq2ÞÞg ¼ fðq1; 0:2Þ; ðq2; 0:5Þg

While if the entered input at t0 is ‘‘1’’, we will have:

Qactðt1Þ ¼ fðq0;lt1ðq0ÞÞ; ðq1; lt1ðq1ÞÞ; ðq3; lt1ðq3ÞÞg
¼ fðq0; 0:5Þ; ðq1; 0:8Þ; ðq3; 0:3Þg

Convention 5. Since Qact(t) is a fuzzy set (is a function), to show that a state

qi belongs to Qact(t), we should write: qi 2 Domain(Qact(t)) (alternatively, (qi,

lt(qi)) 2 Qact(t)). Hereafter, we simply denote it as: qi 2 Qact(t), if no confusion
occurs.

Obviously QactðtÞ � eP ðQÞ for all t. Qact(t) can be defined recursively in time

as:

QactðtÞ ¼ fðqm; ltðqmÞÞ j 9ðqi 2 Qactðt � 1Þ; ak 2 RÞ ^ qm 2 Qsuccðqi; akÞg ð14Þ

Note that Qactðt0Þ ¼ eR, i.e. at time t0 the active state set, is the set of initial fuzzy
states. In Fig. 2, for example: Qactðt0Þ ¼ fðq0; lt0ðq0Þg ¼ fðq0; 1:0Þg

In this paper, we refer abundantly to the classes of FFA with and without final

states. To distinguish between them, we use two different notations.

Convention 6. FFAfin refers to the class of FFA with some final states and FFAnofin

refers to the class of FFA without final states.

2.4. Conventional spectrum of automata

In our work, we sometimes refer to the conventional spectrum of automata. As

mentioned previously, by conventional spectrum we mean: Deterministic Finite-state

Automata (DFA), Non-deterministic Finite-state Automata (NFA), Probabilistic

(stochastic) Automata (PA), and Fuzzy-Finite-state Automata (FFA). We have sum-

marized and compared the conventional spectrum in Table 3 which will be referred

hereafter from time to time.
We just note some points which are of our concern to pave the way for our con-

tributions. For more details see [48,8,49,50,5,51].

184 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

Table 3

Comparison of conventional automata

DFA NFA PA FFA

R Single start state(q0) Set of start states Single probabilistic start state Set of fuzzy start states

Z Accept/reject Accept/reject Accept/reject Acceptance according to mv�s
x Set of final (acceptance)

states (F)

Set of final (acceptance)

states (F)

Probabilistic final (acceptance)

states

Possible fuzzy final states

(see Section 3)

xðqÞ ¼ reject if q 2 F
accept if q 62 F

�
xðqÞ ¼ reject if q 2 F

accept if q 62 F

�
d Q · R ! Q Q · (R[{�})! 2Q Q · R · (0,1]! Q Q · R · Q! (0,1]

Range(lQ) {0,1} {0,1} {0,1} (0,1]

jQsuccj 1 P0 1 P1

jQpredj 1 P0 1 P1

An automaton A is considered as a 6-tuple machine as in Definition 2, i.e. A = (R,Q,R,Z,d,x). q 2 Q refers to a general state and lQ is the function (fuzzy set)

which mapps q to a mv (see Definition 1).

M
.
D
o
o
stfa

tem
eh
,
S
.C
.
K
rem

er
/
In
tern

a
t.
J
.
A
p
p
ro
x
.
R
ea
so
n
.
3
8
(
2
0
0
5
)
1
7
5
–
2
1
4

1
8
5

(1) NFA have the characteristic of �-transition. An NFA can transit from one state

to another on empty string (�). Although this property does not make sense

practically, it is very useful in developing the theory of formal languages and

theorem proving. We will use this theoretically constructive property in a differ-

ent sense for FFA.
(2) In NFA, like FFA overlapping of transitions is possible. However, since d is

applied non-deterministically but not probabilistically, and due to �-transition,
there is no way to define deterministic behaviour of a NFA. However, had it been

possible to do that, there would have been no vagueness and fuzziness in NFA

operation as all active states, successors, and predecessors would have had

an implied mv of 1. This means that the sheer overlapping of transitions does

not imply fuzziness. Moreover, any NFA M can be unrolled (unfolded) to a

DFA M 0 (which can have considerably more states and is said to be equiva-
lent to M in terms of accepting language, i.e. L(M) = L(M 0)) where at any

time there is a unique active state (with an implied mv of 1) with a unique

successor and a unique predecessor [49]. But, generally, there is no way to

simulate the operation of a fuzzy automaton by a DFA, or any other type

of automata in the conventional spectrum of automata (or even any combina-

tion of them). However, it may be possible to derive DFA which are equiva-

lent to some specific and narrowed cases of fuzzy grammars [52]. But, this can

not be generalized to a general class of fuzzy automata. See Definition 8.
(3) All transitions of a DFA and NFA have an implied weight of 1, while the weights

of transitions in a PA and FFA belong to (0,1]. However, in all types of conven-

tional automata, a zero-weight transition means no transition, while in our

approach to fuzzy automata, a zero-weight transition does not necessarily imply

no transition. That is why we will use [0,1] as the fuzzy interval. See Section 3.1.

(4) Although PA and FFA seem to be similar, they have two major differences:

(a) Operationally in a PA, at any specific time, there is a single active state

which has exactly one predecessor and one successor (although the succes-
sor is not predictable, if more than one potential successor exist). The

weights are in fact probabilities of transition, which cause d to be applied

randomly. When the PA is put into operation, there is no vagueness in

the current state, next state, and the extent to which they will be activated.

At any time (upon each input symbol), one and exactly one state will be

activated with an implied membership value of 1.

(b) In a PA, the sum of the weights for the transitions (from the current state)

corresponding to a specific input symbol should be one, whilst there is no
such requirement for a FFA.

(5) In so far as we are considering binary output mode (reject/accept or {0,1}), in all

types of automata, input symbols (strings) are either accepted or rejected, except

in FFA where the acceptance or rejection is a matter of graded membership.

Hence, strings will be accepted (rejected) to some extent according to their

mv�s. However, some people talk about full membership and non-membership

in a FFA, i.e. some inputs may be completely accepted (full membership,

l = 1) or completely rejected (non-membership, l = 0). This is to our mind a con-

186 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

troversial issue which will be clarified later. In fuzzy automata, talking about full

membership and non-membership does not seem to be very sensible in all but a

degenerate case.

(6) Compared to other automata in the conventional spectrum, fuzzy automata are

more general. We have included the function lQ (which maps membership val-
ues to states) in Table 3 to emphasize this point. Yet, FFA are not general

enough to represent completely other automata in the conventional spectrum.

That is why, we will present a new and general definition for fuzzy automata

in Section 3.4 (Definition 8), which not only encompasses all types of automata

(including conventional fuzzy automata as in Definition 2), but also several

other computational paradigms. See also [39] for more details.

3. Establishing stronger definitions and methodologies for fuzzy automata

In the previous section, we addressed some shortages of the current literature of

FFA. Now we introduce some solutions to deal with these shortages.We will first elab-

orate the two essential problems of membership assignment and output mapping. Then

based on this elaboration, we will present a new and more general definition for fuzzy

automata and develop a methodology to analyze the continuous operation of FFA.

3.1. Membership assignment

The way mv�s are assigned to active states, requires further analysis. Currently,

there is a generally approved approach for assigning mv to a next state (whether

it is final or not), where we just use the weight of the transition, and ignore the mem-

bership value of the current state [46]. Thus, the weight of the transition will be con-

sidered as the mv of the next state. We called this approach transition-based

membership. See Example 1.

Although the transition-based membership can work well for fuzzy automata
realized based on certain types of fuzzy grammars, it has some disadvantages which

make it unsuitable for some applications. To see the consequence of transition-based

membership, consider the following example:

Example 2. Suppose in a specific FFA the membership value of the state q1 (current

state) at time t is 0.01 and the weight of the transition upon input symbol a to the

next state (q2) is 1.0. The FFA is partially shown in Fig. 3.

Using transition-based membership and assuming that the input symbol upon

time t is a, we have:

q
1

q
2

a , 1.0

µt(1) = 0.01 µt+1(2) = 1.0

Fig. 3. A full activation caused by a weak activation.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 187

dðq1; a; q2Þ ¼ 1:0) ltþ1ðq2Þ ¼ 1:0

This means that a state which is active to an extent of 0.01 (lt(q1) = 0.01) has caused

its successor to be fully activated (lt+1(q2) = 1.0). Obviously, such an extension with-

out considering the level of activation of the predecessor is not always reasonable.

Even, if in a specific application, the mv of q2 becomes 1.0 in such a situation, it

should be assured that mv assignment has been done considering the level of activa-
tion of the predecessor (for example the maximum of the predecessor mv and the

weight of the transition may have been assigned to the successor). The goal of this

simple example however, is to show the insufficiency of transition-based membership

as a general membership assignment process.

3.1.1. Augmented transition function: A general method to assign membership values

To establish a general method to assign mv�s to next states, we generalize the def-

inition of the transition function in fuzzy automata (Definition 2). This generaliza-
tion enables it to incorporate both the level of activation of the current state and

the weight of the transition.

In Definition 2, d was defined as: d :Q · R · Q ! (0,1] and the weight of the tran-

sition from state qi to qj upon input ak was denoted as d(qi,ak,qj).
Now, we define a new transition function ed, which we call augmented transition

function. ed is represented as:

ed : ðQ� ½0; 1�Þ � R� Q !F1ðl;dÞ½0; 1� ð15Þed maps the active state (reached from its predecessor), to the fuzzy interval [0, 1] via

function F1(l,d). We call F1 the membership assignment function, which is defined as:

Definition 6 (Membership assignment function). In an FFA, membership assignment

function is a mapping function which is applied via augmented transition function ed
to assign mv�s to the active states.

F 1 : ½0; 1� � ½0; 1� ! ½0; 1� ð16Þ
Function F1(l,d) as is seen, is motivated by two parameters:

• l: the mv of a predecessor;

• d: the weight of a transition.

In this new definition, the process that takes place upon the transition from state

qi to qj on input ak is represented as:

ltþ1ðqjÞ ¼ edððqi; ltðqiÞÞ; ak; qjÞ ¼ F 1ðltðqiÞ; dðqi; ak; qjÞÞ ð17Þ

which means that the mv of the state qj at time t + 1 is computed by function F1 using
both the mv of qi at time t and the weight of the transition.

There are many options which can be used for the function F1(l,d). The best op-
tion however, depends on the application at hand. It can be for example Max, Min,

188 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

Mean or any other applicable mathematical function. We can also incorporate time

into its evaluation. Its exact form depends on the application. However, it should

satisfy the following axioms:

Axiom 1. 0 6 F1(l,d) 6 1.

Axiom 2. F1(0,0) = 0 and F1(1,1) = 1.

Axiom 2 guarantees the boundary conditions. Some examples of F1(l,d) are:
F 1ðl; dÞ ¼ Meanðl; dÞ ¼ lþd

2
(arithmetic mean)

F 1ðl; dÞ ¼ GMeanðl; dÞ ¼
ffiffiffiffiffiffiffiffiffi
l � d

p
(geometric mean)

F 1ðl; dÞ ¼
Maxðl; dÞ if t < ti
Minðl; dÞ if t P ti

�
F 1ðl; dÞ ¼ Min½1; ðlx þ dxÞ1=x�; x > 0 (Yager class of t-conorms [53])

It should be noted that transition-based membership can be considered as a spe-

cial case of the augmented transition function, where we assume that F1(l,d) = d. In
other words, in this case, the level of activation of the predecessors (l) has no signif-

icance in attribution of mv to active states. Example 1 illustrated transition-based

membership.

This new method of membership assignment has several advantages and

consequences

(1) The first advantage is its generality and flexibility. It not only entails all other

methods reported in the literature, but also is more easily adapted to the

requirements of specific applications.

(2) A more important advantage is that, together with a multi-membership resolu-

tion strategy discussed next, it paves the way to develop a general structured

method to assign mv�s to input strings (rather than a single input symbol) and

to analyze the continuous operation of fuzzy automata as will be seen in Section
3.5.

(3) A very interesting consequence of this approach is the distinction between zero-

weight transition and no transition. A zero-weight transition is possible and can

cause a successor to get activated via the activation of its predecessor, provided

that the function F1 defined for the fuzzy automaton permits such a contribu-

tion. However, the practical usefulness of this characteristic remains to be seen.

The augmented transition function (ed) gives essentially a kind of memory to FFA
to remember the previous state when it reaches a new state. The mv of the predeces-

sor will be memorized and is used by the augmented transition function (ed) upon
reaching a successor. This method can even be extended further to remember not

only the membership value of the current active state, but also a chain of the previ-

ous states (and transitions) to give more ability to FFA. However, the usefulness of

such an extension is not quite obvious yet and needs more investigation. For now, we

restrict ourselves to one level of memorization.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 189

3.2. Multi-membership resolution

The second issue to be addressed, is that of multi-membership, which is again a

problem arising due to the fuzzy nature of FFA (see Example 1).

Very little can be found in the literature which address the problem of multi-
membership and how it should be treated. One of the approaches for tackling mul-

ti-membership is the one taken by Omlin et al. [46]. They call multi-membership

‘‘ambiguity’’, and devise a method to remove ambiguities. They develop an algo-

rithm which creates a new state for each overlapping transition, whenever the tran-

sition weights conflict, i.e. are not equal. Hence, there will be no multi-memberships

after this algorithm is applied to a FFA. In [46], Omlin et al. are addressing the

direct representation of FFA in Recurrent Neural Networks (RNNs). What they

do (which they call ambiguity removal) is in fact a way to make their representa-
tional scheme possible. A simple example of ambiguity removal is illustrated in

Fig. 4.

The disadvantage of the ambiguity removal is twofold. First, it increases the num-

ber of states significantly. Roughly speaking, it creates one new state per overlapping

transitions to the same state. Second, the original FFA will change which may be

unacceptable or infavorable for many applications.

In essence, however, the term ambiguity to our mind is not an appropriate name

for multi-membership. Multi-membership is something inherent to the FFA and
happens due to its fuzzy nature. It shows up under almost any situation. Therefore,

it should be resolved in an appropriate way, based on the system under consideration

to fulfill its requirements. The following reasons clarify the necessity of such a

resolution:

(1) If the multi-membership active state is final, the necessity of a single mv is obvi-

ous, as a final state is usually used to produce a crisp output (after defuzzifica-

tion) for the system under consideration.
(2) Even, if the multi-membership active state is not final, in some applications, we

may need to assign a single mv to some intermediate (non-final) states during

the normal operation of a FFA. Such a need may arise for example when we

have a continuous flow of input symbols and in the meantime we need to take

some actions based on the mv�s of some active states, which necessitates a single

mv.

(3) The mv�s of successors can be computed for each mv of the current state. But,

this will lead to unnecessary blow up which makes tracing the continuous oper-
ation of FFA very difficult if not impossible. Moreover, our observations show

that for practical applications we do not need this way of handling multi-mem-

bership. It suffices to resolve each multi-membership active state and attribute a

single mv to that state. This unified mv can then be used as the l parameter in

F1(l,d) function to compute the mv�s of successors of that state.

Therefore, at any stage to compute the mv of the next states or to make a decision

based on the mv of the current active state(s), we need a single value to be used as the

190 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

level of activation of each active state. If there is only one mv associated with such a
state, we have no problem. But, if the state is to take several mv�s simultaneously,

how can we assign a single mv to it? 4

In other words, to tackle the problem of multi-membership, we need to establish a

process which we call multi-membership resolution. This is done by another function

F2. We call F2 multi-membership resolution function, and define it as:

q
1

q
4q

3

q
2

0, 0.2

1, 0.9

1, 0.8

0, 0.7

1, 0.3

0, 0.6

q
5

q
3

`

1, 0.4
0, 0.6

1, 0.75

0, 0.9

1, 0.4

q
5

`

0, 0.1

1, 0.6

0, 0.9

1, 0.75

q1

q4q3

q2

0, 0.2

0, 0.11, 0.9

1, 0.8

0, 0.7

1, 0.3

1, 0.4

0, 0.6

q5

1, 0.75

0, 0.9

1, 0.6

(a)

(b)

Fig. 4. Ambiguity removal. (a) FFA before ambiguity removal. (b) FFA after ambiguity removal. Note

how multi-memberships of states q3 (on input ‘‘0’’) and q5 (on input ‘‘1’’) are removed by creating new

states q03 and q05, respectively. Although after ambiguity removal states q1, q2, q4, q5 have overlapping

transitions, they are not multi-membership, as there is no conflict and the weights of overlapping

transitions are equal. For more details see [46].

4 Note that the ambiguity removal presented in [46] does not provide any answer for this question. In

fact, from an applicational point of view, it makes the problem more ambiguous, should both the

predecessor and the transition weight contribute to the mv assignment of the successor via F1.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 191

Definition 7 (Multi-membership resolution function). In an FFA, the multi-member-

ship resolution function, is a function which specifies the strategy, that resolves

the multi-membership active states and assigns a single mv to them. It is represented

as:

F 2 : ½0; 1�� ! ½0; 1� ð18Þ
Then, the combination of the operations of functions F1 and F2 on a multi-member-

ship state qm will lead to the multi-membership resolution algorithm.

Algorithm 1 (Multi-membership resolution). If there are several simultaneous transi-

tions to the active state qm at time t + 1, the following algorithm will assign a unified

mv to that:

(1) Each transition weight d(qi,ak,qm) together with the mv of the corresponding

predecessor qi, will be processed by the membership assignment function F1
(via augmented transition function ed), and will produce a mv. Call this mi.

mi ¼ edððqi; ltðqiÞÞ; ak; qmÞ ¼ F 1ðltðqiÞ; dðqi; ak; qmÞÞ ð19Þ
(2) These mv�s (mi�s) are not necessarily equal. Hence, they will be processed by

another function F2, called the multi-membership resolution function.

(3) The result produced by F2 will be assigned as the instantaneous mv of the active

state qm.

ltþ1ðqmÞ ¼ F 2

n

i¼1
½mi� ¼ F 2

n

i¼1
½F 1ðltðqiÞ; dðqi; ak; qmÞÞ� ð20Þ

where
• n: is the number of simultaneous transitions from states qi�s to state qm prior

to time t + 1 and qi 2 Qpred(qm,ak), i.e. n is the cardinality of the set ltþ1
qm

.

• d(qi,ak,qm): is the weight of the transition from qi to qm upon input ak.

• lt(qi): is the membership value of qi at time t (possibly resolved, i.e. unified).

• lt+1(qm): is the final mv of qm at time t + 1.

Similar to F1, there are many options applicable to F2. The best strategy should be
selected based on the application at hand. However, the following axioms are the

minimum requirements to be satisfied by F2:

Axiom 3. 0 6 F2

n

i¼1
ðmiÞ 6 1.

Axiom 4. F2(/) = 0.

This axiom essentially, paves the way for the �-transition to be incorporated into
the operation of fuzzy automata.

Axiom 5. F 2

n

i¼1
(mi) = a if "i(mi = a).

192 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

Whenever, all predecessors of a multi-membership state produce the same mv, it is

reasonable that the active state assumes this mv. This is the logic behind Axiom 5.

An immediate corollary of this axiom is:

F 2

n

i¼1
ðmiÞ ¼ 0 if 8i ðmi ¼ 0Þ and F 2

n

i¼1
ðmiÞ ¼ 1 if 8iðmi ¼ 1Þ:

Another useful corollary of this axiom is:

F 2

1

i¼1
ðmiÞ ¼ mi

which enables F2 to be considered as a general process operating on all active states,

no matter if they are multi-membership or not. This generalization is specifically use-

ful for representation and learning of general fuzzy automata [54].

We are currently modeling some applications using different FFA, and applying

neural network training algorithms to them. For training purposes many different

strategies can be selected for F2. We mention maximum and mean strategies as exam-

ples. However, the best-fitted strategy for any application should be selected based
on the requirements of that application.

• Maximum multi-membership resolution

ltþ1ðqmÞ ¼ Max
i¼1 to n

½edððqi; ltðqiÞÞ; ak; qmÞ� ¼ Max
i¼1 to n

½F 1ðltðqiÞ; dðqi; ak; qmÞÞ� ð21Þ

• Arithmetic mean multi-membership resolution

ltþ1ðqmÞ ¼
Xn

i¼1

edððqi; ltðqiÞÞ; ak; qmÞ
" #,

n ¼
Xn

i¼1

F 1ðltðqiÞ; dðqi; ak; qmÞÞ
" #,

n

ð22Þ
where n is the number of simultaneous transitions from qi�s to qm at time t + 1, and

qi 2 Qpred(qm,ak).

3.3. Output mapping

Generally, in most applications and systems there is some kind of final output or

decision. In fuzzy clustering (classification) for example, we may have several final

states each of which specify a different cluster with a specific label and its own

mv. Hence, we need to attribute output values to the states of FFA. There are also

some other applications where the final decision (output) of the system is a kind of

acceptance or rejection, even though the system performs itself fuzzily.

However, in classical DFA and NFA there is no explicit output beyond the con-
cept of acceptance attributed to each state, while in Moore machines an output

(label) selected from a predefined output alphabet, is mapped to each state. Then

DFA and NFA can be considered as specific cases of Moore machines where the

output label is either acceptance (final states) or rejection (non-final states) [49].

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 193

To keep consistency with the conventional spectrum, we consider the FFA with fi-

nal states (FFAfin) as a special case of Fuzzy Moore Finite-state Automata (FMFA),

where there is a binary output label set (Z = {accept, reject}). Still, the FFA with no

final state (FFAnofin) can be considered as another special case of FMFA, where

there is a single output label (Z = {accept} say). The most important point how-
ever, is that in all these cases, the output activation is a matter of the extent to

which these states are activated. This is the point which differentiates FFA from

their classical counterparts (DFA, NFA, PA, Moore machines, Mealy machines,

etc.).

3.4. Computational generality of fuzzy automata

During the past few years, several researchers studied the equivalence and iso-
morphism of fuzzy automata with other types of automata [55–57]. However, we

do believe that the role of fuzzy automata goes beyond equivalence. In fact, they

can represent not only other types of automata, but also several other computa-

tional paradigms [39]. To make the computational generality of fuzzy automata

and its generalization capability more systematic and application-friendly, we need

a more general definition. In the sequel, with the incorporation of output mapping

in the sense discussed above and also the incorporation of F1 and F2, we present a

new definition for FFA which is much more general compared to the current
ones.

3.4.1. A new definition for fuzzy automata

Definition 8 (General fuzzy automaton). A General Fuzzy Automaton (GFA) eF is an

8-tuple machine denoted as eF ¼ ðQ;R; eR; Z;x; ed;F 1;F 2Þ, where:
Q is a finite non-fuzzy set of states, Q = {q1,q2, . . . ,qn}.
R is a finite non-fuzzy set of input symbols, R = {a1,a2, . . . ,am}.eR is the set of fuzzy start states. eR � eP ðQÞ, see Definition 1.

Z is a finite non-fuzzy set of output labels (symbols), Z = {b1,b2, . . . ,bl}.
x :Q! Z is the non-fuzzy output function.

F1 : [0, 1] · [0, 1]! [0, 1] is a mapping function, which is applied via ed to assign mv�s
to the active states, thus called membership assignment function. See Definition 6.ed : ðQ� ½0; 1�Þ � R� Q !F1ðl;dÞ

[0, 1] is the augmented transition function.

F2 : [0, 1]*! [0, 1] is a multi-membership resolution strategy which resolves the multi-
membership active states and assigns a single mv to them, thus called multi-member-

ship resolution function. See Definition 7.

3.4.2. Specific cases of fuzzy automata

Definition 8 is very broad and general. It is actually the most general definition of
an automaton (in discrete spaces), which entails other types of automata including

conventional fuzzy automata, as special cases. On the other hand, the issues of out-

194 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

put mapping in fuzzy automata, needs more elaboration. In this section, we show

how the generality of GFA contributes to this elaboration. For more details see

[58]. Of course as will be seen, the generality of GFA is not restricted to fuzzy autom-

ata with outputs.

In deterministic realm, automata with outputs are categorized into Mealy ma-
chines [59] and Moore machines [60]. As we know however, using Moore and Mealy

models is not restricted to DFA and the idea has been applied to other types of

automata. For example, Bruce and Fu [48] developed a class of stochastic automata

based on the Mealy model.

Following this line, we categorize GFA with outputs into Moore and Mealy mod-

els depending on whether the output labels are associated with states or transitions.

This leads to Fuzzy Moore Finite-state Automata (FMFA) and Fuzzy MeaLy Fi-

nite-state Automata (FMLFA), which can be considered as specific cases of GFA.
Table 4 shows four specific classes of GFA in terms of output mapping. Regard-

ing Table 4, some points should be noted.

(1) A fuzzy automaton without final states (FFAnofin) can also be specified as

follows:

Z contains a single output symbol, e.g. Z = {accept}.

x:Q ! Z, x(qi) = accept"qi 2 Q. that implies: Qfin = Q. However, due to sim-

plicity, the definition mentioned in Table 4 is preferable.
(2) In FMLFA, it is possible to relate the output associated with the transitions

only to the input symbol. This means that all transitions from state qi upon

input ak will have the same output label, no matter what the successors will

be. i.e. the output map is defined as: k :Q · R ! Z, and is represented as:

k(qi,ak) = bm.

But, we take the general scenario and assume that every single transition may

have its own output label, thus defining the output map as: k :Q · R · Q ! Z,

and representing it as: k(qi,ak,qj) = bm.

Table 4

Output map for different classes of GFA

Class of GFA Output set (Za) Output map Output assignment

FFA with final states

(FFAfin)

Z = {accept, reject} x: Q ! Z xðqiÞ ¼ accept) qi 2 Qfin
xðqiÞ ¼ reject) qi 62 Qfin

� b

FFA without final states

(FFAnofin)

Z = / x: not applicable

Fuzzy Moore Finite-state

Automata (FMFA)

Z = {b1,b2, . . . ,bl} x: Q ! Z at any time t,

if qi 2 Qact(t))c (qi) = bj
Fuzzy MeaLy Finite-state

Automata (FMLFA)

Z = {b1,b2, . . . ,bl} k: Q · R · Q! Z –c

a Z is a finite non-fuzzy set of output symbols.
b Qfin is the set of final states (Qfin�Q).
c At any time t, if (qi 2 Qact(t)^ subsequent input is ak ^ qj 2 Qsucc(qi,ak))) k(qi,ak,qj) = bm.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 195

(3) Since all classes of Table 4 are specific cases of GFA, ed is applied as in Defini-

tion 8, i.e.edððqi; lðqiÞÞ; ak; qjÞ ¼ F 1ðlðqiÞ; dðqi; ak; qjÞÞ

(4) Although the output labels in FMFA and FMLFA are assigned by c and k,
respectively, the level to which they will be activated, will be attributed by the

successors through Algorithm 1 (combination of F1 and F2, see [58] for more
details). However, it is noticeable that other options are possible for FMLFA,

which make it more complicated, but at the same time give more capabilities to

it. We can for example, assume that the level of activation of output labels will

be assigned by the transitions separately. Then, the mv of the states and the mv

of the output labels will be two different parameters, thus implying possibly two

different characteristics of the application under consideration. We will talk

more about the potentials of FMLFA in concluding remarks.

To avoid confusion from now on, we use eF to denote a general fuzzy automaton

(GFA), which may be a Moore or Mealy model or neither of them. But, the Moore

and Mealy FFA, whenever used, will be explicitly denoted by eM and eL, respectively.
3.5. Continuous operation of GFA

As mentioned before, we are mostly focussing on the operational issues relating to

GFA. Hence, no matter if we are concerned with the existence of final state(s) or not
and whether or not a single mv is needed for each active state (final or non-final)

reached during the operation of a fuzzy automaton, we assume that in a GFA a sin-

gle mv will be assigned to each active state, after applying the multi-membership res-

olution algorithm.

So far, we have talked about the transition and output mapping for a single input

symbol, irrespective of the type of fuzzy automaton. In practice we need to extend

these concepts to a string of input symbols. In the sequel, we extend the concepts

of the membership set and mv to strings of input symbols. This extension

(1) Enables us to analyze the behaviour of GFA under successive input symbols.

(2) Opens the way to talk about the equivalence of two fuzzy automata and also

devising algorithms to convert different fuzzy automata to each other.

We require more new terms to analyze the continuous operation of GFA.

Definition 9 (Derivation). A derivation of an input string x (x 2 R*) denoted as
deri(x), is an ordered set of states which are passed successively upon entrance of

each symbol of the string, starting from an initial state. i is an arbitrary index usually

starting from 1.

Given that x = a1a2 . . . ak ak+1 . . . am, we have:

196 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

deriðxÞ ¼ qi0qi1 . . . qik qikþ1
. . . qim jqi0 2 eR ^ qi0 �!

dðqi0 ;a1;qi1 Þ qi1 . . .
�
qik �!

dðqik ;akþ1;qikþ1
Þ
qikþ1

. . . qim�1
�!

dðqim�1
;am;qim Þ

qim ; 0 6 k < m
�

ð23Þ

A string may have several derivations. The set of all derivations of string x is de-
noted as Dder(x). Then, a threshold derivation of x is a member of Dder(x) subject to a

threshold, as follows:

Definition 10 (Threshold derivation). A s1/s2 derivation of an input string x denoted

as deri(x,s1/s2), is defined as:

deriðx; s1=s2Þ ¼ fqi0qi1 . . . qik qikþ1
. . . qim 2 DderðxÞjs1 6 dðqik ; ak; qikþ1

Þ
6 s2; 0 6 k < mg ð24Þ

Similarly, the set of all threshold derivations of x is denoted as Dder(x,s1/s2). Obvi-

ously: Dder(x,s1/s2)�Dder(x).

Actually, we are interested in the active states of a fuzzy automaton upon entry of

a string x. Without any loss of generality, we can use the same notation used for the

active state set at a specific time (Qact(t)), and denote the active state set of string x as

Qact(x), since:

QactðxÞ � Qactðt0 þ jxjÞ ð25Þ
where t0 is the starting time of operation of the GFA and jxj is the length of x. Then,
Qact(x) can be defined as:

Definition 11 (Active state set of an input string). The active state set of an input

string x, is the fuzzy set of all active states, after string x has entered the GFA.

QactðxÞ ¼ fðqim ; l
t0þjxjðqimÞÞ j qi0qi1 . . . qik qikþ1

. . . qim 2 DderðxÞg ð26Þ

Similarly, the threshold active state set of an input string is defined as:

Qactðx; s1=s2Þ ¼ fðqim ; l
t0þjxjðqimÞÞ j qi0qi1 . . . qik qikþ1

. . . qim 2 Dderðx; s1=s2Þg ð27Þ

It is obvious that Qactðx; s1=s2Þ � QactðxÞ � eP ðQÞ.
Here also, the 0/s, s/1, and s/s thresholds will give the threshold derivations and

active state sets, where all transitions are less than or equal to s, greater than or equal

to s, and exactly equal to s, respectively.

Example 3. For the fuzzy automaton of Example 1 (Fig. 2), assume that we use

transition based membership (F1(l,d) = d), and F2() = Max. Then the following can

be easily verified:

der1ð\0110"Þ ¼ q0q1q5q0q1; der2ð\0110"Þ ¼ q0q1q5q0q2;

� � � � � � � � � � � �
der9ð\0110"Þ ¼ q0q2q2q2q3; der10ð\0110"Þ ¼ q0q2q2q2q4

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 197

Dderð\0110"Þ ¼ fder1ð\0110"Þ; . . . ; der10ð\0110"Þg
¼ fq0q1q5q0q1; . . . ; q0q2q2q2q4g

der1ð\0110"; 0:5=0:9Þ ¼ q0q2q2q2q4

der2ð\0110"; 0:5=0:9Þ ¼ q0q2q2q1q4

Dderð\0110"; 0:5=0:9Þ ¼ fq0q2q2q2q4; q0q2q2q1q4g

Qactð\0110"Þ ¼ fðq0; 0:45Þ; ðq1; 1:0Þ; ðq2; 0:5Þ; ðq3; 0:1Þ; ðq4; 0:9Þg

Qactð\011"Þ ¼ fðq0; 0:5Þ; ðq1; 1:0Þ; ðq2; 0:9Þ; ðq3; 0:6Þ; ðq5; 0:1Þg

Qactð\011"; 0:1=0:5Þ ¼ fðq1; 1:0Þ; ðq2; 0:9Þg

Qactð\011"; 0:2=0:5Þ ¼ /

As was seen, for the class of FFAfin, we defined Qfin. To generalize this concept to

the class of fuzzy automata with several output labels (specifically FMFA), we devise
a new term, State set of an output label.

Definition 12 (State set of an output label). In the FMFA eM ¼ ðQ;R; ed;R; Z;
c;F1;F 2Þ , the state set of the output label zl denoted as Qzl , is the set of all states

whose associated output is zl.

Qzl ¼ fqmjcðqmÞ ¼ zlg ð28Þ

3.5.1. Acceptance and rejection in GFA

Usually, when we talk about acceptance and rejection in an automaton (as we do

for DFA or NFA), it is implied that some states are final, and the existence of final

states in turn implies a binary output symbol set (Z = {accept, reject}). This can not
be simply generalized to fuzzy automata as the concepts of acceptance and rejection

may imply quite different understanding in FFAfin, FFAno fin, and FFA with several

output symbols. Nevertheless, whatever definition we use for acceptance and rejec-

tion, a level of activation (mv) will be associated with them. Therefore, to generalize

the process of calculation the extent of acceptance/rejection, we introduce a new

function F3, which we call acceptance calculation function.

Definition 13 (Acceptance calculation function). In a GFA, the extent to which an
input string will be accepted/rejected will be calculated by a function F3, represented
as:

F 3 : ½0; 1�� ! ½0; 1� ð29Þ
Although we presented a general definition for F3, its type and the way it operates,

depends on two parameters:

198 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

• It depends on whether F3 is being used to calculate the extent of acceptance or the

extent of rejection.

• It depends on the type of the automaton, i.e. whether it is a FFAfin, FFAnofin, or

FFA with several output symbols (FMFA or FMLFA).

Therefore, to clarify the concept of acceptance for input strings to a GFA and de-

vise methodologies to assign mv�s to them, we consider different scenarios depending

on the output mapping of the GFA and whether it includes some final states or not.

Definition 14 (Acceptance in FFA with final states). In the FFAfineF ¼ ðQ;R; ed; eR; Z;x;F 1;F 2Þ (Qfin 5 /), a string of input symbols such as x 2 R*
is said to be acceptable by eF , if starting from an initial state, at least one of the states

in the active state set of x is final. Otherwise x is said to be rejected.

x is accepted by eF () 9qm j qm 2 DomðQactðxÞÞ \ Qfin ð30Þ

x is rejected by eF () DomðQactðxÞÞ \ Qfin ¼ / ð31Þ

It is desirable in some applications that acceptance be conditional (subject to some

thresholds). In the same manner that we defined threshold derivations and active

state sets, we define the conditional acceptance/rejection as:

Definition 15. (Conditional acceptance/rejection)

x is accepted by eF subject to s1=s2 threshold

() 9qm j qm 2 DomðQactðx; s1=s2ÞÞ \ Qfin ð32Þ

x is rejected by eF subject to s1=s2 threshold

() DomðQactðx; s1=s2ÞÞ \ Qfin ¼ / ð33Þ

In an FMFA, however, it makes more sense to talk about the belonging/

disbelonging to an output label rather than acceptance/rejection.

Definition 16 (Belonging to an output label). In the FMFA eM ¼ ðQ;R; ed; eR;
Z; c;F 1;F 2Þ, a string x 2 R* is said to belong to the output label zl, if starting from

an initial state, at least one of the states in the active state set of x generates output
label zl. Otherwise x is said to disbelong to zl.

x belongs to zl () 9qm j qm 2 DomðQactðxÞÞ \ Qzl ð34Þ

x disbelongs to zl () DomðQactðxÞÞ \ Qzl ¼ / ð35Þ

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 199

To save space, we have summarized the relevant parameters of acceptance and

rejection for different classes of GFA in Table 5. However, the following points

are noticeable:

(1) We have used different terms for the extent of acceptance/rejection in different

classes of GFA, to emphasize on the diversity and different implications of

the concept of acceptance in GFA.

(2) All parameters are calculated using function F3 via Algorithm 2, where the
working set of F3 is either the set Sacc or Srej, accordingly. Sacc and Srej specify

the sets of states, which participate in the calculation of acceptance and rejec-

tion, respectively.

Algorithm 2 (Generic algorithm for calculating the extent of acceptance (rejection) in

GFA). In the GFA eF ¼ ðQ;R; ed;R; Z;x;F1;F 2Þ, the extent of acceptance (rejection)

Table 5

Acceptance/rejection for different classes of GFA

200 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

of an input string x, is the output produced by the function F3 where its inputs are

the mv�s of all the states in the set Sacc (Srej). See Table 5.

v ¼ F 3

n

i¼1
ðlðqiÞÞ ð36Þ

where:

• qi 2 Sacc (Srej),
• n is the cardinality of the set Sacc (Srej).

• v represents one of the parameters: level of acceptance or rejection (lacc(x)/lrej(x)),
level of belonging or disbelonging ðlzlðxÞ=lzlðxÞÞ, degree of acceptance or rejection
(grej(x)/grej(x)), or their conditionals (lacc(x,s1/s2)/lrej(x,s1/ s2), etc.), accordingly.

(3) Although F3 can be used both for calculation of acceptance and rejection, we

call it acceptance calculation function to distinguish that from F1 (membership
assignment function) and F2 (multi-membership resolution function). Similar

to F1 and F2, F3 can be any reasonable function, e.g. Max, Min, Mean, etc.

However, the following axioms should be satisfied by F3:

Axiom 6. 0 6 F 3

n

i¼1
ðlðqiÞÞ 6 1.

Axiom 7. F3(/) = 0.

Axiom 8. F 3

n

i¼1

ðlðqiÞÞ ¼ a if "i (l(qi) = a).

The logic behind Axioms 7 and 8 is essentially the same as Axioms 4 and 5.

(4) FFAfin have two interesting characteristics.
(a) As can be seen from Algorithm 2, acceptance and rejection are not neces-

sarily complementary. For example, the level of acceptance and rejection

of a string may be 0.8 and 0.6, respectively. While inconsistent with a prob-

abilistic paradigm, this is in keeping with fuzzy set theory.

(b) The type of the function F3, which is used to compute lacc(x) and lrej(x),
can be the same or different. For example lacc(x) may be computed using

Max, while lrej(x) is being computed using Min. However, for practical

applications and as far as we are emphasizing on the concepts of accept-
ance and rejection, it is more sensible that lacc(x) and lrej(x) are computed

using the same function.

(5) In the FFAnofin, we can still talk about acceptance and rejection (degree of

acceptance (lacc) or rejection (lrej)). Calculation of lacc(x) is related to Qacc(x).

Unlike the class of FFAfin, here it is more reasonable to assume that the degree

of acceptance and rejection are complementary. Therefore, once the degree of

acceptance (conditional degree of acceptance) of the string x (gacc(x)/gacc(x,s1/
s2)) is computed, its (conditional) degree of rejection can be calculated as:

grejðxÞ ¼ 1� gaccðxÞ ð37Þ

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 201

grejðx; s1=s2Þ ¼ 1� gaccðx; s1=s2Þ ð38Þ

(6) In all cases (FFAfin, FFAnofin, FMFA) for the calculation of acceptance and

rejection, multi-membership resolution algorithm is applied first. In this way,

all states who will contribute to the calculation of acceptance and rejection will

have a single mv.
(7) It is possible to incorporate F3 into Definition 8 (general fuzzy automaton).

However, due to the diversity of the meanings and implications of acceptance

and rejection in different classes of GFA, we preferred not to do that.

3.5.2. A different approach to assigning mv to a string

For some applications, it may be useful to use the following definition to assign

mv to a string. It is adapted from the mv definition of strings in a Regular Fuzzy
Grammar (RFG) [52,33]. This definition is sometimes called max–min rule:

Definition 17 (Membership value of a string). The mv of a string x denoted as l(x), is
the maximum membership value among all its derivations, where the mv of a

derivation is the minimum transition weight encountered in that derivation.

Given that x has n derivations, and x = a1a2 . . . ak ak+1 . . . am, and that the ith der-

ivation of x is: deriðxÞ ¼ qi0qi1 . . . qik qikþ1
. . . qim , where qi0 2 eR, the mv of deri(x) is

computed as:

lðderiðxÞÞ ¼ Minfdðqi0 ; a1; qi1Þ; . . . ; dðqik ; akþ1; qikþ1
Þ; . . . ; dðqim�1

; am; qimÞg

And the general formula to compute the mv of x will be:

lðxÞ ¼ Max
i¼1 to n

flðderiðxÞÞg ¼ Max
i¼1 to n

f Min
k¼1 tom

fdðqik�1
; ak; qik Þgg ð39Þ

Two points are noticeable:

(1) To find the mv of a string, we should examine all of its derivations (exhaustive
search). For an ordinary size 100-state FFA with an average of five transitions

from each state upon the same input symbol, a string of length 30 can have 530

derivations (or even more). It takes more than 29,000 years to find the mv of

such a string, assuming that each derivation can be processed in 1ns. Therefore,

finding the mv of a string using the max–min rule is in the general sense an NP-

hard problem. Consequently, we have to rely on heuristic methods for this

approach. We are now investigating if an efficient heuristic approach can be

developed by devising appropriate choices to F1, F2, and possibly F3.
(2) The max–min rule is somehow an accepted definition for the mv of a string

belonging to an RFG. Based on this specific definition, for each RFG, a Moore

DFA can be derived, which accepts the language of RFG (the mv of the strings

are the output labels of the derived DFA) [52]. Since max–min rule is NP-hard,

the algorithm developed in [52], suffers from intractability and impracticality for

large FFA and long strings.

202 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

However, other options are possible for the mv of the strings of a RFG (as we

discussed here). Whether DFA acceptors (Moore or Mealy) can be derived in

the general sense, is not known yet and needs more investigation.

4. Experimental examples

In this section, we present some examples to show different implications of accept-

ance, and the capabilities achieveable by the augmented transition function ed (ap-

plied through function F1) and multi-membership resolution (applied through

function F2) and their combination.

Example 4. Consider the General Fuzzy Automaton (GFA) eF of Fig. 5. It is

defined as:eF ¼ ðQ;R; ed; eR; Z;x;F 1;F 2Þ, where
Q = {q0,q1,q2,q3,q4}: Set of states.

R = {a,b} [�: Set of input symbols.eR ¼ fðq0; lt0ðq0ÞÞg ¼ fðq0; 1Þg: Start fuzzy set.

Z = {accept}: Set of output labels. There is a single output symbol. We call it accept.ed : ðQ� ½0; 1�Þ � R� Q !F1ðl;dÞ ½0; 1�: The augmented transition function.

F1: defined in different ways as will be seen.

F2: not applicable. There is no multi-membership.

Assume that eF belongs to FFAfin class, and all states are final (Qfin = Q). Then, x is

defined as:

x : Q ! Z; xðqiÞ ¼ accept 8qi 2 Q:

Suppose the mv of the successors (next states) are computed using transition-
based membership. i.e. F1(l,d) = d. Then:

ltþ1ðqjÞ ¼ edððqi; ltðqiÞÞ; ak; qjÞ ¼ F 1ðltðqiÞ; dðqi; ak; qjÞÞ ¼ dðqi; ak; qjÞ

q
0

q
1

q
2

q
4

q
3

b , 0.3

a , 0.4
a , 0.4

a , 0.8

a
, 0

.4

b
, 0

.3

b , 0.9

a , 0.4
Start

b , 0.3

b , 0.3

µt0(q
0
)=1

Fig. 5. The FFA of Example 4.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 203

(a) (i) Since all states are final, all input strings are acceptable (the supported gram-

mar is eG ¼ ðaþ bÞ�), but their level of acceptance may be different. How-

ever, it is trivial to verify that the mv of any input string depends on
the last substring of the same symbol (i.e. an or bn, n > 0) as shown in

Table 6.

(ii) An interesting point is that, if we assume that eF belongs to the class of FFAnofin,

we can still talk about acceptance and rejection of the strings (we should talk

about the degree of acceptance and rejection), and the degree of acceptance

(gacc(x)) will be the same as level of acceptance (lacc(x)), but now the degree

of rejection (grej(x)) will be different from level of rejection (lrej(x)), as men-

tioned in the fifth column of Table 6.
(iii) We see that this GFA can be interpreted as a (deterministic) Mealy machine,

if we consider the transition weights as the output labels associated with the

transitions. i.e. Z = {0.3,0.4, 0.8,0.9, 1.0}. Also, a (deterministic) Moore

machine with the same number of states (five states) and with the mv�s asso-
ciated with the states (rather than transitions) as the output labels, can han-

dle grammar eG.

(b) (i) Suppose that only one type of the grammars mentioned in Table 6 is accept-
able. Then, we can define the corresponding state to be a final state. As a

result, the GFA of Fig. 5 will now be a FFAfin with one final state. For

example if only the fuzzy grammar eG1 ¼ ðaþ bÞ�a2k�1 is acceptable, we will

have:

Z = {accept, reject} or {1,0}: Set of output labels.

Qfin = {q1}

x:Q ! Z: Output map.

x(q1) = 1 (accept)
x(q0) = x(q2) = x(q3) = x (q4) = 0 (reject).

Then all acceptable strings have a level of acceptance (mv) of 0.4

8x if q1 2 QactðxÞ) laccðxÞ ¼ 0:4 ð40Þ

Table 6

The mv of different grammars in Example 4-a (k > 0)

Input string (x) Qact(x) lact(x)
a lrej(x)

b grej(x)

� {(q0,1.0)} 1.0 0.0 0.0

(a + b)*a2k � 1 {(q1,0.4)} 0.4 0.0 0.6

(a + b)*a2k {(q2,0.8)} 0.8 0.0 0.2

(a + b)*b2k � 1 {(q3,0.3)} 0.3 0.0 0.7

(a + b)*b2k {(q4,0.9)} 0.9 0.0 0.1

a No matter what F3 is, lacc(x) = F3(l(x)) = l(x) by Axiom 8, since there is only a single state in Qact(x).
b No matter what F3 is, lrej(x) = F3(/) = 0 by Axiom 7, as there is no non-final states in Qact(x), i.e.

Qact(x) � Qfin = /.

204 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

While rejected strings will have different levels of rejection, as follows:

8x if q0 2 QactðxÞ) lrejðxÞ ¼ 1:0

8x if q2 2 QactðxÞ) lrejðxÞ ¼ 0:8

8x if q3 2 QactðxÞ) lrejðxÞ ¼ 0:3

8x if q4 2 QactðxÞ) lrejðxÞ ¼ 0:9 5

ð41Þ

(ii) In a similar manner, the acceptance of the fuzzy grammar eG1 can be realized

by a FMLFA (Fuzzy MeaLy Finite-state Automaton), with the output label

mapped to all transitions leading to q1 to be 1 (accept) and the output label

mapped to all other transitions to be 0 (reject) as follows:

Z = {accept, reject} or {1,0}: Set of output labels.

k :Q · R · ! Z: Output map.

k(q0,a,q1) = k(q2,a,q1) = . . . = 1 (accept).

k(q0,b,q3) = k(q1,a,q2) = k (q2,b,q3) = . . . = 0 (reject).
It should be noted that the level of acceptance and rejection of the strings are

assigned in the same way as (b-i), i.e. Eqs. (40) and (41).

Example 5. Consider again the GFA of Fig. 5. This time, assume that it belongs to

the class of FFAnofin, i.e. Qfin = /. Instead of transition-based membership, we use ed
function defined as follows:

ltþ1ðqjÞ ¼ edððqi; ltðqiÞÞ; ak; qjÞ ¼ F 1ðltðqiÞ; dðqi; ak; qjÞÞ

¼
ltðqiÞ þ dðqi; ak; qjÞ if 0 < ltðqiÞ þ dðqi; ak; qjÞ 6 1

ltðqiÞ þ dðqi; ak; qjÞ � 1 if ltðqiÞ þ dðqi; ak; qjÞ > 1

(

i.e. function F1 calculates the sum of the mv of the predecessor and the weight of

transition and bounds it in the interval [0,1]. This bounded value is then assigned

to the active state.

This mapping function makes eF an interesting periodic fuzzy automaton. Upon

periodic input strings, the active states will also be repeated with periods which
are the same as the length of the strings period (we call this: state period (Tq)).

But, the mv�s associated with each state, will be different from period to period.

However, the mv�s will also be periodic (we call this: mv period (Tl)), but their period

is a multiple of the state period, i.e. Tl = kTq, where 1 < k 6 10. Some strings to-

gether with their state periods and mv periods are illustrated in Table 7. Also, the

detailed operation of the automaton upon input (ba3b2a4)m (m P 1) is shown in

Table 8.

5 Only when x = e, q0 2 Qact(x) and hence lrej(x) = 1.0.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 205

Examples 4 and 5 illustrate GFA which have no transition overlaps, while this is a

very essential property of the fuzzy automata. Next example shows the behaviour of

a GFA under different combinations of F1 and F2.

Example 6. Consider the FFA in Fig. 6 with several transition overlaps. It is

specified as:

eF ¼ ðQ;R; ed; eR; Z;x;F 1;F 2Þ where
Q = {q0,q1,q2,q3,q4}: Set of states.

R = {a,b}: Set of input symbols.eR ¼ fðq0; lt0ðq0ÞÞg ¼ fðq0; 1Þg
Z = /.
x: not applicable.ed : ðQ� ½0; 1�Þ � R� Q !F1ðl;dÞ ½0; 1�: The augmented transition function.

F1,F2: varying as shown in Table 9.

Note that in this example, Qfin = /. The operation of this fuzzy automaton upon

input string ‘‘a2b3a’’ is shown in Table 9 for different membership assignment func-

tions and multi-membership resolution strategies. In this table, we have considered

different cases for combining functions F1 and F2. Of course not all these combina-

tions are reasonable for this specific example (e.g. Cases 4 and 5 make all mv�s 1.0).
This is happening due to the small size of this fuzzy automaton which is not a prac-

tical FFA. The goal of this example however, is to show the capabilities achievable
by combining membership assignment function (F1) and multi-membership resolu-

tion function (F2).

5. Conclusion, discussion, and future work

In our efforts to use fuzzy automata as a modeling tool for some applications,

we discovered that the theoretical background of fuzzy automata is not estab-
lished well enough to define operational characteristics. In particular, the following

issues seemed to be of high priority to be elaborated for a better established

background:

Table 7

Some strings together with their state periods (Tq) and mv periods (Tl) for the fuzzy automaton of

Example 5 (mP 1)

Input string State period Tq Tl

(ab)m q1,q3, . . . 2 20

(a2b2)m q1,q2,q3,q4, . . . 4 20

(ba3b2a4)m q3,q1,q2,q1, q3,q4,q1,q2,q1,q2, . . . 10 20

(a2b3a2)m q1,q2,q3,q4,q3,q1,q2, . . . 7 70

206 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

Table 8

Operation of the automaton of Example 5 upon input (ba3b2a4)m, where mP 1. For this string: Tq = 10 and Tl = 20

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 . . .

Input b a a a b b a a a a b a a a b b a a a a

State q3 q1 q2 q1 q3 q4 q1 q2 q1 q2 q3 q1 q2 q1 q3 q4 q1 q2 q1 q2
mv 0.3 0.7 0.5 0.9 0.2 0.1 0.5 0.3 0.7 0.5 0.8 0.2 1.0 0.4 0.7 0.6 1.0 0.8 0.2 1.0

M
.
D
o
o
stfa

tem
eh
,
S
.C
.
K
rem

er
/
In
tern

a
t.
J
.
A
p
p
ro
x
.
R
ea
so
n
.
3
8
(
2
0
0
5
)
1
7
5
–
2
1
4

2
0
7

(1) Transition-based membership which was previously more or less the common

method for assigning mv�s to active states of a fuzzy automaton, has a serious

drawback. The mv�s of the predecessors will not be considered in assigning the

activation level (mv) to successors. Specifically, there is no way to incorporate

the mv of the initial fuzzy states into their successors which makes the fuzziness
or nonfuzziness of the start states a moot point to discuss.

(2) Multi-membership is an essential and natural characteristic of fuzzy automata.

However, for operational purposes, it is desirable to resolve the multi-membership,

such that a single value can be attributed to each active state. A very important point

is that the resolution strategy is preferred not to modify the structure of the FFA

under consideration, i.e. no extra state and/or transition should be created.

(3) The significance of the output mapping and presence or absence of final states

was not clearly defined in the literature.
(4) Another important insufficiency of the current literature is the lack of methodol-

ogies which enable us to define and analyze the continuous operation of fuzzy

automata. There aremany questions with no specific andwell-developed answers.

Questions such as: how dowe refer to the set of states which are active at any time?

In case we need a crisp decision as the final output of an FFA, how do the active

states contribute to this decision? What do concepts of acceptance and rejection

mean in a fuzzy automaton? How can we relate them to the final (and possibly

crisp) output of an FFA? What is the significance of final states in an FFA?

5.1. Contributions

We devised a new methodology called augmented transition function (ed), which
incorporates both the weight of the transition and the mv of a predecessor to calcu-

q
0

q
1

q
2

q
4

q
3

b , 0.3

a , 0.4
a , 0.75

a , 0.8

a
,0

.4

b
, 0

.3

b , 0.9

a , 0.4
Start

b , 0.7

b , 0.45

a , 0.5

b
, 0

.1

b , 0.6

a
, 0.35

a
, 0

.2

µt0(q
0
)=1

Fig. 6. The GFA of Example 6.

208 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

late the mv of a successor. The membership assignment function F1(l,d) which is ap-

plied in association with ed, can vary from application to application. However, the

Table 9

Active states and their mv�s at different times in Example 6

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 209

transition-based membership can be considered as a special case of the augmented

transition function.

Multi-membership may happen both for final states of a FFA (if applicable) or

non-final states. For operational reasons, we assume that every multi-membership

state be resolved and a unified mv be attributed to that. We introduced a new func-
tion F2 called multi-membership resolution function, which specifies the strategy which

should be applied to multi-membership states. An interesting point about the process

of multi-membership resolution as described here, is that, it can be considered as a

primary step for defuzzification in FFA. Defuzzification as we know, is the process

often done as the last step in fuzzy systems to produce a final crisp value. But, in mul-

ti-membership resolution, the final result which is a single mv, is still fuzzy. In other

words, multi-membership resolution is in fact membership unification. However, as

most applications need to produce crisp results as the output, we have to defuzzify
the results produced by a FFA. No matter if the FFA has output mapping or not,

the results are usually embedded in the mv�s of the active states (final or non-final),

all or some of which may be multi-membership. Since the defuzzification should be

done on these active states, a single mv has to be associated with each of them, which

is done by multi-membership resolution. In fact, multi-membership resolution can be

considered as a primary process for defuzzification. That is why we suggest multi-

membership resolution process to be called predefuzzification in the realm of fuzzy

automata.
A new general definition for a fuzzy automaton was presented (Definition8––

GFA). We incorporated the membership assignment function (F1) and multi-

membership resolution function (F2) as two additional parameters into this new

definition. These two parameters should be specified by the user together with other

required parameters of a fuzzy automaton such as states, input symbols, transi-

tion weights, etc. F1 and F2 can be the same or different depending on the

application.

Although, the generality of fuzzy automata has been the subject of several re-
search efforts [38,37,40,41,15], to the best of our knowledge, GFA as introduced here,

is the most general formulation of fuzzy automata presented so far, at least in the

realm of discrete spaces. Moreover, we do believe that Definition 8 can be used as

the definition of a general automaton, which degenerates to other types of automata

under various restrictions. In fact GFA encompasses not only other types of autom-

ata, but also several other computational paradigms [39]. Even so, the generality of

GFA is so motivating and challenging that deserves lots of future research.

Regarding the significance of output mapping, we introduced the Fuzzy Moore
Finite-state Automata (FMFA) and the Fuzzy MeaLy Finite-state Automata

(FMLFA) for the applications where there are several output labels. While in FMFA

outputs are associated with the states, in a FMLFA they are associated with the tran-

sitions. FMFA seem to be simpler and closer to justification and for the class of our

applications we will rely on them whenever we deal with multiple outputs. Neverthe-

less, FMLFA are a challenging and open issue and seem to have many interesting

characteristics. For example, since in FMFA, the output is associated with the state,

it is reasonable that an output label inherits everything from the corresponding state,

210 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

e.g. the mv, the multi-membership resolution strategy, etc. But, generally in

FMLFA, we can have more options. For example, to assign a mv to an output label,

any of the following parameters or a combination of them can be used:

• The weight of the corresponding transition.
• The (resolved) mv of the predecessor (source state of the transition).

• The (resolved) mv of the successor (destination state of the transition).

We also believe that some of the concepts introduced here (active state set, deriva-

tion, acceptance, etc.) should be revised to become applicable to a general FMLFA.

It is likely that we will see more research on FMLFA whose capabilities are yet to be

discovered.

The FFA with final states are of great importance in practice, as in most applica-
tions we have to rely on some final states for final decision making. The following

issues should be mentioned in this regard:

(1) The FFA with final states are specific cases of FMFA where we have a binary

set of output labels, i.e. Z = {accept, reject}.

(2) It is understood that the concepts of acceptance and rejection should not be nec-

essarily complemenetary in FFA. This is particularly the case for the class of

FFA with final states (FFAfin). We assigned the terms level of acceptance (lacc(x))
and level of rejection (lrej(x)) to refer to the acceptance and rejection of an input

string x, respectively. The generic Algorithm 2 which is used to compute the

extent of acceptance/rejection in different classes of GFA, calculates lacc(x)
and lrej(x) for the input strings in the class of FFAfin. The calculation of lacc(x)
is related to the active states which are final, while the calculation of lrej(x) is
related to the active states which are non-final. This method of calculating lacc(x)
and lrej(x) is in fact an emphasis on the interesting and challenging issue that

acceptance and rejection are not necessarily complementary in FFAfin.
(3) For applicational reasons, we preferred that in the class of FFA without final

states (FFAnofin), acceptance and rejection be complementary. To distinguish

the concept of acceptance and rejection in this class from those in the class of

FFAfin, we used the terms degree of acceptance (gacc(x)) and degree of rejection

(grej(x)) to refer to the acceptance and rejection of a string x, respectively. The

calculation of gacc(x) is related to the active state set.

However, the class of FFAnofin can still be considered as another specific case of

FMFA with a single output label. It can be called anything, although accept is
more consistent with the conventional spectrum of automata.

(4) Calculation of the extent of acceptance/rejection is done by a function F3, which
we called acceptance calculation function. F3 should also be specified based on

the application and the class of FFA, i.e. whether it is FFAfin, FFAnofin, FMFA,

or FMLFA. For the class of FFAfin, where acceptance and rejection are not nec-

essarily complementary (and more generally for FMFA and FMLFA), F3 can
be the same or different for the calculation of acceptance and rejection depend-

ing on the requirements of the application.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 211

A very interesting and challenging implication of our approach is that a zero-

weight transition is possible and is different from no transition. A zero-weight

transition may give rise to the activation of a successor due to the activation of its
predecessor. This challenging issue is now under more development and we will have

more to say about its usefulness in future.

As mentioned previously, the key motivation of this work was the insufficiency of

the current literature to handle the applications which rely on fuzzy automata as a

modeling tool. It will be interesting to see how the developed concepts and algo-

rithms can be used in practice. Currently, we are also working on some applications

which can be modelled by FFA. The achieved results and how these models can be

learned by neural networks, will be reported in forth-coming papers.
To say the final word, we do believe that this is just a starting work to enrich the

ground of fuzzy automata and make this appealing tool more applicational and

useful.

Acknowledgments

The authors would like to thank anonymous reviewers whose highly valuable and
constructive comments improved the manuscript considerably. Professor Kremer is

funded by grants from NSERC, CFI, ORDCF, and OIT, to whom we would like to

present our greetings.

References

[1] M.A. Arbib, From automata theory to brain theory, Int. J. Man–Machine Stud. 7 (3) (1975) 279–295.

[2] W.R. Ashby, Design for a brain, Chapman and Hall, London, 1954.

[3] A.W. Burks, Logic, biology and automata—some historical reflections, Int. J. Man–Machine Stud. 7

(3) (1975) 297–312.

[4] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math.

Biophys. 5 (1943) 115–133.

[5] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ, 1967,

Chapter 3, pp. 32–66.

[6] A. Turing, On computable numbers, with an application to the entscheidungs problem, Proc. London

Math. Soc. 42 (1936–37) 220–265.

[7] J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, Urbana, 1966.

[8] B.R. Gaines, L.J. Kohout, The logic of automata, Int. J. Gen. Syst. 2 (1976) 191–208.

[9] D. Ashlock, A. Wittrock, T. Wen, Training finite state machines to improve PCR primer design, in:

Proceedings of the 2002 Congress on Evolutionary Computation (CEC�02), 2002.
[10] R. Maclin, J. Shavlik, Refining domain theories expressed as finite-state automata, in: L.B.G. Collins

(Ed.), Proceedings of the 8th International Workshop on Machine Learning (ML�91), Morgan

Kaufmann, San Mateo CA, 1991.

[11] R. Maclin, J. Shavlik, Refining algorithm with knowledge-based neural networks: improving the

chou-fasma algorithm for protein folding, in: S. Hanson, G. Drastal, R. Rivest (Eds.), Computational

Learning Theory and Natural Learning Systems, MIT Press, Cambridge, MA, 1992.

[12] B. Tucker (Ed.), The Computer Science and Engineering Handbook, CRC Press, Boca Raton, FL,

1997.

212 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

[13] L.A. Zadeh, The concept of state in system theory, in: M. Mesarovic (Ed.), Views on General System

Theory, John Wiley, New York, 1964, pp. 39–50.

[14] L.A. Zadeh, The concept of system, aggregate and state in system theory, in: L.A. Zadeh, E. Polak

(Eds.), System Theory, McGraw Hill, New York, 1969, pp. 3–42.

[15] J. Virant, N. Zimic, Fuzzy automata with fuzzy relief, IEEE Trans. Fuzzy Syst. 3 (1) (1995) 69–74.

[16] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353.

[17] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Applications, Prentice Hall, Englewood

Cliffs, NJ, 1995.

[18] T.L. Hardy, Multi-objective decision-making under uncertainty fuzzy logic methods, Tech. Rep. TM

106796, NASA, Washington D.C., 1992.

[19] L.A. Zadeh, Fuzzy language and their relation to human and machine intelligence, Technical Report

ERL-M302, Electrical Research Laboratory, University of California, Berkeley, 1971.

[20] P. Bonissone, V. Badami, K. Chiang, P. Khedkar, K. Marcelle, M. Schutten, Industrial applications

of fuzzy logic at general electric, Proc. IEEE 83 (3) (1995) 450–465.

[21] S. Chiu, S. Chand, D. Moore, A. Chaudhary, Fuzzy logic for control of roll and moment for a

flexible wing aircraft, Control Syst. Mag. 11 (4) (1991) 42–48.

[22] J. Corbin, A fuzzy logic based financial transaction system, Embedded Syst. Program. 7 (12) (1994) 24.

[23] D. Dubois, H. Prade, Fuzzy Sets and Fuzzy Systems, Theory and Applications, Academic Press, New

York, 1980.

[24] M. Jamshidi, N. Vadiee, T.J. Ross (Eds.), Fuzzy Logic and Control, Software and Hardware

Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[25] M. Jamshidi (Ed.), Large Scale Systems: Modelling, Control, and Fuzzy Logic, Prentice-Hall,

Englewood Cliffs, NJ, 1995.

[26] M. Jamshidi, A. Tilti, L.A. Zadeh, S. Boverie (Eds.), Applications of Fuzzy Logic, Toward High

Machine Intelligence Quotient Systems, Prentice-Hall, Englewood Cliffs, NJ, 1997.

[27] W.J.M. Kickert, H. van Nauta Lemke, Application of a fuzzy controller in a warm water plant,

Automatica 12 (4) (1976) 301–308.

[28] C. Lee, Fuzzy logic in control systems: Fuzzy logic controllers, IEEE Trans. Syst., Man, Cybernet.

SMC-20 (2) (1990) 404–435.

[29] C. Papis, E. Mamdani, A fuzzy logic controller for a traffic junction, IEEE Trans. Syst., Man,

Cybernet. SMC-7 (10) (1977) 707–717.

[30] A. Torralba, J. Chavez, L. Franquelo, Fasy: a fuzzy logic based tool for analog synthesis, IEEE

Trans. Comput.-Aided Design Integr. Circuits 15 (7) (1996) 705.

[31] X. Yang, G. Kalambur, Design for machining using expert system and fuzzy logic approach, J.

Mater. Eng. Perform. 4 (5) (1995) 599.

[32] S. Mensch, H. Lipp, Fuzzy specification of finite-state machines, in: L. Collins (Ed.), Proceedings of

the 8th International Workshop on Machine Learning (ML�91), Morgan Kaufmann, San Mateo,

1991, p. 66.

[33] J.N. Mordeson, D.S. Malik, Fuzzy Automata and Languages, Theory and Applications, Chapman

and Hall/CRC, London/Boca Raton, FL, 2002.

[34] A. Pathak, S. Pal, Fuzzy grammars in syntactic recognition of skeletal maturity from X-rays, IEEE

Trans. Syst. Man Cybernet. 16 (5) (1986) 657–667.

[35] H. Senay, Fuzzy command grammars for intelligent interface design, IEEE Trans. Syst. Man

Cybernet. 22 (5) (1992) 1124–1131.

[36] J.R. Garitagoitia, J.R.G. de Mendivil, J. Echanobe, J.J. Astrain, F. Farina, Deformed fuzzy

automata for correcting imperfect strings of fuzzy symbols, IEEE Trans. Fuzzy Syst. 11 (3) (2003)

299–310.

[37] W. Pedrycz, A. Gacek, Learning of fuzzy automata, Int. J. Computat. Intell. Appl. 1 (1) (2001) 19–33.

[38] C. Cattaneo, P. Flocchini, G. Mauri, C.Q. Vogliotti, N. Santoro, Cellular automata in fuzzy

backgrounds, Physica D 105 (1997) 105–120.

[39] M. Doostfatemeh, S.C. Kremer, A fuzzy finite-state automaton that unifies a number of other

popular computational paradigms, in: Proceedings of the ANNIE 2003 Conference (ANNIE 03�),
ASME Press, New York, 2003.

M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214 213

[40] C.A. Reiter, Fuzzy automata and life, Complexity 7 (3) (2002) 19–29.

[41] A.K. Srivastava, S.P. Tiwari, A topology for fuzzy automata, in: N.R. Pal, M. Sugeno (Eds.), 2002

AFSS International Conference on Fuzzy Systems, Proceedings, Lecture Notes in Artificial

Intellegence, Springer-Verlag, Berlin, 2002, pp. 485–491.

[42] M. Ying, A formal model of computing with words, IEEE Trans. Fuzzy Syst. 10 (5) (2002) 640–652.

[43] A. Blanco, M. Delgado, M.C. Pegalajar, Fuzzy automata induction using neural network, Int. J.

Approx. Reason. 27 (2001) 1–26.

[44] A. Blanco, M. Delgado, M. Pegalajar, Fuzzy grammar inference using neural networks, Tech. rep.,

Department of Computer Science and Artificial Intelligence, University of Granada, Spain, 1995.

[45] E. Kosmatopoulos, M. Christodoulou, Neural networks for identification of fuzzy dynamical

systems: an application to identification of vehicle highway systems, Technical Report, Department of

Electrical and Computer Engineering, Technical University of Crete, Greece, 1995.

[46] W. Omlin, C.L. Giles, K.K. Thornber, Equivalence in knowledge representation: automata, rnns,

and dynamical fuzzy systems, Proc. IEEE 87 (9) (1999) 1623–1640.

[47] W. Omlin, K.K. Thornber, C.L. Giles, Fuzzy finite-state automata can be deterministically encoded

into recurrent neural networks, IEEE Trans. Fuzzy Syst. 5 (1) (1998) 76–89.

[48] G.D. Bruce, K.S. Fu, A model for finite-state probabilistic systems, in: Proceedings of the of 1st

Annual Allerton Conference on Circuit and Systems Theory, 1963.

[49] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-

Wesley, Reading, MA, 1979.

[50] Z. Kohavi, Switching and Finite Automat Theory, McGraw-Hill, New York, 1978.

[51] E. Santos, Maximin automata, Inform. Control 13 (1968) 363–377.

[52] M.G. Thomason, P.N. Marines, Deterministic acceptors of fuzzy languages, IEEE Trans. Systems,

Man, Cybernet. 4 (3) (1974) 228–230.

[53] R.R. Yager, On a general class of fuzzy connectives, Fuzzy Sets Syst. 4 (3) (1980) 235–242.

[54] M. Doostfatemeh, S.C. Kremer, Representing generalized fuzzy automata in recurrent neural

networks, in: Proceedings of the 17th IEEE Canada Conference (CCECE 2004, Niagara Falls), IEEE

Press, New York, 2004.

[55] R. Belohlavek, Determinism and fuzzy automata, Inf. Sci. 143 (2002) 205–209.

[56] J. Mockor, Fuzzy and non-deterministic automata, Soft Comput. 3 (1999) 221–226.

[57] J. Mockor, Semigroup homomorphisms and fuzzy automata, Soft Comput. 6 (2002) 422–427.

[58] M. Doostfatemeh, S.C. Kremer, The significance of output mapping in fuzzy automata, in:

Proceedings of the 12th Iranian Conference on Elecectrical Engineering (ICEE 2004), Ferdowsi

University, Iran, 2004.

[59] G.H. Mealy, A method for synthesizing sequential circuits, Bell Sys. Tech. J. 34 (1955).

[60] E.F. Moore, Gedanken experiments on sequential machines, in: Automata Studies, Princeton

University Press, 1956, pp. 129–153.

214 M. Doostfatemeh, S.C. Kremer / Internat. J. Approx. Reason. 38 (2005) 175–214

