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Abstract

Whether or not classical solutions of the 2D incompressible MHD equations without full dissipation and
magnetic diffusion can develop finite-time singularities is a difficult issue. A major result of this paper
establishes the global regularity of classical solutions for the MHD equations with mixed partial dissipation
and magnetic diffusion. In addition, the global existence, conditional regularity and uniqueness of a weak
solution is obtained for the 2D MHD equations with only magnetic diffusion.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

This paper concerns itself with the fundamental issue of whether classical solutions of the 2D
incompressible MHD equations can develop finite-time singularities. The 2D MHD equations
under consideration assume the form

ur+u-Vu=—Vp+viuy +vauyy, +b- Vb, (D
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by +u-Vb=mn1byx + by, +b-Vu, 2)
V.-u=0, 3)
V.-b=0, “4)

where (x,y) € R, 1>0,u= (u1(x,y,t),uz(x,y,t)) denotes the 2D velocity field, p =
p(x,y,t) denotes the pressure, b = (b1(x, y, t), ba(x, y,t)) denotes the magnetic field, and vy,
vy, 171 and 1, are nonnegative real parameters.

When v > 0, v, > 0, n1 > 0 and 1, > 0, (1)—(4) has a unique global classical solution for
every initial data (1o, bg) € H™ with m > 2 (see e.g. [4,9]). However, if any one of these param-
eters is zero, the global regularity issue has not been settled. This paper establishes the global
regularity of classical solutions of (1)—(4) with either vi =0, v, =v>0,n1=n>0and 5, =0
orvi =v>0,vy=0,n =0and n =n > 0. More precisely, we have the following theorem.

Theorem 1. Consider the 2D MHD equations (1)—(4) with vi =0, v, =v >0, n1 =n > 0 and
n2 = 0. Assume ug € H*>(R?) and by € H*>(R*) with V -ug = 0 and V - by = 0. Then (1)—(4) with
the initial data (ug, bo) has a unique global classical solution (u, b). In addition, (u, b) satisfies

(u,b) e L*([0,00); H*),  wyeL*([0,00); H'),  jeL*([0,00); H'), (5
where w =V X u and j =V X b represent the vorticity and the current density, respectively.

A similar global regularity result can also be stated for (1)—(4) withv; =v > 0,v, =0,7; =0
and np =n > 0.

Attention is also paid to the 2D MHD equations without dissipation but with magnetic dif-
fusion, namely (1)—(4) with vi = v, = 0 but with n; = n2 = n > 0. In this case, we obtain the
following global a priori bound foro =V x u and j =V x b,

t
||w<r>||§+||f<r>||§+n[||Vj<r>n§dr<C<n>(||w<0>||§+||j<0>||§) for >0,
0

where C(n) is a constant depending on 7 only. One consequence of this global bound is the
existence of a global H!-weak solution. It is not clear if such weak solutions are unique or can
be improved to global classical solutions. However, if we know the velocity field u of a solution
obeys

T
sup 1/ [Vu®|, dt <o, (6)
g>29
0

then this solution actually becomes a classical solution on [0, '] and two weak solutions with
one of their velocities satisfying this bound must coincide on [0, T']. We remark that (6) is weaker
than the standard condition fOT IVu(t)|loo dt < oo and, as some preliminary evidence shows, is
more likely to be proven true for (1)—(4) with ny =ny =n > 0.

This work is partially motivated by the recent progress made by Chae [2], Hou and Li [7] and
Danchin and Paicu [3] on the 2D Boussinesq equations,
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ur+u-Vu=—-Vp+vAu+0ey, @)
V-u=0, ®)
0 +u-VO0=nA0, )

where the 2D vector u represents the velocity field, the scalar 6 the temperature, and e; = (0, 1).
Chae [2], and Hou and Li [7] established the global regularity of (7)—(8) with either dissipation
or thermal diffusion. Further improvement was recently made by Hmidi, Keraani and Rousset,
who reduced the Laplacian —A to (—A)% [5,6]. Danchin and Paicu [3] constructed global so-
lutions of (7)—(8) with either n = 0 and vAu replaced by vu,, or v =0 and nA6 by nb,,. We
remark that the global regularity issue for the 2D MHD equations (1)—(4) is more sophisticated.
The equations of u# and b in (1)—(4) are both nonlinearly coupled vectors equations and the ap-
proaches in [2,3] and [7] do not appear to apply. In fact, it is not clear if (1)—(4) with n; =12, =0
or (1)—(4) with v, = 12 = 0 has global classical solutions.

The rest of this paper is divided into two sections. The second section is devoted to the global
regularity of (1)-(4) with either vy =0,v, =v >0,n1=n>0and n =0o0rvi =v > 0,1, =0,
n1 =0 and n, = n > 0. The third section handles (1)—(4) with vi = v, =0and n; =n, =7 > 0.
Throughout these sections the L”-norm of a function f is denoted by | f1l,, the H®-norm by
|l f|zs and the norm in the Sobolev space W*-? by || f|lws.».

2. Mixed partial dissipation and magnetic diffusion

This section proves Theorem 1 as well as a parallel result for the case when vy =v > 0,
v2 =0, n1 =0 and 2 = n > 0. The proof of Theorem 1 is achieved through two stages. The first
stage establishes a global bound for ||w(¢)||> and ||j(¢)||> while the second obtains a bound for
IV (t)|l2 and ||V j(¢)|]2. The following elementary lemma will play an important role.

2.1. An elementary lemma

Lemma 1. Assume that f, g, gy, h and hy are all in L2(R2). Then,

/ | fghldxdy < CIIfl2glly ey 13211 el . (10)

Proof. Applying Holder’s inequality and the elementary inequality

1 1
sup\F(x)|<J§</}F(x)|2dx> (/}Fx(x)|2dx> : (11)
xeR

we have

/ | fghldx dy

<c/[(/|f|2dx>l/2</lg|2dx>l/z(_ofi‘&ooh)}dy
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cef[(frea) (futan) (o) fea) o

172 1 1
<C||f||2< sup (/Iglzdx) >||h||22||hx||22~ (12)

—00<y<00

In addition, by (11) again,

() e f( fuaf ] ([ ess) o]
<ol [( o) ") [[( fsta) fsparo
<ol [(firo) " (Jrro) P
(o Jure)([fuas)

<C||g||§||gy||z< sup /|g|2dx>||gy||%.

—00<y <00

That is,

sup /Iglde<C||gllzllgy||2- 13)

—00<y<00
Combining (12) and (13) yields (10). This completes the proof of Lemma 1. O
2.2. A priori bounds for |wll2 and || jl2

This subsection establishes a priori bounds for |w|> and || j||2 as stated in the following
proposition.

Proposition 2. If (u, b) solves (1)—(4) with vy =0, v, =v >0, n; =n > 0 and ny =0, then the
vorticity w = V X u and the current density j =V X b satisfy

t t
lo@]; + ||j(r)||§+v/||wy(r>||§dr+n/||jx(r>||§dr <C(llwol3 + 1ol3) (14
0 0

where C is a constant depending on v, n, ||lugll2 and ||bo|l2 only, and wy =V X ug and jo =
V X by.
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Proof. Taking the inner products of (1) with u and (2) with b, adding the results and integrating
by parts, we obtain

t t
Hu(r>H§+Ub(r)}|§+2v/Uuy<r>!|§dr+2n/be(r)uidr<||uo||%+||bo||%. (15)
0 0

Since w and j satisfy
w+u-Vo=vwy, +b-Vj, (16)
j[ + u - VJ = an)C + b . VU) + zaxb] (axuz + 8yu1) - 28}6“1 (abe + ayb1)7 (17)
we find that X () = lo(t)[13 + |1 (£)|I5 obeys

1dX @)
2 dt

+vlloy I3+ nlljill3 < 2‘/[8xb1(8xu2 + dyur) — dxu1 (dxb2 + dyb1)]j dx dy|.

Applying Lemma 1, we can bound the terms on the right as follows. C’s in these estimates denote
either pure constants or constants depending on v and 7 only

. 1/2 1/2, .,1/2, . ,1/2
/|axb1||axuz||1|dxdy<C||axuz||/ (Y B S A I N
<ZloallZ+ 12+l b1 121l
< MByually + el + Clldgualla b1 171112
<o+ 212+ ¢ aebr1 11211
< glleyl3 + gl + Cllalall b 31512
v n. .
< anyu% + g”]x”% + Cllasb1 15X (1),
1 1 1 1
/|axb1||ayu1||j|dxdy<cnaxblng||axxb1||§||ayu1||;||ayyu1||§||j||
v 2, 7 2 12
< 18yt 15 + g aabi 13 + C bl 1y 21113
v n. . X
< Zuwyn% + gujxuﬁ + C(I13xb1 113 + 18yur 13)11513,

‘/ Oxu10yb jdx dy' = ’/(ulaxxblj +u10xb2jx) dx dy

1 1 1 1
< Cllully 1dyur iy 113 1 lly 19xxb2l2
TV DU SR
+ Cllutliy 19yurlly 10xb2115 19xx b2l i ll2

1 I 1 1 13
< Cllurliy 19yurliy 1y 1xlly + Cllunlly 19yurll; [0xb2ll3 1 ll3

n. . .
< < ljell3 + Cllur 13 18yur 1317113 + Cllur 13 18yu1 13118252113

02 2 20012
< g lxllz + Cllutliz oyl 1713,

0|3 oo
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’/8xu18yb1jdxdy' < '/(ulaxyblj +u10yb1jy)dx dy

1 I |
< Clluliy 13yunliy 1715 1xlly 18xyb1ll2

1 1 1 1
+ Cllurlly 19yur iy 19ybrll; 13xybill3 1l xll2

1 T | 1 1 13
< Cllunliy 18yurly 115 1xlly + Cllunlly 13yurlly 18yb1ll; L ll;

n

2 2 20 1112 2 2 2
< g ljxllz + Cllun a8y ur iz 1113 + Cllutliz 18yurllz119ybill;

0|3 oo

.2 2 AT
< S lixllz + Cllurlizlloyur iz 13-

Combining these estimates, we have

? +vlloyl3 +nlljcll3 < C(Ioyurll3 + 18:b113) X (),
which, together with (15), yields (14). O
2.3. A priori bounds for |[Vwl2 and ||V j |2
This subsection provides global a priori bounds for ||Vw||2 and ||V j||2.
Proposition 3. If (u, b) solves (1)—(4) with vi =0, v, =v >0, n; =n > 0 and ny =0, then the

vorticity w and the current density j satisfy

t t
Vo 2+ 1950 +v [ [Voy@[Bar +0 [ [Vio an
0 0

< C(IVaoll3 + 1Vjol3) (18)
where the constant C depends on v, n, ||uo|| ;1 and ||boll i1 only.

Proof. Taking the inner products of (16) with Aw lead to

d
dt

N =

||Vw||%+v||wa||%=—/Vw-Vu-dexdy—i—/Va»Vthdxdy
+/b~V(Vj)~Va)dxdy.
Similarly, taking the inner product of (17) with Aj yields
1d I~ - . . .
§E||V]||2+77||ij||2=— Vj-Vu-Vjdxdy+ | Vj-Vb-Vodxdy

+/b~V(Va))~dexdy
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+ 2/ V[3xb1(dxuz + dyur)] - Vjdxdy

— 2/ V[du1(3xb2 + dyb1)] - Vjdx dy.

Adding the above equations and integrating by parts, we find

1d 2 2 2 s 2
EE(HVCOHQ-F||VJ||2)+v||wa||2+77||VJx||2=11 + L+ I3+ 1+ s,

where

I = —wa-Vu -Vwdxdy,
Ig:—/Vj-Vu~dexdy,
13=2/Va)-Vb-dexdy,
Iy = 2/ V[Bxb] (Oxup + 8yu1)] -Vjdxdy,
Is= —2/ V[0xu1(9cba + dyb1)] - Vjdx dy.
To bound I, we write the integrand explicitly and further divide it into four terms

I = /(8xu1a))2c + Oxurwywy + dyuiwxwy + 8yu2a)§)dx dy
=l + I+ 13+ L.

By the divergence-free condition dyuq + dyuz =0 and Lemma 1,

I = —/Byuza)gdxdy

1 1 1 1
< Cldyuzlly 1axyuzll; lloxlly lowylly llox |

I 1 1 3
< Cloli; loyll; Vo5 IVoll;

v P 3 % p
< EHVG)sz + Clloll; lloyll; IVoll3.

By Lemma 1,

1 1 1 1
Iy < Clldxually 10xyuz i 13ywlly 10xywll; llox |2

1 1 1 3
< Cloly lwyll; IVoylly IVeol;

v 2 3 3 2
< EIIwallz + Clloll; llwyll; Volls.

1809
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I13 and 114 can be similarly bounded,

v 2 3 3 2
I3, I1s < EIIwallz + Clloll; llwyll; IVoll5.

I> and I3 can be bounded by applying Lemma 1

1 1 1 1
L < ClIVull3 IVuy 5 IVl 1Vl 1V ill2
1 1 3 1
< Cloli; lloy I3 1VillZ 11V il
n .02 2 2 .2
< E”VJx“z + Clloll3 llwyll; 1V 12,
1 1 1 1
< CIVblalVolly Vol 1Vl 1V xll;
1 1 1 1
S Cljl2Vally Vol IVl 1V jll;
< Va2 + L1V 2 + Cl 12 Voll2 IV
< = IVoylls+ =Vl + CljlzIVel2V jll2
10 16
v n.o. . .
< 1—O||wa||% + 1—6||vm|§ +Clilz(IVel3 + 11Vj13).
To bound 14, we split it into two parts:
I4=2/Bx[Bxbl(Bxug+3yu1)]jxdxdy+2f8y[8xb1(8xu2+8yu1)]jydxdy
= Iy + 1.

Integrating by parts in I4; and applying Lemma 1, we have
Iy = —Zf Oxb1(dxun + Oyuy) jxx dx dy

< Cllagb 12 18,xbt 13 13212 18syte2ll2 s 2
- Cllayb 12 18xxbr 12 13yt 12 18yyte1 12 s o
<INV IE Tl oy I3 1V il
< LIVl + Clolalj 1Yol V1
< 1—’76||ij||% + Clol2lljllz(IVol3 + 1V jII3).-

14> can be further decomposed into two parts:

Iy = 2/ Oxyb1 (Oxun + dyuy) jydxdy + 2/ OxD1(Oxyur + dyyuy) jydxdy

=l + s
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and these two terms can be bounded as follows

1 1 1 1
Ii21 < Clloxybr 2 10xuall3 19xyuall 11 jyll5 1y ll5
1 TR 1
+ Clloxybill2lldyur 15 13yyurll5 1yll5 Iyl
I 1 3 1
< Cllolly lloyll; 1V 715 1V x5
Mo 12 3 T o2
< E”VJXHZ + Clloll; llwoyll; 11V jli5,
1 1 1 1
L4220 < Clloxb1 |5 10xyb1ll5 10xyuall2 |l jyll5 | jxyll3
1 1 1 1
+ Cl19xb1 115 10y b1 115 13yyur 21 iy 15 x5
R 1 1
S CIF5 Nxls oy l2ll gyl 1y ll5

n . 2 2 3 . 2
< R”VJXH% + Cllil; Ll IVl 5 1V jll;

n .2 2 2 2 22
< EIIVJxllz + Clj13 1jx 3 (IVll5 + 1V j113)-

To bound Is, we first write it into three terms,

Is :—2/8x[8xu1(axb2+8yb1)]jx dxdy —2/8y[8xu1(3xb2—i—Bybl)]jydxdy

:2/axul(axb2+8ybl)jxx dxdy _Z/axyul(abe"l‘aybl)jy dxdy

— 2/ Oxut1(Oxyb2 + dyyb1) jydx dy
= Is1 + Isp + Is3.

‘We bound these terms as follows

1 1 1 1
Is; < CHaxul“z2 “axyul”z2 ||8xb2”22 ”axbe”z2 ”jxx||2
1 1 1 1
+ Cllayurlly |xyurlly 18yb1ll5 18xyb1lly ljix ll2
1 1 1 1
< Clol3 Vo3 1711V 13 1V jill
Ui . . .
< EIIVJx 13+ Cllol2lljl2(IVell3 + 1V113).
1 1 1 1
I52 < Clldxyur [12110xb2 115 18xyb2 13 1y ll3 xy Il
1 1 1 1
+ Clldxyurll2118yb1 115 18yyb1lly Iyl xy I3

1 1

1 1ol 1
< Clloyly IVoly 1l 1Vill2IV jxll;

1811
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Mo 2 Spand ik
< 1—6||VJx||2 + Cllayll; 1l Vol 1Vl
n o2 TETE 2 12
< Ellvjxﬂz + Clloyl3 113 (IVells + 1Vj13).
3 3 3 3
Is3 < C|0xuy ||2 ||8xy'41||2 ||8xyb2||2||]y||2 ||]xy||2
3 3 3 3
+ C”axul”z ”axyul ”2 ”ayybl ||2||]y||2 ||]xy||2
1 1 1 1
< Cllells oyl 1V ill2lliyl3 1y ll3
U .2 3 3 112
< 1—6||VJx||2 + Clloll; llwyll; IVl

Collecting the above estimates, we finally obtain

d . .
E(n%n% +IViI3) + viIVoyll3 +nllV i3

2 2 2 2
< C((loylly +1Lich3) (leolly +1713) + lil2(lellz + 1il2)) (IVoll + 1V15)-

Applying the bound from Proposition 2, we find

t t
IVowl}+ Vil +v [ [Vo,@lidr+n [ |9 dr
0 0

<. m(IVeolz + 1V joll3)-
This completes the proof of Proposition 3. O
2.4. Proof of Theorem 1
This subsection presents the proof of Theorem 1.
Proof of Theorem 1. With the a priori bounds of Propositions 2 and 3 at our disposal, the
proof of this theorem can be achieved through a parabolic regularization process. Let € > 0 be a

small parameter and consider a family of solutions (u., b¢) satisfying the regularized system of
equations

Othe + e - Vite = =V pe +v0yyue + be - Vb + € Auie, (19)
3tbe + e - Vbe = ndyybe + be - Vue + € Abe, (20)
V-uc=0, 2D

Vb =0, (22)

Ue(x, 0) = e * uo, be(x,0) = Ve * bo, (23)
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where V. (x) = e_zl/f(x/e) with ¢ satisfying

Y >0, YeCP([R?) and |yl =1

Since u,(x, 0) and b (x, 0) are smooth, the standard theory on the 2D viscous MHD equations
(see e.g. [9]) guarantees that (19)—(23) has a unique global smooth solution (i, b¢). It is easy to
see that (u, be) obeys the a priori bounds in Propositions 2 and 3 uniformly in €. The solution
(u, b) of (1)—(4) is then obtained as a limit of (u¢, b¢) and obeys the bounds in Propositions 2
and 3.

The uniqueness of the solutions follows from the elementary inequalities (see Lemma 14
of [3])

I flloo < C(ILFl2 4 1 fellz + I fyyll2) and [l flloo < C(ILF N2+ I fyll2 + Il fexll2)-

In fact, applying these inequalities, we have

t t

[l + i@ de < [(owl, +fo,@,+ Vo, @) de
0 0
1

+ [+ L@+ 195 ) de <00
0

for any ¢ > 0. It is well known (see e.g. [1,10]) that this bound yields the uniqueness. O
2.5. (1)~(4)withvi=v>0,v1,=0,n=0andn, =n>0

A global regularity result similar to Theorem 1 can be established for the 2D MHD equations
(-4 withvi=v>0,1,=0,n7 =0and n, =n > 0.

Theorem 4. Consider the 2D MHD equations (1)—(4) with vi =v >0, v, =0, n1 =0 and
n =n > 0. Assume ugy € HZ(R2) and by € HZ(Rz) withV -ug=0and V - bg = 0. Then (1)—(4)
has a unique global classical solution (u, b). In addition, (u, b) satisfies

(u, b) € L([0, 00); H?), wy € L*([0, 00); H'), jy € L*([0,00); HY), (24
where w =V X u and j =V X b represent the vorticity and the current density, respectively.
Proof. Although this theorem can be proven in a similar fashion as that of Theorem 1, we provide
an alternative proof. The idea is to convert (1)—(4) withvi =v > 0,v, =0,n; =0andnp, =71 >0

into a form dealt with by Theorem 1. Assume that (u, b) solves (1)—(4) with vi =v > 0, v, =0,
n1 =0and g, =n > 0. Set

Ui(x,y,0) =uz(y, x,1), Usr(x,y,0) =u1(y, x,1), P(x,y,1)=p(y,x,1),
Bi(x,y,t) =ba(y, x,1), Bo(x,y,t) =b1(y, x,1).



1814 C. Cao, J. Wu / Advances in Mathematics 226 (2011) 1803—-1822

Then U = (Uy, U3), P and B = (Bq, By) satisfy

U +U-VU=—-VP+vUy, + B-VB, (25)
B,+U-VB=nBy + B VU, (26)
V.U=0, 27)

V-B=0. (28)

The global regularity of (25)—(28) guaranteed by Theorem 1 allows us to obtain the global reg-
ularity for (1)-(4) with vi =v >0, v =0, n; =0 and 1y = n > 0. This completes the proof of
Theorem4. O

3. The MHD with magnetic diffusion

This section focuses on (1)—(4) with vi = v» =0 and n; = n, = n > 0. Two major results are
established. The first is the global existence of a weak solution and the second assesses the global
regularity and uniqueness of the weak solution under a suitable condition.

Theorem 5. Consider (1)—(4) with vi = v, =0 and n1 = 2 = n > 0. Assume that (ug, bg) € H!
withV -ug=0and V - by = 0. Then (1)-(4) has a global weak solution (u, b) satisfying

ueC([0,00); H'),  beC(0,00); H') N L*([0, 00); H?). (29)
The proof of this result relies on a global a priori bound for o =V x u and j =V x b.

Theorem 6. Assume the initial data (ug, bo) € H3, V- ug=0and V - by = 0. Let (u, b) be the
corresponding solution of (1)—(4) with vi = vy =0 and ny =y =n > 0. If, for some T > 0,

T
supl / [Vu()| dt < oo, (30)
4>24J ¢

then (u, b) is regular on [0, T'], namely
(u,b) € C([0, T1; H?).

In addition, two weak solutions (u, b) and (i, I;) in the regularity class (29) must be identical on
the time interval [0, T'] if u satisfies (30).

The rest of this section is divided into four subsections. The first subsection presents a global a
prioribound for ||u|| z1 and ||b|| 1 and the second proves Theorem 5. The third subsection estab-
lishes a logarithmic Sobolev inequality, which serves as a preparation for the proof of Theorem 6.
The last subsection proves Theorem 6.
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3.1. An apriori bound for ||Vu|2» and || Vb||»

1815

Proposition 7. If (u, b) solves the 2D MHD equations (1)—(4) with vi = vy =0and n =ny =

n > 0, then, forany t > 0,
!
o3+ L@l +n [ 19713 dx < Can(ivuol + 195013).
0
where C(n) is a constant depending on n only. Therefore,
'
lu)]) 31 + |6 1 +77/ 161132 dT < Cn)(lluoll3, + lIboll%,)-
0
Proof. It follows easily from (1) and (2) that, for any ¢ > 0,
'
Ju) |3+ 6 3+ 21 [ |95 dr = )|} + o)
0

To prove (31), we employ the equations of the vorticity w and the current density j,

wr+u-Vo=>b-Vj,

Jo b u-Vj=nAj b Vo + 20:by Dz + dyur) — 20,u1 (8:by + dyby).

Taking the inner products of (34) with @ and of (35) with j, we find

ldlle%:/b.ijdxdy
) 2 dt ’
Ld|jl . .

3 dr 2 +n||V]||%=/b-Va)]dxdy

+ 2/(8xb1(8xu2 + Oyur) — xu1(0xb2 + Bybl))j dxdy.

Since
/b~ijdxdy+fb~ijdxdy=0,

we have, for X (1) = ()3 + Ilj ()13,

dX(1)
dt

+ 200V l15 < 8IVull2I VD4l jlla,

where we have applied the Holder inequality. Applying the inequalities

€2y

(32)

(33)

(34)
(35)
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Vull2 < llell2, IVOlla <11jl4, 1713 < 1120V 112
and Young’s inequality, we find

dX (1) ; 16 . .
g T2Vl < el vl

In particular,

X(1)
dt

2 16 )
+nlVijlz < ;||]||2X(f)~

By Gronwall’s inequality,

t t
. 2 16 )
X(t)+n/||VJ(r)||2dr <X(0)CXP<7/||]||%dT>,
0 0

which, together with (33), yields (31) and (32). O
3.2. Proof of Theorem 5

Let € > 0 be a small parameter and consider the regularized system of equations

Othe +te - Ve = =V pe +€Auc + be - Vb,
0tbe +ue - Vbe =nAbe + be - Vue,
V.u=0,

V-be=0.

This system of equations admits a unique global solution (u., be) that satisfies the global a
priori bound stated in Proposition 7 uniformly in terms of €. By going through a standard limit
process, we conclude that (u., be) converge to a weak solution of (1)—(4) with v = v, =0 and
n1 = n2 = n. This completes the proof of Theorem 5.

3.3. A logarithmic inequality

This subsection presents a logarithmic Sobolev inequality, which plays an important role in
the proof of Theorem 6. A similar inequality was previously obtained by P. Zhang [11] and
by Danchin and Paicu [3] and their proofs involve tools from Fourier analysis such as the
Littlewood—Paley decomposition. The proof presented here is different and remains valid for
a general domain other than the whole plane.

Lemma 8. Ler f € H>(R?) and let a > 0 be real. Then the following logarithmic inequality
holds

|wmw<CwHE¥
q=2

[In(e + 11/ 1l 2)]°.
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Proof. We follow the approach of Hou and Li [7]. Denote by B, the disk centered at the origin
with radius 7. Let ¢ € C*°(R?) be a smooth cutoff function satisfying

¢©0) =1, Vol < C, lAg| < C, supp¢ C Bi.

Set w = f¢. According to the solution formula of the 2D Laplace equation, we have, for any
p=2,

1 1
wp(O):E/(lnM—lne)Awp(y)dy—i—Z / (In|y| —Ine) Aw” (y)dy

B. B\ Be
=1+1.
Since

Aw? = pwP ' Aw + p(p — DwP 2|V,

we obtain by applying Holder’s inequality
P 2
1< et [lAwlalwige,y + (7 = DIVwIZIwiE,,)]
By the embedding inequality
3
Vw4 < CIIwII2 IAw];,
we have, for C independent of p,

< Cp63||Aw||2||w||6(,, ])+Cp(p—1)6*|le|2IIAw||2||w||6(p 2

Integrating by parts in /7 yields

v
n=2 / wP 120 gy
27 |lyI?

B\B.

By Holder’s inequality,
1 1
1\2 1\2 1
|11I<Cp<lng) IIVw||4||w||4(p ) S p<1ng) IIwIIZIIAwII2||w||4(p 1y
Now, set

2 _3 1
€3||Aw|=1 or e=||Aw||22 and p=In-.
€

In the case when ||Awl]|; < 1, it sufficestoset 0 <€ < 1.
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‘We then have

2

L 1-2
w()] < Cpr ||w||6<,, H+C(pp— D)7 ||w||2" AWl lwllg ) o
1

2 1__
+ Cp Tl N Aw P iy )

1 1
Use the fact that p? < C, (p(p —1))? < C, and

NI a lwllq
IIAwII €3ne =e3, lwllg < p* sup —,

q22

we obtain that

w(©0)] < € sup 121
q

q22

(In(e + Il Aw]2))".

Noticing that

£O)]=|w©®] and [Awly < C(Ifll2+1Af12) <INy,
we conclude the proof of Lemma 8. O
3.4. Proof of Theorem 6

To show the regularity, we bound || (u, b)|| 3. According to Proposition 7, ||(u, b)|| ;1 admits
a global uniform bound. Now, consider Vw and V j, which satisfy

&Vo+u-V(Vo)=—(Vu)Vo+b-V(Vj)+ (Vb))V},
#Vj+u-V(Vj)=nANVj)—(Vu)Vj+b-V(Vo) + (Vb)Vw
+2V[8xb1 (Buz + dyu1)] — 2V [du1 (b2 + 3yb1)].

Therefore,
l%(uw)n%||Vj||%)+n||Aj||§
—/Va)-Vu-Vw—/Vu-Vj-Vj
+2 [ Vb9 Yo+ 2 [ Vabi@yun + )] v

- 2/ Va1 (@yb1 +0:b2)] - V
=K+ K>+ K3+ K4+ Ks.

The terms on the right can be estimated as follows
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2
Ky < [[VuloolVols,

K2=—fwvj‘~v]‘ <Vl V2
< CIVul2IV 121 Aj ]2

<

0|3

1A 15+ Cllol31V13,
K3 =2/Vb~Vw-Vj <2Voll2IVDI4lIV jlla

1 1 1 1
< ClIVall2IVRI; [ABIZ IV ills 1A
MA 2 3 Sivind
< §||AJ||2 + ClIVoll; IVDI; IV jll;
U 2 3 3 2 2
< §||Aj||2 +Cljl IVills (IVols + 1Vjll3).
K4 :2/ V[axb](ayu] + axuz)] -Vj
:2/ 0xVby -V j(dyuy + 0yuz) +2/ Oxb1(0yVuy + 0xVuz) - Vj

<4/|VjI2|Vu|+4/IVbIIVwIIle

n... . 22 )
< ZHAJH% + Cllwl3IVill3+ Clil3 IVil5 (IVol3 + 1V jl3).

Putting together these estimates, we have

d . . .
E(nwn% +IVjI3) + nlAj 13 < IVullsol Vol + Clloli3 11V 113

2 2
+ClIjlI3 1V 115 (IVoll3 + IV 7113).

We now bound the third-order derivatives of (u, b). For any multi-index 8 with |8]| = 3, DFu
and DPb satisfy

9 DPu+u-VDPu=-VDPp+b-VDPb—[DF u-V]u+[DF b V]b,
% DPb+u-VDPb=nADPb+b-VDPu—[DP,u-V]b+[DF b V],

where [D#, f - V]g = DP(f - Vg) — f - VDPg. Taking the inner products of these equations
with DPu and DPb, respectively, and integrating by parts, we have

1d
L (IDPul} + D7) + | DB = Ly + L+ L+ Ly

where
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le—([Dﬁ,u~V]u,Dﬁu), L2=([D'B,bv]b’ Dﬁu)v
Ly=—([DP,u-V]b,DPb),  Ls=([DP,b-V]b, DPb).

To bound Ly, Ly, L3 and L4, we recall the commutator estimate (see [8, p. 334])

I[DF. 7Vl <CUVFlpIVENwor +1f lyars 1V ps) (36)

valid for any p, p2, p3 € (1, 00) and % = % + % = % + i Applying this inequality, we obtain

L1 < |[DP - V], | DPull, < CIVullscliull s | DPu

2
Lol < |[DP,b- V]|, | DPul, < C(IVBI4IVIy2s + [1Bllys4 1 VDla) | DPul,.

By the basic calculus inequality, for any f € H!'(R?),
1 1
Ifla < CUFUZIV LIS, (37)
we have
1 1 1 1
L2l < CIIVDI 1ABIZ 16112 1VB1 2 | DPul,.

By Young’s inequality,

2 2 2 4
|La| < S IVbIl,s + CIIVDIZ 1AL 15115, | DPul3

Al b

2 2
< IVbIGs + CIVBIS I1AbIS (1613, + | DPull3).
By (36) again,
L3l < [[DF.u-V]b| 4 | DPb], < C(IVull VEllw2s + lull 211 VEIl4) [ D75

Therefore,

1 1

L] < Cllolla bl 2 Vbl 2 + CIIVBI3 1 ADI3 ||b||;3||Vb||§,3||u||Hs
< g||Vb||§,3 + Cllol31513,: + C||Vb||§ ||Ab||§(||b||%,3 + lull3s)-
Similarly, L4 is bounded as follows
L4l < gnwniﬁ + C||Vb||§ ||Ab||§||b||i,3.

Combining all these estimates, we obtain



C. Cao, J. Wu / Advances in Mathematics 226 (2011) 1803—1822 1821

d
(s + 1B113) + 0l VBl s < ClIValloolulizs + I3 15117

2 2
+CIIS IV 16155

Applying Lemma 8 with @ = 1 to bound ||Vu ||, We obtain the regularity part of Theorem 6.
To prove the uniqueness, we consider the difference

(W, B) = (i1, b) — (u, b),

which satisfies the equations

W,+i-VW+W-Vu=—-VP+b-VB+B-Vb, (38)
Bi+ii-VB+W-Vb=nAB+b-VW + B - Vu, (39)

where P is the difference between the corresponding pressures. Adding the inner products of
(38) with W and of (39) with B and integrating by parts, we obtain

%%(IIWII%Jr||B||§)+n||VBII§</|W~W'WI+/|B~Vu-BI+2/IW||VbIIBI
< IVulloo(IWI3 4+ 1BI3) + 20W 20 Blal Vlla.  (40)
By (37), we have
1 1 1 1
QW Bl Vblls < CIW 2l BIZ IV BI [Vb]3 1 Ab]3
n

42 2 2
< EIIVBH% +CIWI Bl IVDI; |1 ADI

2 2
<< IVBIZ + CIVbI; 1AbIS (IWI3 + 1B113)-

NS

Inserting the above estimate in (40) and applying Lemma 8 to bound ||Vu||s, we obtain the
desired uniqueness. This completes the proof of Theorem 6.
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