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Weighted Polynomial Approximation on Unbounded Intervals 
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Miintz-type theorems are proven for sequences of the form {w(t)t”k} defined 
on unbounded intervals. 

The classical Bernstein problem on weighted polynomial approximation is 
as follows: Given a continuous function K(t) on (-co, to), nonvanishing 
thereon, such that t”/K(t) --f 0, t + &co, determine whether or not the 
sequence {t”; k = 0, I, 2,...,} is fundamental in the space of continuous 
functions f(t) such that f(t)/K(t) --f 0, t + &co, in the uniform norm with 
respect to the weight l/K(t); i.e., whether or not, corresponding to every 
such f, there exist polynomials p, making SUP-,<~+, (I f(t) - p(t)l)/K(t) 

arbitrarily small. The study of this problem was initiated by Bernstein in 
his well-known monograph on approximation theory [l], and has received a 
lot of attention since. (See Timan [2; Chap. I], Akutovicz [3], Cheng [4], 
Freud [5], and references therein. See also Nachbin [6] for an abstract 
setting). In the fifties, motivated by Bernstein’s problem, Pollard [7, 81 and 
de Branges [9] found necessary and sufficient conditions for a sequence of 
the form 

{w(t) P; k = 0, I, 2 ,..., > (1) 

to be fundamental in the space C,(R) of continuous functions on (- co, co) 
that vanish at infinity. By analogy with the theorem of Miintz, it is therefore 
natural to consider the closure properties of sequences of the form 

{w(t) t”k; k = 1, 2, 3,...: 

defined on unbounded intervals. 

(2) 
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Let {&J be a sequence of complex numbers; let C,,“(R~) denote the set of 
functions continuous on [0, co) that vanish at zero and infinity, and let 
Coo(R+, IV) be the set of functions in C,“(Ri) that vanish wherever VV(~) 
vanishes. For any real number c, let S(E) denote the series 

(3) 

Finally, let P(z) denote the canonical product of the sequence (aiJ. (For the 
definition of canonical product, see Boas [IO, p. l&2.6.4].) With this notation 
we have 

THEOREM 1. Let w(t) be u continuous function on R+ that does not vanish 
identically thereon, and assume that for every fl > 0 there is a number c (that 
depends on /3), such that 

i w(t)1 < c exp(- 1 In t ifi) 

for all t > 0. Then for the sequence (2) to be fundamental in Coo(Ri , w), it is 
suficient that P(z) be of order larger than 1 (in particular that S(E) be divergent 
for some E > 1). Conversely, tf there is a number 8 > 0 such that / Re(ol,)l > 
6 / 01~ 1 for all k, then for (2) to be fundamental in Ck)(Rm’, w) it is necessary 
that s(l) be divergent. 

The closure of sequences of the form (2) in the space L,(O, co) has been 
studied by Fuchs [I I] and by Boas and Pollard [ 121. 

Applying Theorem 1 it is easy to obtain a density theorem for the whole 
line. For such a theorem we must, of course, assume that N~; = nJd, , where 
nk is a natural number, dk is an odd natural number, and n, and dh have no 
common factors, for under these conditions t”’ will also be defined for 
negative values of t. We shall say that all is odd if n, is odd, and that N~ is 
even if np is even. By ~~(6) we shall denote the series (3) where the summation 
is over the set of all k for which 01~ is even, and by so(c) the series similarly 
defined for odd ak We shall use P,(z) to denote the canonical product of the 
even elements of the sequence {Q}, and PO(z) to denote the canonical product 
of the odd elements of this sequence. Finally, Coo(R, w) will stand for the set 
of all functions continuous on the real line that vanish at zero, infinity, and 
wherever w(t) vanishes. With this notation and the restrictions imposed on 
the cy,: , we have 

THEOREM 2. Let w(t) be a continuous function on (- co, a) that does not 
vanish identically thereon, and assume that for every )/3 > 0 there is a number c, 
such that 

1 w(t)1 < c exp(- I In I t ~ ,“) (4) 
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for all t # 0. Then for (2) to be fundamental in C,“(R, w), it is suficient that 
P,(z) and P&) be of order larger than 1 (in particular, it is suficient that se(e) 
and S,,(E) be divergent for some E > 1). Conversely, if there is a number 6 > 0 
such that Re(ol,) > 6 1 OI,~ j for all k, then for (2) to be fundamental in C,O(R, w) 
it is necessary that both s,(l) and s,(l) be divergent. 

One may wonder whether the sufficient conditions in Theorem 1 and in 
Theorem 2 are also necessary. That this is not the case is illustrated by an 
example given after the proof of Theorem 2. The question of whether the 
necessary conditions in these theorems are also sufficient is still unsettled. 

Remark. Note that u’(O) = 0; thus if w(t) =/L 0 elsewhere, from Theorem 1 
we can at most obtain sufficient conditions for (2) to be fundamental in the 
space Coo(R) of continuous functions that vanish at zero and infinity, and 
not conditions for (2) to be fundamental in C,(R). 

Let C[-I, I] denote the set of functions continuous in [-I, 11. With the 
same restrictions on the %I< as in Theorem 2, we have 

THEOREM 3. The sequence {I, ta-, t”“, tag ,..., ] is ,fundamental in C[-1, l] 
ifund only if both the sequence (1, tak; 01~~ even) and the sequence { 1, t”h; ol,; oddj 
are fundamental in C[O, I 1. 

Theorem 3 is probably well known to workers in the field, although it does 
not seem to have been mentioned in the literature; it clearly supplements 
the classical theorem of Miintz-Szasz, which gives conditions for the com- 
pleteness in C[O, l] (cf. Paley and Wiener [13, p. 361). Since the proof of 
Theorem 3 is similar to that of Theorem 2 but much simpler, it will be 
omitted. 

Proqf of Theorem 1. Suficiency. A well-known corollary of the Hahn- 
Banach theorem implies that the proof of the sufficiency is equivalent to 
showing that any continuous linear functional on C,,O(R -, IV) that annihilates 
the elements of the sequence (2) vanishes identically. Let R’ be the set of 
points in (- co, co) at which w(t) does not vanish. Since w(t) is continuous, 
R’ is open and therefore locally compact, whence we can apply the Riesz 
representation theorem (cf. Rudin [14, p. 1311) to conclude that the problem 
is equivalent to showing that if p is a (bounded) complex measure on R’ such 
that 

s w(t)P d/J(t) = 0: k = 1, 2, 3,. , (5) R, 

then p = 0. 
Let 

f(z) == JR, ltft> tZ c/p(t) r= JR, w(t) exp(z In t) dp(t). 

640/28/z-2 
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From the hypotheses we readily see thatf(z) is defined for all ;. Indeed. let \- 
be any number larger than 1, and let fi be such that (Y l pi- p-r = 1; then from 
the inequality of Young (cf. Beckenbach and Bellman [15: p. 151). we see 
that 

.Y In t I '1 1 .Y ' /3 ' : In t ,B. 

Thus, if : = s + 1~‘. we have 

j(z)1 -:I j,, ; it(t); exp(.r In t) d 1 p ~ (t) 

si (.I,, 11(t) exp(g-l ~ In t Ia) cl 1 p j (r)) exp(a-’ s 1). 

Since the hypotheses imply that the preceding integral is bounded, we have 
shown thatf(z) is defined on the whole plane and of order I thereon. More- 
over, an application of the theorems of Morera and Fubini readily shows 
thatf(z) is entire. Since (5) implies thatf(u,,) == 0, k I, 2, 3,..., the proper- 
ties of entire functions imply thatf(z) vanishes identically (cf. [9, p. 17. 2.5. 
1W. 

To prove that p 0 note that, since p is bounded, it can be represented as 
the difference of two measures, each having bounded and positive real and 
imaginary parts. The assertion now follows by making the change of variable 
s =.- In t, and applying Bochner’s theorem on the uniqueness of the Fourier- 
Stieltjes transform (cf. Cotlar and Cignoli [ 16, p. 523, Theorem 3. I .9(c)]). 

Necessity,. Assume (2) is fundamental. Since II(~) is continuous and does 
not vanish identically there is a closed interval [a, b], a :, 0, on which II(X) 
does not vanish. It is thus readily seen that {tcl’; k _m I, 2, 3,...,] is fundamental 
in the space of functions continuous on [a, b], and the divergence of s(1) 
follows from a generalization of the Miintz theorem due to Luxemburg and 
Korevaar (cf. [I 7, p. 30, Theorem 6.11). Q.E.D. 

Proof of Theorem 2. SufJicienqj. Assume first that w(t) is an even 
function. Every function in C,,O(R, N,) can be represented as the sum of an 
even and an odd function. Let g(t) be an even function in C,O(R, w). From 
Theorem 1 and the hypotheses we know that there exists a sequence (p,(t):, 
in the linear span of the sequence {PI; I~~ even], such that {w(t)p,,(t)) con- 
verges uniformly to g(t) in R ; however, since the functions P,(t) and g(t) are 
even, the convergence is uniform in the whole line. Since a similar reasoning 
applies if g(t) is odd, the conclusion follows. 

In the general case, note that the set S of functions of bounded support 
that vanish in some open set that contains the origin and the set of points at 
which IV(~) vanishes, is dense in C,,“(R, 11,). Let therefore g(t) be in S, and let 
g,(r) == w(t)1 ’ I!‘( -t) , t / 0, ~~(0) 0. Clearly the function gl( I) 
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[gl(t) g(t)];w(t), if n,(t) =k 0, g2(f) = 0, if n(t) = 0 is in C,“(R). Since gr(t) is 
even, we know from what was proved in the preceding paragraph that there 
is a sequence {p,], of linear combinations of the functions {t”k; k = 1, 2, 3,...,), 
such that the sequence (gI(t) p,(t)) converges to g8(t) uniformly on R. Since 
by hypothesis 1 n(t)1 < I g,(t)1 . if IV(~) f 0, we have 

140 M> - g(f): = ! [~O)l/M~)li ~Mf) M) - A0 
5; i gl(f) P,(f) - ,YzCf)’ 3 

whereas, if w(t) = 0, up, - g(t) = 0, whence the conclusion follows. 

Necessity. Assume first that MI(?) is even, and let (2) be fundamental in 
C,“(R, 12’). Let g(t) be any function in C;,“(Rr, II’), and extend it to the whole 
line by stipulating that it should be even. Since g(t) is even, it is clear that it 
is in C;“(R, ~2). By hypothesis there is a sequence (~~1, of linear combinations 
of the functions 1’k, such that {n(t) p,(t): converges to g(f) uniformly on R. 
Since both IV(~) and g(f) are even, it is clear that also (n(t) p,( -t)] converges 
to g(t) uniformly on R. Adding, we thus conclude that also (i[p,(t) ; 
p&t‘)] u(t)3 converges uniformly to g(t) on R. But :[p,(t) AL JI,&~] VI(~) 
is a linear combination of elements of the sequence 

(II.(~) PA; 3i,( even]. (6) 

We ha.ve therefore established that (6) is fundamental in C,“(R , IL!), and the 
divergence of s,(l) follows from Theorem 1. A similar reasoning, involving 
odd functions, is used to prove the divergence of .s,Jl). 

In the general case, assume (2) is fundamental. Let car = min{l Al, 
I w(-r)i}; clearly ran is an even function such that I rl,,(f)/ < ~ n(t)1 for all t. 
Hence, by considering functions of bounded support that vanish in some 
open set that contains the origin and the set of points at which n’,(t) vanishes, 
as in the proof of the sufficiency, we readily see that the sequence {n,r(t) t’b; 
k :== 1, 2, 3,...,j is fundamental in C,“(R, wl). Since ,13,(t) is even, we have 
reduced the problem to the one considered in the previous paragraph, 
whence the conclusion follows. Q.E.D. 

The following example shows that the sufficient conditions in Theorems I 
and 2 are not necessary. 

EXAMPLE I. From the theorem of [7] it is easy to see that the sequence 
(I), with n(f) =r exp(-P) is fundamental in C,,(R) (to prove that (3) of [7] 
holds, set p,(x) = zl=,, (x2/./k!)). It is readily seen that the sequence that is 
obtained from (1) by removing the term corresponding to k = 0 is fundamen- 
tal in C,,O(R). Let ~,~(t) = exp(- I t-l 1) w(t): then I’m satisfies a condition 
of the form (4). Since 0 < wl(t) < w(t), by considering functions of bounded 
support that vanish in a neighborhood of the origin, as in the proof of the 



sufficiency in Theorem 2. we conclude that the sequence {IV,(~) t’.; k 
1. 2, 3,...,j is fundamental in C,,“(R) and therefore also in C,,“(R ). However, 
the canonical products of the sequence of integers. of even integers, and of 
odd integers are all entire functions of order I. 

The reader will notice that the necessary conditions in Theorems I and 2 
are of a global nature, for no restrictions are imposed on the weight function 
II(~). The sufficient conditions, on the other hand, are based on the assump- 
tion that for all 13 0 either lr(.u)l exp(- ~ In(.u is bounded (for 
Theorem 1) or that N,(.u) exp( In .Y Li) is bounded (for Theorem 2), thus 
leaving a gap that should be the subject of further research. At this point we 
should remark that if for instance ~ lj’(,y)i exp(- In(.u is not bounded for 
all p 0, then the sufficiency part of Theorem I is not necessarily true. That 
this may indeed happen is shown in the following: 

EXAMPLE 2. The sequence {exp[--(r/2), In r 11 fl-zslnh; k I. 9, 3,....; is 

not fundamental in C,“(R ~). Indeed, making an obvious change of variable 
we see that the preceding asertion is equivalent to stating that {exp[-(42) x 
-+ (1 - 2; In k) x]: k I> 2, 3,....; is not fundamental in C,“(R). 
Applying now a theorem of Paley and Wiener [ 18, p. 766, Theorem I ] (this 
theorem also appears in [13, p. 351, but there is a misprint), we infer that the 
preceding sequence is not fundamental in L,(R). Since C,/‘(R) is dense in 
L,(R), the conclusion follows. 

M~riutc u&&i i/l proof: The fundamentality of sequences of the form (2) in L,,(R ). 
1 . p 1, has been studied by K. End1 in Der Miintzsche Satz beim iibergang vom 

endlichen zum unendlichen Intervall, Arrn Marl?. Arad. Sci. Hungnr. 22 (1971). 139-146. 
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