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a b s t r a c t

We study randomized algorithms for numerical integration with
respect to a product probabilitymeasure on the sequence spaceRN.
We consider integrands from reproducing kernel Hilbert spaces,
whose kernels are superpositions of weighted tensor products.
We combine tractability results for finite-dimensional integration
with the multi-level technique to construct new algorithms for
infinite-dimensional integration. These algorithms use variable
subspace sampling, and we compare the power of variable and
fixed subspace sampling by an analysis of minimal errors.
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1. Introduction

We study numerical integration with respect to probability measures µ on infinite-dimensional
spaces X, and we are particularly interested in randomized (Monte Carlo) algorithms, which use
variable subspace sampling. Such algorithms may sample an integrand f : X → R in a hierarchy
X1 ⊂ X2 ⊂ · · · ⊂ X of finite-dimensional subspaces, and the cost per evaluation at any point x ∈⋃
∞

i=1 Xi is defined by inf{dim(Xi) : x ∈ Xi}. This cost model has recently been introduced in [2] and is
generalized in [11],where the costmaydepend in anywayon the underlying dimensions of subspaces.
Creutzig et al. [2] have studied integration on separable Banach spacesX and the class F of Lipschitz

continuous integrands f with Lipschitz constant at most 1. In the present paper we focus on much
smaller classes F , and we assume that µ is a product measure on the sequence space RN. More
precisely, we consider a probability measure ρ on a Borel subset D ⊆ R, and µ is the corresponding
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product measure on the space DN. We wish to compute integrals

I(f ) =
∫
DN
f (x)µ(dx), f ∈ F .

Infinite-dimensional quadrature problems of the latter kind arise, e.g., for stochastic processes
X = (Xt)t∈T with a series expansion Xt =

∑
∞

j=1 ξj · ej(t), where (ej)j∈N is a sequence of deterministic
functions on T and (ξj)j∈N is an i.i.d. sequence of random variables with distribution ρ on D. For
integrable functionals ϕ on the path space, E(ϕ(X)) = I(f )with

f (x) = ϕ

(
∞∑
j=1

xj · ej

)
.

An important example is given by the Karhunen–Loève expansion of a zero-mean Gaussian process
X , in which case the functions ej form an orthogonal system in L2(T )with

∑
∞

j=1 ‖ej‖
2
L2(T )

<∞, and ρ
is the standard normal distribution on D = R.
In a common computational approach the series expansion of X is truncated and the infinite-

dimensional integral E(ϕ(X)) is approximated by a finite-dimensional integral E(ϕ(
∑s
j=1 ξj · ej + e))

with a suitably chosen dimension s and with a shift by e = E(ξ1) ·
∑
∞

j=s+1 ej. The latter integral is then
approximated by means of a deterministic or randomized (Monte Carlo) algorithm. Accordingly, ϕ is
sampled (evaluated) at a finite number of deterministically or randomly chosen points from a fixed
finite-dimensional affine subspace span{e1, . . . , es} + e, which amounts to sampling of f at points
from the finite-dimensional subspace {x ∈ RN

: xs+1 = xs+2 = · · · = E(ξ1)}. Any sampling regime of
this kind is called fixed subspace sampling.
Recently, multi-level algorithms have been employed for finite-dimensional as well as for infinite-

dimensional integration, starting with [8,9,5,6]. Further references include [1–4,7,12]. In contrast to
the common approach, a multi-level algorithm evaluates ϕ or f at points from a hierarchy of finite-
dimensional subspaces, and this type of sampling has turned out to be superior to fixed subspace
sampling for a number integration problems. Here superiority refers to a comparison of specific
algorithms based on numerical experiments or upper bounds for their error and cost, or a comparison
based on the analysis of minimal errors, i.e., on the study of upper and lower bounds.
We briefly discuss the classes F of integrands that will be studied in this paper. The basic idea is

to consider infinite-dimensional integration as the limiting case of high-dimensional integration, and
thus we rely on error bounds for finite-dimensional integration with an explicit dependence on the
dimension, which are provided in the study of tractability of high-dimensional problems.We refer the
reader to the recent monograph by Novak and Woźniakowski [14]. Most frequently, tensor products
of weighted reproducing kernel Hilbert spaces are employed in the tractability analysis. In the case
of product weights this construction is based on a sequence of weights γj > 0 and a reproducing
kernel k for real-valued functions on D. In the present paper we study the limiting case, namely the
reproducing kernel

K(x, y) =
∑
u

∏
j∈u

γj k(xj, yj),

where u varies over all finite subsets of N and x and y belong to a subset of DN with µ-measure 1.
The class F of integrands is the unit ball B(K) in the Hilbert space H(K) with reproducing kernel K . A
particular instance of K was already studied for infinite-dimensional integration in [10]; see also [11].
We first analyze the minimal worst case errors eN,fix(B(K)) that can be achieved by randomized

algorithms that use fixed subspace sampling with worst case cost at most N . We derive upper and
lower bounds for these quantities, which depend on the decay of the weights γj and on respective
upper and lower bounds for finite-dimensional integration on the unit balls B(K1:s), where

K1:s(x, y) =
∑
u⊆1:s

∏
j∈u

γj k(xj, yj)

is a reproducing kernel for functions on D1:s. See Theorems 1 and 2.
For variable subspace sampling we only have upper bounds for the respective minimal errors

eN,var(B(K)) as non-trivial results. For the analysis we choose a suitable sequence of auxiliary weights
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γ ′j such that

lim
j→∞

γj/γ
′

j = 0,

and we consider the corresponding counterparts K ′ and K ′1:s of the kernels K and K1:s, respectively.
Our upper bounds for eN,var(B(K)) depend on the decay of the weights γj and γ ′j and on upper bounds
for finite-dimensional integration on the unit balls B(K ′1:s). See Theorems 4 and 5. These bounds are
achieved by multi-level algorithms, where a proper decay of variances results from embedding H(K)
into H(K ′).
To give a flavor of our results, consider the uniform distribution ρ on D = [0, 1] and the kernel
k(x, y) = 1/3+ (x2 + y2)/2−max(x, y), x, y ∈ [0, 1],

and assume γj = j−α with α > 1. In order to simplify the presentation we put
λvar = sup{χ > 0 : sup

N∈N
eN,var(B(K)) · Nχ <∞}

and we use λfix to denote the corresponding quantity for fixed subspace sampling. Roughly speaking,
λvar and λfix are the best orders of convergence that can be achieved by any sequence of algorithms
using variable or fixed subspace sampling, respectively. Clearly, λvar ≥ λfix. We have

λfix = 3/2(α − 1)/(α + 2)
(see Corollary 3) and

λvar ≥ 3/2min((α − 1)/10, 1) > λfix

if α > 8 (see Corollary 4), where the order 3/2min((α − 1)/10, 1) is (almost) achieved with
suitable multi-level algorithms based on scrambled QMC rules as building blocks. Scrambling is
a randomization technique that preserves good discrepancy properties of point sets, and was
introduced byOwen [15]. In the present caseweuse a result from [20],whohave analyzed randomized
quadrature formulas that use base b scrambling of a Niederreiter (t,m, s)-net in base b. Consequently,
variable subspace sampling is superior to fixed subspace sampling (at least) if α > 8. Moreover, we
have almost optimality for the multi-level algorithm (at least) if α ≥ 11 due to a classical result for
one-dimensional integration, which implies λvar ≤ 3/2.
The present paper is organized in the followingway. In Section 2we present the basic assumptions

on the measure ρ, the kernel k, and the weights γj, and we introduce the corresponding reproducing
kernel Hilbert spaces. The definition of the fixed subspace and variable subspace sampling regimes
together with the associated cost models and minimal errors are provided in Section 3. Lower and
upper bounds for fixed subspace sampling are presented in Section 4. Section 5 contains our results
for variable subspace sampling.

2. The function spaces

We follow the approach from [10,11], and we consider a probability measure ρ on a Borel subset
D ⊆ R together with the corresponding product measure µ on the space DN. The construction of
spaces of functions with an infinite number of variables x1, x2, . . . ,∈ D is based on a reproducing
kernel k for functions of a single variable x ∈ D and on a family of weights γu, which indicate the
importance of the variables xj with j ∈ u for finite sets u ⊂ N.
For x = (xj)j∈N ∈ DN and ∅ 6= u ⊂ N we put xu = (xj)j∈u ∈ Du. Unless stated otherwise we use u,

v, andw to denote finite subsets ofN in the sequel. For a non-empty set I and two families of positive
real numbers (yi)i∈I and (zi)i∈I wewrite yi � zi if yi ≤ c zi holds for every i ∈ Iwith a constant c > 0.
Furthermore, yi � zi means yi � zi and zi � yi.

2.1. Assumptions

We assume that
(A1) k 6= 0 is a measurable reproducing kernel on D× D,

which satisfies
(A2) H(k) ∩ H(1) = {0}
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as well as
(A3)

∫
D k(x, x)ρ(dx) <∞.
As regards the weights we take a sequence of real numbers γj that satisfies

(A4) γ1 ≥ γ2 ≥ · · · > 0 and
∑
∞

j=1 γj <∞,

and we define

γu =
∏
j∈u

γj (1)

for every u. In particular, γ∅ = 1.

2.2. The domain X

Under these assumptions the appropriate choice of a domain of functions of infinitely many
variables is given by

X =

{
x ∈ DN

:

∞∑
j=1

γj k(xj, xj) <∞
}
.

Note that X = DN follows from (A4), if k is a bounded kernel on D × D. In general the complement
DN
\ X is a µ-null set.

Lemma 1. The set X satisfies µ(X) = 1.

Proof. By Yj(x) = γj k(xj, xj)we get a sequence of non-negative random variables on DN. Clearly,

E

(
∞∑
j=1

Yj

)
=

∞∑
j=1

E(Yj) =
∞∑
j=1

γj

∫
D
k(x, x)ρ(dx) <∞.

Hence
∑
∞

j=1 Yj <∞µ-almost surely. �

We add that without condition (A3) we always have µ(X) ∈ {0, 1}, which follows from
Kolmogorov’s Zero–One Law. We stress that X contains every x ∈ DN that is constant outside of some
finite subset of N.

2.3. Functions of finitely many variables

In a first step we construct spaces of functions f : X→ R that only depend on a finite number of
variables.
For u 6= ∅we consider the reproducing kernel

ku(x, y) =
∏
j∈u

k(xj, yj), x, y ∈ X,

as well as the associated Hilbert space

Hu = H(ku).

Furthermore, we put k∅ = 1 and

H∅ = H(1).

See [10, Section 2] for the following facts in the case of a bounded kernel k and D = [0, 1].

Lemma 2. For x, y ∈ X and f ∈ Hu we have

xu = yu ⇒ f (x) = f (y).

Lemma 3. Suppose that fi ∈ Hui with pairwise different finite sets u1, . . . , un ⊂ N. Then
∑n
i=1 fi = 0

implies fi = 0 for every i.
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Proof. Inductively we conclude as follows. Let n ≥ 2, put u =
⋃n
i=1 ui, and fix ` ∈ u\

⋂n
i=1 ui. Choose

aj ∈ D for j ∈ u \ {`} and a ∈ D, and consider the functions gi : D→ R that are given by

gi(y) = fi(x)

with x ∈ X defined by

xj =

{y, if j = `,
aj, if j ∈ u \ {`},
a, otherwise.

Put I1 = {i : ` ∈ ui} and I2 = {i : ` 6∈ ui}, and note that I1 6= ∅ and I2 6= ∅. Suppose that
i ∈ I1. We apply Lemmas 15 and 16 from the Appendix with E = X, E1 = D{`}, E2 = {x ∈ DN\{`}

:∑
j6=` γj k(xj, xj) <∞}, and

J(x, y) = L(x`, y`) = α k(x`, y`),

where
α =

∏
j∈u\{`}

k(aj, aj),

to conclude that gi ∈ H(k). Otherwise, i.e., if i ∈ I2, then fi ∈ Hui together with Lemma 2 implies that
gi is constant. By assumption,

∑
i∈I1
gi = −

∑
i∈I2
gi, so both sums vanish according to (A2). Since the

values of xj with j ∈ u \ {`} have been chosen arbitrarily, we obtain
∑
i∈I1
fi = 0 and

∑
i∈I2
fi = 0 from

Lemma 2. �

We consider the weighted sum

Kv(x, y) =
∑
u⊆v

γu ku(x, y), x, y ∈ X,

of reproducing kernels ku. Clearly Kv is a reproducing kernel, too, and due to Lemma 3 the
corresponding Hilbert space satisfies

H(Kv) =
⊕
u⊆v

H(γu ku)

with pairwise orthogonal spaces H(γu ku). See [10, Lemma 3] for this fact and also for the following
conclusion in the case of a bounded kernel k and D = [0, 1].

Lemma 4. The space H(Kv) consists of all functions

f =
∑
u⊆v

fu, fu ∈ Hu.

Furthermore,

‖f ‖2Kv =
∑
u⊆v

γ−1u ‖fu‖
2
ku .

Remark 1. Due to Lemmas 2 and 4 every function f ∈ H(Kv)may be identified with a function on Dv ,
and Kv may be identified with a kernel on Dv×Dv as well. For consistency we prefer to work with the
domain X throughout this paper.

Remark 2. By definition (1) of the weights γu we have

Kv(x, y) =
∏
j∈v

(
1+ γj k(xj, xj)

)
.

Hence Kv is of tensor product form, and H(Kv) is the tensor product space

H(Kv) =
⊗
j∈v

H(1+ γj k),

considered as a space of functions on Dv .
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2.4. Functions of infinitely many variables

For s ∈ Nwe let 1 : s denote the set {1, . . . , s}. Wewill consider the limit of the sequence of kernels
K1:s.

Lemma 5. For x, y ∈ X we have∑
u

γu|ku(x, y)| <∞.

Proof. Note that∑
u

γu|ku(x, y)| =
∑
u

∏
j∈u

γj|k(xj, yj)|

≤

(∑
u

∏
j∈u

γj k(xj, xj)
)1/2(∑

u

∏
j∈u

γj k(yj, yj)
)1/2

due to (1). Furthermore,∑
u

∏
j∈u

γj k(xj, xj) =
∞∏
j=1

(1+ γj k(xj, xj)) ≤ exp
( ∞∑
j=1

γj k(xj, xj)
)
<∞

by definition of X. �

Due to Lemma 5 the limit

K(x, y) =
∑
u

γu ku(x, y) =
∑
u

γu
∏
j∈u

k(xj, yj), x, y ∈ X,

of the sequence of kernels K1:s defines a measurable kernel K on X× X.
If s < s′ then H(K1:s) ⊆ H(K1:s′) ⊆ H(K), and

⋃
∞

s=1 H(K1:s) is a dense linear subspace of H(K).
More precisely, the following holds true; see [10, Corollary 5] for the case of a bounded kernel k and
D = [0, 1].

Lemma 6. The space H(K) consists of all functions

f =
∑
u

fu, fu ∈ Hu, (2)

such that∑
u

γ−1u ‖fu‖
2
ku <∞.

In the case of convergence, ‖f ‖2K =
∑
u γ
−1
u ‖fu‖

2
ku .

We add that the decomposition (2) is uniquely determined, since fu is the orthogonal projection of
f onto Hu.

2.5. Integration with respect to the product measure µ

For f ∈ H(K)we have∫
X

|f (x)|µ(dx) =
∫

X

|〈f , K(·, x)〉K |µ(dx) ≤ ‖f ‖K
∫

X

‖K(·, x)‖K µ(dx).

Put

m =
∫
D
k(x, x) ρ(dx),
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and recall thatm <∞ due to (A3). Using (1) and (A4) we obtain∫
X

‖K(·, x)‖2K µ(dx) =
∑
u

γum|u| =
∞∏
j=1

(1+ γjm) ≤ exp
( ∞∑
j=1

γjm
)
<∞.

Hence integration with respect to µ defines a bounded linear functional

I(f ) =
∫

X

f (x) µ(dx)

on H(K). Its representer h ∈ H(K) is given by

h(x) = 〈h, K(·, x)〉K =
∫

X

K(x, y) µ(dy), x ∈ X. (3)

Since 1 ∈ H(K) andµ(X) = 1 according to Lemma 1, we get h 6= 0, which shows that I is a non-trivial
functional on H(K).

2.6. Examples

We provide two examples with ρ being the uniform distribution on D = [0, 1] and X = DN in
both cases. LetW 12 ([0, 1]) consist of all absolutely continuous functions f : [0, 1] → R with square-
integrable derivatives, and let the norm onW 12 ([0, 1]) be given by

‖f ‖2 =
(∫ 1

0
f (y)dy

)2
+ γ−1

∫ 1

0
(f ′)2(y)dy

for some γ > 0. Then we have

W 12 ([0, 1]) = H(1+ γ k),

where

k(x, y) = 1/3+ (x2 + y2)/2−max(x, y), x, y ∈ [0, 1]. (4)

The covariance kernel k clearly satisfies (A1), and (A2) holds, too, since

H(k) =
{
f ∈ W 12 ([0, 1]) :

∫ 1

0
f (y)dy = 0

}
.

For u 6= ∅ the space Hu consists of all continuous functions f such that f (x) depends only on xu,
f (u) ∈ L2([0, 1]u) for theweak derivative f (u) = ∂ |u|

∂xu
f , and

∫ 1
0 f (y)dyj = 0 for every j ∈ u. Furthermore,

‖f ‖2ku =
∫
[0,1]u

(
f (u)(y)

)2
dy. (5)

It follows that H(K1:s) ⊆ Gs for s ∈ N, where Gs denotes the class of continuous functions f such that
f (x) depends only on x1:s and f has square-integrable weak derivatives f (u) for every u ⊆ 1 : s.
Let Iv denote integration with respect to the variables yj with j ∈ v, i.e., Iv f : DN\v

→ R for an
integrable function f : DN

→ R. Suppose that f =
∑
u⊆1:s fu ∈ H(K1:s) according to Lemma 4. Since

I1:s\v(f ) =
∑
u⊆v

I1:s\v(fu) =
∑
u⊆v

fu,

we can recursively determine the components fu of f . In fact,

f∅ = I1:s(f ) (6)

and, for v 6= ∅,

fv = I1:s\v(f )−
∑
u(v
fu. (7)
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Conversely, suppose that f ∈ Gs, and define fv for v ⊆ 1 : s by means of this recursion. We get
fv ∈ Hv with

f (v)v =
(
I1:s\v(f )

)(v)
= I1:s\v(f (v)).

We conclude that H(K1:s) = Gs is a weighted Sobolev–Hilbert space with the norm given by

‖f ‖K1:s =
∑
u⊆1:s

γ−1u

∫
[0,1]u

(∫
[0,1]1:s\u

f (u)(x)dx1:s\u
)2
dxu.

See [20, Section 3]. Observe that
∑
u⊆1:s fu is the ANOVA decomposition of f ∈ H(K1:s), so H(K1:s) is

defined by imposing a smoothness assumption on the ANOVA terms fu, namely existence and square
integrability of the weak derivatives f (u)u . Moreover, ‖f ‖2K1:s is a weighted average of the squared
L2-norms of these weak derivatives. See [14, Section 5.3.1].
Note that the recursion (6) and (7) is valid, too, for f ∈ H(K) if 1 : s is replaced by N. Moreover,

it extends to the case of any kernel k with properties (A1) and (A2) if we replace integration with
respect to a single variable by the functional f 7→ 〈f , 1〉1+k, which is then applied to all variables yj
with j ∈ N \ v.
As a second example consider the covariance kernel

k(x, y) = min(x, y), x, y ∈ [0, 1], (8)

of a Brownian motion, which can be treated analogously to the kernel given by (4), if integration of
a function f : [0, 1] → R is replaced by evaluation of f at the point zero. In particular, k satisfies
(A1) as well as (A2), and for u 6= ∅ the corresponding space Hu consists of all continuous functions
f : DN

→ R such that f (x) depends only on xu, f (u) ∈ L2([0, 1]u), and f (x) = 0 if xj = 0 for some
j ∈ u. Moreover, ‖f ‖2ku is given by (5).
For illustration of the role of the weights in the case of (4) as well as in the case of (8) we consider

a sequence of real numbers (ηj)j∈N such that
∑
∞

j=1 |ηj| <∞, and we define

f (x) =
∞∑
j=1

ηj x2j , x ∈ DN.

Then

f = f∅ +
∞∑
j=1

f{j} =
∞∑
j=1

g{j},

with f∅ = 1/3
∑
∞

j=1 ηj and f{j}(x) = ηj (x
2
j − 1/3) as well as g{j}(x) = ηj x

2
j . In the case of the kernel

given by (4) we have f{j} ∈ H{j} and

‖f∅‖k∅ = 1/3

∣∣∣∣∣ ∞∑
j=k

ηj

∣∣∣∣∣ , ‖f{j}‖2k{j} = 4/3η
2
j .

If k is given by (8) then g{j} ∈ H{j} and

‖g{j}‖2k{j} = 4/3η
2
j .

Thus f ∈ H(K) iff
∞∑
j=1

η2j

γj
<∞

in both cases. For instance, if γj � j−(1+δ) with any δ > 0 then it suffices to have ηj � j−α with
α > 1+ δ/2.
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3. Cost and minimal errors for fixed and variable subspace sampling

In this section we present a cost model for the analysis of infinite-dimensional quadrature
problems, which has been introduced in [2], and on the basis of this model we define minimal errors
for randomized algorithms.
Throughout this paper we assume that algorithms for approximation of I(f ) have access to the

function f via an oracle (subroutine) that provides values f (x) for points x ∈ RN or a subset thereof.
For convenience we define f (x) = 0 for x ∈ RN

\X, so that the integrands f are defined on the whole
space RN. The cost per evaluation (oracle call) is modelled by a function

c : RN
→ N ∪ {∞},

and we are interested in two particular such models.
For fixed subspace sampling evaluations are possible only at the points from a finite-dimensional

affine subspace

Xv,a = {x ∈ RN
: xj = a for j ∈ N \ v}

for a given (finite) set ∅ 6= v ⊂ N and a given point a ∈ D, and the cost for each oracle call coincides
with the dimension |v| of Xv,a. Thus,

cv,a(x) =
{
dim(Xv,a), if x ∈ Xv,a,
∞, otherwise. (9)

Note that Xv,a ∩ DN
⊆ X.

For variable subspace sampling we consider a sequence of finite-dimensional affine subspaces

Xv1,a ⊂ Xv2,a ⊂ · · ·

for a given increasing sequence v = (vi)i∈N of (finite) sets ∅ 6= vi ⊂ N and a point a ∈ D, and the cost
function is defined by

cv,a(x) = inf{dim(Xvi,a) : x ∈ Xvi,a}, (10)

with inf ∅ = ∞ as usual. These sampling regimes and corresponding cost models have been
introduced in [2] in the context of integration of functionals on separable Banach spaceswith arbitrary
finite-dimensional linear subspaces. In the present setting a generalization of the model, where c(x)
depends in any way on the number of components of x that are different from a, is studied in [11].
We consider randomized algorithms for integration of functions f : X → R, and we refer the

reader to [18,2] for a formal definition and some rather mild measurability assumptions involved.
We define the cost of a computation as the sum of the cost of all oracle calls that are made during

the computation. For a randomized algorithm Q the cost defines a random variable, which may also
depend on f , and this random variable is henceforth denoted by costc(Q , f ). Let Cfix denote the set
of all cost functions given by (9) with any finite-dimensional affine subspace Xv,a, and let Cvar denote
the set of all cost functions given by (10) with any increasing sequence of finite-dimensional affine
subspaces Xvi,a. The worst case cost of Q on a class F of integrands is defined by

costfix(Q , F) = inf
c∈Cfix

sup
f∈F
E(costc(Q , f ))

in the fixed subspace model and by

costvar(Q , F) = inf
c∈Cvar

sup
f∈F
E(costc(Q , f ))

in the variable subspace model. Clearly costvar(Q , F) ≤ costfix(Q , F).
Let us look at the particular case of a randomized quadrature formula

Q (f ) =
n∑
`=1

b` f (X`)
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with deterministic weights b` ∈ R and random elements X` taking values in X. If Q satisfies the
sampling constraint X1, . . . , Xn ∈ Xv,a for some finite-dimensional affine subspace Xv,a, then

costfix(Q , F) ≤ n · |v|.

If Q satisfies the sampling constraint X` ∈ Xvi` ,a
\ Xvi`−1,a

for an increasing sequence of finite-
dimensional subspaces Xvi,a with Xvi0 ,a

= ∅, then

costvar(Q , F) ≤
n∑
`=1

|vi` |,

while

costfix(Q , F) ≤ n · max
`=1,...,n

|vi` |.

A randomized algorithm Q that terminates for every integrand f ∈ F induces a family (Q (f ))f∈F of
random variables, which yield the random outputs of the algorithm for inputs f . The worst case error
of Q on the class F is defined by

e(Q , F) = sup
f∈F

(
E(I(f )− Q (f ))2

)1/2
.

For N ∈ Nwe introduce the N-th minimal errors

eN,fix(F) = inf{e(Q , F) : costfix(Q , F) ≤ N}

and

eN,var(F) = inf{e(Q , F) : costvar(Q , F) ≤ N}.

Clearly we have eN,var(F) ≤ eN,fix(F). We add that minimal errors are key quantities in information-
based complexity; see, e.g., [18,13,16].

4. Results for fixed subspace sampling

The analysis of fixed subspace sampling is motivated by a common approach to infinite-
dimensional integration as follows. Let a ∈ D. We use a to denote the constant sequence in DN with
coordinates a. Furthermore, for a (finite) set ∅ 6= v ⊂ N and y ∈ Dv , we use (y, a) to denote the
sequence x ∈ DN with xj = yj for j ∈ v and xj = a otherwise. Moreover, µv denotes the product of
the measure ρ on Dv . Commonly, the integral I(f ) is approximated by∫

X

f (xv, a)µ(dx) =
∫
Dv
f (y, a)µv(dy),

and for computation of the latter one uses a randomized algorithm Qv for integration on Dv with
respect to µv . In this way one gets a randomized algorithm Q with random output

Q (f ) = Qv(f (·, a)) (11)

for any integrable function f : X→ R. Clearly Q is based on evaluation of f at points from the finite-
dimensional affine subspace Xv,a, and therefore costcv,a(Q , f ) is given as the product of |v| and the
number of evaluations of f , which is a random variable and may depend on f . In particular, if Qv is a
randomized quadrature formula with n evaluations, then costfix(Q , F) ≤ n · |v| for every class F of
integrands.

4.1. Preliminaries

For v and a as previously we define

(Ψv,af )(x) = f (xv, a), x ∈ X.

Obviously (11) implies

Q (f ) = Q (Ψv,af ). (12)
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We use Br(K) and Br(Kv) to denote the closed centered balls with radius r in the spaces H(K) and
H(Kv), respectively. Furthermore, the unit balls are denoted by B(K) and B(Kv), respectively.We show
that the maximal error of Q on B(K) can essentially be decomposed into its maximal error on B(Kv)
and the quantity

bv,a = sup
f∈B(K)

∣∣I(f )− I(Ψv,af )∣∣ .
If Q is given by (11) with an unbiased algorithm Qv for integration on Dv , then bv,a is the worst case
bias of Q for integration on X.

Lemma 7. The mapping Ψv,a maps the unit ball B(K) onto the closed centered ball Br(Kv) in H(Kv) with
radius r = rv,a given by

r2v,a =
∑
w⊂N\v

γw(k(a, a))|w|.

Furthermore, we have rv,a ≥ 1 and supv 6=∅ rv,a <∞ as well as lims→∞ r1:s,a = 1.

Proof. Lemma 15 from the Appendix, with E1 = Dv , E2 = {x ∈ DN\v
:
∑
j6∈v γj k(xj, xj) <∞}, e2 = a,

Ψ = Ψv,a, and

J(x, y) = K((xv, a), (yv, a)), x, y ∈ X,

yields

Ψv,a(B(K)) = {g ∈ H(J) : ‖g‖J ≤ 1}.

Note that

J(x, y) =
∑
u

γu
∏
j∈u∩v

k(xj, yj)
∏
j∈u\v

k(a, a) = Kv(x, y) · r2v,a.

Hence

{g ∈ H(J) : ‖g‖J ≤ 1} = {f ∈ H(Kv) : ‖f ‖Kv ≤ rv,a}.

Takew = ∅ to get rv,a ≥ 1, and supv rv,a <∞ and lims→∞ r1:s,a = 1 are due to (A4). �

Lemma 8. Assume that (12) is satisfied for every f ∈ B(K). Then

max(bv,a/(1+ rv,a), e(Q , B(Kv))) ≤ e(Q , B(K)) ≤ bv,a + e(Q , Brv,a(Kv)).

Proof. For f ∈ B(K)we use (12) to obtain

(E (I(f )− Q (f ))2)1/2 ≤ |I(f )− I(Ψv,af )| + (E
(
I(Ψv,af )− Q (Ψv,af )

)2
)1/2.

Due to Lemma 7,

sup
f∈B(K)

E
(
I(Ψv,af )− Q (Ψv,af )

)2
≤ sup
f∈Brv,a (Kv)

E (I(f )− Q (f ))2 ,

which completes the proof of the upper bound.
Let f ∈ B(K) and consider the function g = (1+ rv,a)−1 · (f − Ψv,af ). Then g ∈ B(K) by Lemma 7,

and Ψv,ag = Ψv,a(−g) = 0. Hence

e2(Q , B(K)) ≥ max
(
E
(
I(g)− Q (Ψv,ag)

)2
, E
(
I(−g)− Q (Ψv,a(−g))

)2)
≥ |I(g)|2 = (1+ rv,a)−2 · |I(f )− I(Ψv,af )|2,

which yields e(Q , B(K)) ≥ bv,a/(1 + rv,a). Furthermore, e(Q , B(K)) ≥ e(Q , B(Kv)), since B(K) ⊃
B(Kv), which completes the proof of the lower bound. �
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For everyw the mapping f =
∑
u fu 7→ I(fw) defines a bounded linear functional on H(K), and its

representer gw ∈ Hw is given by

gw(x) = γw
∫

X

kw(x, y) µ(dy), x ∈ X.

Put

A(v, a) =
∑

∅6=w⊂N\v

‖gw − γw kw(·, a)‖2K .

Recall that the representer h of f 7→ I(f ) is given by (3).

Lemma 9. We have

A(v, a) ≤ b2v,a ≤ A(v, a) · ‖h‖
2
K

and

r2v,a ≤ 2(A(v, a)+ ‖h‖
2
K ).

Proof. Use Lemma 7 to conclude that f 7→ I(Ψv,af ) defines a bounded linear functional on H(K). Its
representer is

hv,a(x) =
∫
Dv
K(x, (y, a))µv(dy), x ∈ X. (13)

We have

h =
∑
u

gu, hv,a =
∑
u

gu∩v · γu\v ku\v(·, a). (14)

Since gu∩v · γu\v ku\v(·, a) ∈ Hu we obtain

b2v,a = ‖h− hv,a‖
2
K =

∑
u

‖gu − gu∩v · γu\v ku\v(·, a)‖2K .

Note that

‖gu − gu∩v · γu\v ku\v(·, a)‖K = ‖gu∩v‖K · ‖gu\v − γu\v ku\v(·, a)‖K ,

and therefore

b2v,a = A(v, a)
∑
u⊆v

‖gu‖2K .

By definition,

r2v,a =

∥∥∥∥∥ ∑
w⊂N\v

γw kw(·, a)

∥∥∥∥∥
2

K

≤ 2 A(v, a)+ 2
∑
w⊂N\v

‖gw‖2K .

Use ‖g∅‖K = 1 and
∑
u ‖gu‖

2
K = ‖h‖

2
K to derive the estimates for b

2
v,a and r

2
v,a as claimed. �

We provide further estimates for bv,a if the kernel k satisfies one of the following two conditions,
both of which imply condition (A2), namely,
(A2a)

∫
D k(x, y)ρ(dy) = 0 holds for every x ∈ D,

(A2b) there exists a point a∗ ∈ D such that k(a∗, a∗) = 0.

Remark 3. If k satisfies both conditions (A2a) and (A2b) and if we take a = a∗, then I(f ) = f (a) for
every f ∈ H(K), and the quadrature problem is trivial. In fact, (A2a) implies h = 1 for the representer
of integration in H(K), while (A2b) implies K(·, a) = 1.
In the case (A2b) themappingΨv,a∗ is the orthogonal projection ontoH(Kv), and therefore rv,a∗ = 1

in Lemma 7, and (A2b) with a∗ = a is called the anchored case in the literature.
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Define g ∈ H(k) by

g(x) =
∫
D
k(x, y)ρ(dy), x ∈ D,

and put
κ(a) = ‖g − k(·, a)‖2k

for a ∈ D.

Lemma 10. Let a ∈ D and assume that k satisfies (A2a) or (A2b) with a∗ = a. Then

κ(a) ·
∑
j6∈v

γj ≤ b2v,a ≤ κ(a) ·
∑
j6∈v

γj · exp
(
κ(a) ·

∑
j6∈v

γj

)
· ‖h‖2K

for every v.

Proof. We apply Lemma 9 and derive a corresponding estimate for A(v, a). Since (A2a) implies
g{j} = 0 for every j ∈ N, and (A2b) with a∗ = a implies k{j}(·, a) = 0 for every j ∈ N, we have

gw − γw kw(·, a) =
∏
j∈w

g{j} −
∏
j∈w

γj k{j}(·, a) =
∏
j∈w

(
g{j} − γj k{j}(·, a)

)
,

and therefore

‖gw − kw(·, a)‖K =
∏
j∈w

‖g{j} − γj k{j}(·, a)‖K =
∏
j∈w

γ
1/2
j ‖g − k(·, a)‖k = γ

1/2
w (κ(a))|w|/2.

Hence

A(v, a) =
∑

∅6=w⊂N\v

γw(κ(a))|w| =
∑

∅6=w⊂N\v

∏
j∈w

κ(a) γj

and therefore

κ(a)
∞∑
j6∈v

γj ≤ A(v, a) ≤ exp

(
κ(a)

∞∑
j6∈v

γj

)
− 1. �

4.2. Upper and lower bounds

For the proof of upper bounds and the construction of algorithms we consider a family of
randomized algorithms Qn,1:s with n, s ∈ N for finite-dimensional integration on D1:s as well as the
corresponding randomized algorithms Qn,s,a = Qn,1:s ◦ Ψ1:s,a for infinite-dimensional integration;
see (11). Typically, Qn,1:s is a randomized quadrature formula with n evaluations, and then we might
assume that an upper bound for the maximal error of Qn,1:s on the unit ball in H(K1:s) is available that
only depends on n. In general, we have to consider the ball of radius r1:s,a; see Lemma 7 and Remark 3.

Theorem 1. Let a ∈ D. Assume that
(i) k satisfies (A2a) or (A2b) with a∗ = a,
(ii) γj � j−α with α > 1,
(iii) there exist β, c > 0 such that

e(Qn,s,a, Br1:s,a(K1:s)) ≤ c · n
−β

and

costfix(Qn,s,a, Br1:s,a(K1:s)) ≤ n · s

hold for all n, s ∈ N.
Choose

nN � N
α−1

2β+α−1
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and

sN � N
2β

2β+α−1

for N ∈ N. Then the sequence of randomized algorithms QN = QnN ,sN ,a satisfies

e(QN , B(K)) � N
−
β(α−1)
2β+α−1 ,

and

costfix(QN , B(K)) � N.

Proof. Assumption (iii) together with Lemma 8 yields

e(QnN ,sN ,a, B(K)) ≤ b1:sN ,a + c · n
−β

N

for every N ∈ N. Use assumptions (i) and (ii) together with Lemma 10 to conclude

e(QnN ,sN ,a, B(K)) � s
−(α−1)/2
N + n−βN � N

−
β(α−1)
2β+α−1 .

By assumption (iii) and Lemma 7

costfix(QN , B(K)) ≤ costfix(QnN ,sN ,a, Br1:sN ,a(K1:sN )) ≤ nN · sN ,

and, clearly, nN · sN � N . �

Nowwe establish a lower bound, which matches the upper bound from Theorem 1 if the minimal
errors for one-dimensional integration on the unit ball in the space H(K{1}) are of order β , too.

Theorem 2. Assume that
(i) γj � j−α with α > 1,
(ii) there exist β, c > 0 such that

eN,fix(B(K{1})) ≥ c · N−β

for all N ∈ N.
Then the minimal errors for integration on the unit ball B(K) using fixed subspace sampling satisfy

eN,fix(B(K)) � N
−
β(α−1)
2β+α−1 .

Proof. Consider any randomized algorithm Q with costfix(Q , B(K)) ≤ N . Hence there exists a set
v ⊂ N and a point a ∈ D such that E(costcv,a(Q , f )) ≤ N + 1 holds for every f ∈ B(K). Hence, for
every f ∈ B(K), the expected number of evaluations by Q is at most (N+1)/|v| and (with probability
1) these evaluations are made at points from Xv,a.
Due to the latter fact, (12) holds for every f ∈ B(K), and Lemma 8 yields

e(Q , B(K)) ≥
bv,a
1+ rv,a

.

Since

b2v,a
(1+ rv,a)2

≥
b2v,a

2(1+ 2b2v,a + 2‖h‖
2
K )
,

which follows from Lemma 9, we derive a lower bound for bv,a. Clearly,

e1,fix(B(K{1})) ≤ sup
f∈B(K{1})

|I(f )− f (a)|.

For f ∈ B(K)we have I(Ψ{1},v f )− f (a) = 〈h{1},a − K(·, a), f 〉K ; see (13). Moreover,

h{1},a − K(·, a) =
(
g{1} − γ1 k{1}(·, a)

)∑
1∈u

γu\{1} ku\{1}(·, a)
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due to (14), and therefore

|I(Ψ{1},v f )− f (a)|2 ≤ ‖h{1},a − K(·, a)‖2K
= ‖g − k(·, a)‖2k

∑
1∈u

γu(k(a, a))|u|−1 = κ(a) γ1 r2{1},a.

Let f ∈ B(K{1}). Then r{1},v f ∈ Ψ{1},a(B(K)) due to Lemma 7, and we obtain

|I(f )− f (a)|2 ≤ γ1 κ(a).

Hence κ(a) ≥ c/γ1 follows from assumption (ii), and Lemma 9 implies

b2v,a ≥ A(v, a) ≥
∑
j6∈v

‖g{j} − γj k{j}(·, a)‖2K = κ(a)
∑
j6∈v

γj ≥ c/γ1
∑
j6∈v

γj � |v|
−(α−1).

We conclude that

e2(Q , B(K)) �
|v|−(α−1)

2(1+ 2|v|−(α−1) + 2‖h‖2K )
� |v|−(α−1).

On the other hand we have

e2(Q , B(K)) ≥ e2(Q , B(K{1})) ≥ c((N + 1)/|v|)−2β

due to assumption (ii). It remains to observe that

((N + 1)/|v|)−2β + |v|−(α−1) � N−
2β(α−1)
2β+α−1 . �

4.3. Examples

We apply Theorems 1 and 2 in the case of ρ being the uniform distribution on D = [0, 1] and for
the kernels given by (4) and (8).
First, we consider the kernel k given by (4), which satisfies assumption (A2a). For integration of

functions f : [0, 1]1:s → R we employ scrambled quasi-Monte Carlo rules. Scrambling, which is a
randomization technique that preserves good discrepancy properties of point sets, was introduced by
Owen [15]. Here we rely on a result from Yue and Hickernell [20], who have analyzed randomized
quadrature formulas

Qb,m,1:s(f ) =
1
bm

bm∑
i=1

f (Xi)

that use base b scrambling of a Niederreiter (t,m, s)-net in base b. In particular, Qb,m,1:s is unbiased
for every integrable function f . Henceforth we fix b and we choose any a ∈ [0, 1]. The methods

Qn,s,a = Qb,blogb(n)c,1:s ◦ Ψ1:s,a (15)
with n, s ∈ N will be called scrambled QMC rules. Note that Qn,s,a satisfies the cost bound in
assumption (iii) of Theorem 1.
Assume that

∞∑
j=1

γj(j log j)3 <∞. (16)

Then for every ε > 0 there exists a constant cε > 0 such that the scrambled QMC rules Qn,s,a satisfy

e(Qn,s,a, Br1:s,a(K1:s)) ≤ cε · n
−(3/2−ε) (17)

for every n ∈ N and every dimension s; see [20, Theorem 4.(i)]).

Corollary 1. Assume that k is given by (4). Let ε > 0, and let assumption (ii) from Theorem 1 be satisfied
with α > 4. Choose

nN � N
α−1
α+2−ε
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and

sN � N
3−ε
α+2−ε

for N ∈ N. Then, for QN = QnN ,sN ,a,

e(QN , B(K)) � N−
(3−ε)/2(α−1)

α+2−ε

and

costfix(QN , B(K)) � N.

Proof. Apply Theorem 1 with c = cε/2 according to (17) and β = 3/2− ε/2, and note that QN uses

bblogb(nN )c � nN

function evaluations in X1:sN ,a and nN · sN � N . �

Nextwe turn to k given by (8), which satisfies assumption (A2b)with a∗ = 0. Consider the classical
Monte Carlo method Qn,1:s for integration of functions f : [0, 1]1:s → R, i.e.,

Qn,1:s(f ) =
1
n

n∑
i=1

f (Xi),

where X1, . . . , Xn are independent and uniformly distributed on [0, 1]. The methods

Qn,s,0 = Qn,1:s ◦ Ψ1:s,0 (18)

clearly satisfy the cost bound in assumption (iii) of Theorem 1. From [17] or [19, Theorem 1.1]) we
infer that there exists a constant c0 > 0 such that

e(Qn,s,0, B(K1:s)) ≤ c0 n−1/2
s∑
j=1

γj (19)

holds for all n, s ∈ N.
Henceforth, we refer to the methods Qn,s,0 as classical MC rules.

Corollary 2. Assume that k is given by (8), and let assumption (ii) from Theorem 1 be satisfied. Choose

nN � N
α−1
α

and

sN � N
1
α

for N ∈ N. Then the sequence of classical MC rules QN = QnN ,sN ,0 satisfies

e(QN , B(K)) � N−
α−1
2α

and

costfix(QN , B(K)) � N.

Proof. Apply Theorem 1 with β = 1/2 according to (19). �

Corollary 3. Assume that k is given by (4) or by (8), and let the assumption (i) from Theorem 2 be satisfied
with α > 1. Then

eN,fix(B(K)) � N−
3/2(α−1)
α+2 .

Proof. For both kernels, the Sobolev spaceW 12 ([0, 1]) is continuously embedded in the space H(K{1})
(see Section 2.6), and the minimal errors on W 12 ([0, 1]) are of the order β = 3/2 (see [13, Section
2.2.9]). Hence the result follows from Theorem 2. �
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Remark 4. Obviously Corollaries 1 and 2 provide upper bounds for the respective minimal errors
eN,fix(B(K)), while lower bounds are provided by Corollary 3. In order to slightly simplify the results
we define

λfix = sup{χ > 0 : sup
N∈N
eN,fix(B(K)) · Nχ <∞}.

If k is given by (4) and γj � j−α with α > 4, then

λfix =
3/2(α − 1)
α + 2

.

Clearly, limα→4+ λfix = 3/4 and limα→∞ λfix = 3/2. In particular, Theorems 1 and 2 lead to sharp
bounds for the minimal error and scrambled QMC rules with appropriately chosen dimensions are
almost optimal in the fixed subspace model.
In the case that k is given by (8) and γj � j−α with α > 1 we only get

α − 1
2α
≤ λfix ≤

3/2(α − 1)
α + 2

from Corollaries 2 and 3. A better lower bound

λfix ≥

{
α(α − 1)/(4α − 2), if 1 < α < 2,
(α − 1)/(α + 1), if α ≥ 2,

is due to [11], andwe stress that this bound is already achieved by suitable deterministic algorithms. It
is unknown to us whether the latter bound can be further improved if the classical MC rule is replaced
by a different randomized algorithm in Corollary 2.

5. Results for variable subspace sampling

The analysis of variable subspace sampling is motivated by the multi-level approach to infinite-
dimensional integration. The latter is based on a sequence of finite-dimensional affine subspaces

Xv1,a ⊂ · · · ⊂ XvL,a (20)

with a point a ∈ D and an increasing sequence

v1 ⊂ · · · ⊂ vL

of (finite) non-empty subsets of N. For the finite-dimensional integral I(ΨvL,af ), which serves as an
approximation to I(f ) as in Section 4, we have

I(ΨvL,af ) =
L∑
`=1

I(Ψv`,af − Ψv`−1,af ),

where

Ψv0,af = 0.

In the multi-level approach each of the integrals I(Ψv`,af − Ψv`−1,af ) is approximated separately by
means of independent randomized algorithms, and sampling of f inXv`,a is used at level `. Clearly, the
cost per evaluation of f is increasing with `. Provided that the error for integration ofΨv`,af −Ψv`−1,af
is decreasing with ` at a certain rate, we properly balance these effects.

Remark 5. Consider an increasing sequence of sets v` ⊂ Nwith
⋃
`∈N v` = N. Since

lim
`→∞
‖f − Ψv`,af ‖K = 0

for every f ∈ H(K), which is easily verified, we have strong convergence of Ψv`,a − Ψv`−1,a towards
zero. However,

inf
`∈N
sup
f∈B(K)

‖Ψv`,af − Ψv`−1,af ‖K > 0.
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The latter obviously holds true in the case (A2b)with a∗ = a, sinceΨv,a is the orthogonal projection
onto H(Kv) in this case. To cover the general case we take y ∈ D such that k(y, y) > 0. Let s ∈ N.
Put f (x) = √γs k(xs, y). Then f ∈ H{s} with ‖f ‖K1:s =

√
k(y, y) and Ψ1:s,af = f . Moreover,

Ψ1:s−1,aΨ1:s,af ∈ H∅, and so∥∥Ψ1:s,af − Ψ1:s−1,af ∥∥2K1:s = ∥∥Ψ1:s,af ∥∥2K1:s + ∥∥Ψ1:s−1,af ∥∥2K1:s = k(y, y)+ γs(k(a, y))2.
We conclude that supf∈B(K)

∥∥Ψ1:s,af − Ψ1:s−1,af ∥∥Ks does not converge to zero as s→∞.
Because of Remark 5 we take another sequence of real numbers γ ′j that satisfies

(A4′) γ ′1 ≥ γ
′

2 ≥ · · · > 0,
∑
∞

j=1 γ
′

j <∞, and γj/γ
′

j ≤ 1,

and we define
γ ′u =

∏
j∈u

γ ′j

for every u. The associated kernels are denoted by K ′, etc., and Lemma 6 implies that H(K) ⊆ H(K ′)
with

‖f ‖K ′ ≤ ‖f ‖K , f ∈ H(K).

5.1. Preliminaries

Fix a ∈ D and let v ⊂ w ⊂ N. Recall that Ψv,af ∈ H(Kv) for every f ∈ H(K) by Lemma 7. We will
establish estimates for

Ψw,af − Ψv,af = (id−Ψv,a)(Ψw,af ) ∈ H(Kw), (21)
where we consider the norm ‖ · ‖K ′w .

Lemma 11. We have

sup
f∈B(K)

∥∥Ψw,af − Ψv,af ∥∥K ′w � sup
f∈B(Kw)

∥∥f − Ψv,af ∥∥K ′w
uniformly in v andw with v ⊂ w.
Proof. Use Lemma 7 together with (21). �

For the impact ofΨv,a on each of the terms in an orthogonal decomposition (2) the following holds
true.

Lemma 12. For f ∈ Hu we have

Ψv,af ∈ Hu∩v
and ∥∥Ψv,af ∥∥ku∩v ≤ (k(a, a))|u\v|/2‖f ‖ku .
Moreover, if u ⊆ v then Ψv,af = f .
Proof. Let f ∈ Hu. Then Ψv,af = Ψu∩v,af due to Lemma 2, and in particular Ψv,af = Ψu,af = f in the
case u ⊆ v. Put

J(x, y) = (k(a, a))|u\v|
∏
j∈u∩v

k(xj, yj) = (k(a, a))|u\v| ku∩v(x, y).

We get Ψu∩v,af ∈ H(J) ⊆ Hu∩v and a norm estimate as claimed from Lemma 15 from the
Appendix. �

Lemma 13. Let f ∈ H(Kw). If k satisfies (A2b) with a∗ = a or if |w \ v| = 1, then∥∥f − Ψv,af ∥∥2K ′w ≤ (1+ γ ′1 k(a, a)) · ∑
u⊆w,u\v 6=∅

(γ ′u)
−1
‖fu‖2ku .
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Proof. Let f =
∑
u⊆w fu with fu ∈ Hu; see Lemma 4. Use Lemma 12 to obtain

f − Ψv,af =
∑

u⊆w,u\v 6=∅

(
fu − Ψu∩v,afu

)
and ∥∥f − Ψv,af ∥∥2K ′w = ∑

u⊆w,u\v 6=∅

∑
u′⊆w,u′\v 6=∅

〈fu − Ψu∩v,afu, fu′ − Ψu′∩v,afu′〉K ′w

=

∑
u⊆w,u\v 6=∅

(γ ′u)
−1
‖fu‖2ku +

∑
(u,u′)∈M

(γ ′u∩v)
−1
〈Ψu∩v,afu,Ψu′∩v,afu′〉ku∩v

with

M = {(u, u′) : u, u′ ⊆ w, u \ v 6= ∅, u′ \ v 6= ∅, u ∩ v = u′ ∩ v}.

Assume that k satisfies (A2b) with a∗ = a. Then Ψu∩v,a is the orthogonal projection onto H(Ku∩v),
and we have Ψu∩v,afu = 0 for every u ⊆ w with u \ v 6= ∅.
On the other hand, if |w \ v| = {`} with ` ∈ N thenM = {(u, u) : ` ∈ u ⊆ w}, and it remains to

observe that

(γ ′u∩v)
−1
∥∥Ψu∩v,afu∥∥2ku∩v ≤ γ ′1(γ ′u)−1 k(a, a) ‖fu‖2ku

due to Lemma 12 and (1). �

Theorem 3. Assume that k satisfies (A2b) with a∗ = a or that |w \ v| = 1. We have

sup
f∈B(K)

∥∥Ψw,af − Ψv,af ∥∥K ′w � maxj∈w\v

√
γj/γ

′

j

uniformly in v andw.
Proof. Put c = 1+ γ ′1k(a, a) and use Lemma 13 to obtain∥∥f − Ψv,af ∥∥2K ′w ≤ c ∑

u⊆w,u\v 6=∅

γu

γ ′u
γ−1u ‖fu‖

2
ku ≤ c maxj∈w\v

γj

γ ′j
· ‖f ‖2Kw

for f ∈ H(Kw). It remains to apply Lemma 11. �

We do not know whether a result similar to the estimate from Theorem 3 is valid under the
assumption (A2a) if |w \ v| is large.

5.2. Upper bounds for multi-level algorithms

We consider an independent family of unbiased randomized algorithms Qn,1:s for finite-
dimensional integration on D1:s, and for the construction of multi-level methods we take a ∈ D and
we employ the corresponding independent randomized algorithms Qn,s,a = Qn,1:s ◦Ψ1:s,a for infinite-
dimensional integration; see (11).
For L ∈ N and two sequences n1, . . . , nL and s1, . . . , sL ∈ N of positive integers with s` < s`+1 we

put
Q` = Qn`,s`,a

as well as
Ψ` = Ψ1:s`,a

and we define a multi-level algorithm by

Q (f ) =
L∑
`=1

Q`(f − Ψ`−1f ), (22)

where
Ψ0 = 0.
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Note that

Q`(f − Ψ`−1f ) = Q`(Ψ`f − Ψ`−1f ).

Hence Q uses variable subspace sampling based on the subspaces (20) with v` = 1 : s`.
In the analysis of the cost of Q we accordingly take c = cv,a with v = (v`)`∈N; see (10). Since Q`

is based on function values at points from the subspace Xv`,a, we consider c` = cv`,a in the analysis
of the cost of Q` (see (9)), i.e., every function evaluation is charged with cost s` = dim(Xv`,a). As in
Section 4.2, Qn,1:s typically is an unbiased randomized quadrature formula with n evaluations, and
then we clearly have

costvar(Q , B(K)) ≤ 2 ·
L∑
`=1

n` · s`.

To cover the general case we put

r∗ = 2 rv1,a;

see Lemma 7 and Remark 3.

Lemma 14. For the cost of Q we have

costvar(Q , B(K)) ≤ 2 ·
L∑
`=1

sup
f∈Br∗ (Kv` )

E(costc`(Q`, f ))

in the variable subspace model.

Proof. Note that

costvar(Q , B(K)) ≤ sup
f∈B(K)

E(costc(Q , f )) ≤
L∑
`=1

sup
f∈B(K)

E(costc`(Q` ◦ (Ψ` − Ψ`−1), f )).

Moreover,

costc`(Q` ◦ (Ψ` − Ψ`−1), f ) ≤ 2 · costc`(Q`,Ψ`f − Ψ`−1f )

and Ψ`f − Ψ`−1f ∈ Br∗(Kv`) for f ∈ B(K); see Lemma 7. �

For the error of Q we obtain

E(I(f )− Q (f ))2 = (I(f )− I(ΨLf ))2 + Var(Q (f )) (23)

with

Var(Q (f )) =
L∑
`=1

Var (Q`(f − Ψ`−1f )) . (24)

If the building blocks Qn,1:s are unbiased randomized quadrature formulas, then, in the error analysis
for the multi-level algorithm, we might assume that an upper bound for the maximal error of Qn,1:s
is available that only depends on n. However, the maximal error is taken on the unit ball in H(K ′1:s)
instead of H(K1:s). In general, we have to consider the ball of radius r∗ in H(K1:s) and to provide an
error bound in terms of the norm in H(K ′1:s).
We first study the case of a kernel that satisfies (A2a), where we assume that s`+1 = s`+1 because

of the limitation in Theorem 3.

Theorem 4. Let a ∈ D, and assume that

(i) k satisfies (A2a),
(ii) γj � j−α with α > 1,
(iii) γ ′j � j

−α′ with 1 < α′ < α,
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(iv) there exist β, c > 0 such that

Var(Qn,s,a(f )) ≤ c‖f ‖2K ′1:s
n−2β

and

E(costc1:s,a(Qn,s,a, f )) ≤ c n s

for all n, s ∈ N and every f ∈ Br∗(K1:s).
Put

ρ1 =
α − 1
2β

, ρ2 =
α − α′ − 1
2β

.

For N ≥ 2 we choose

L =



⌈
N
1
ρ1

⌉
, if ρ2 > 2,⌈

(N/ lnN)
1
ρ1

⌉
, if ρ2 = 2,⌈

N
1

ρ1+2−ρ2

⌉
, if ρ2 < 2,

(25)

as well as

s` = ` (26)

and

n` = ds
−ρ2
` Lρ1e =


d`−ρ2 Ne, if ρ2 > 2,
d`−ρ2 N/ lnNe, if ρ2 = 2,⌈
`−ρ2 N

ρ1
ρ1+2−ρ2

⌉
, if ρ2 < 2,

(27)

for ` = 1, . . . , L. Then the corresponding multi-level algorithm QN given by (22) satisfies

e(QN , B(K)) � (lnN)1/2 ·


N−β , if α − α′ > 4β + 1,
(N/ lnN)−β , if α − α′ = 4β + 1,

N
−β α−1

α′+4β , if α − α′ < 4β + 1,

as well as

costvar(QN , B(K)) � N.

Proof. Throughout the following we do not indicate the dependence of the numbers s`, n` and L on
N . Assumptions (i), (iii), and (iv) together with Theorem 3 yield

Var
(
Qn`,s`,a(f − Ψ1:s`−1,af )

)
≤ c‖Ψ1:s`,a(f − Ψ1:s`−1,af )‖

2
K ′1:s`
· n−2β` � s−(α−α

′)
` · n−2β`

for every f ∈ B(K). Use assumptions (i) and (ii) together with Lemma 10 to get

b21:sL,a � s
−(α−1)
L .

Hence, by (23) and (24),

e2(QN , B(K)) �
L∑
`=1

s−(α−α
′)

` n−2β` + s−(α−1)L ,

and Lemma 14 together with assumption (iv) implies

costvar(QN , B(K)) �
L∑
`=1

n` · s`.
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Consequently,

e2(QN , B(K)) �
L∑
`=1

`−(α−α
′) n−2β` + L−(α−1)

� L−2β ρ1
L∑
`=1

`2β ρ2−(α−α
′)
� L−2β ρ1(ln L).

Furthermore, since ρ1 > ρ2,

costvar(QN , B(K)) � L2 + Lρ1
L∑
`=1

`1−ρ2

� L2 +

L
ρ1 , if ρ2 > 2,
Lρ1 (ln L), if ρ2 = 2,
Lρ1+2−ρ2 , if ρ2 < 2,

�

L
ρ1 , if ρ2 > 2,
Lρ1 (ln L), if ρ2 = 2,
Lρ1+2−ρ2 , if ρ2 < 2,

and it remains to observe that ln L � lnN . �

Nowwe consider the anchored case,where a better estimate, compared to the one fromTheorem4,
is obtained, since we may analyze any progression of the dimensions s`.

Theorem 5. Let a ∈ D. Assume that k satisfies (A2b)with a∗ = a and that the assumptions (ii)–(iv) from
Theorem 4 are satisfied. Put

ρ1 =
α − 1
2β

, ρ3 =
α − α′

2β
.

For N ≥ 2 we choose

L =

{⌈
lnN/ρ1

⌉
, if ρ3 ≥ 1,⌈

lnN/(ρ1 + 1− ρ3)
⌉
, if ρ3 < 1,

(28)

as well as

s` = 2` (29)

and

n` =
{
ds−ρ3` sρ1L e, if ρ3 6= 1,
ds−1` s

ρ1
L /Le, if ρ3 = 1,

(30)

for ` = 1, . . . , L. Then the corresponding multi-level algorithm QN given by (22) satisfies

e(QN , B(K)) � (lnN)1/2 ·


N−β , if α − α′ > 2β,
(N/ lnN)−β , if α − α′ = 2β,

N
−β α−1

α′−1+2β , if α − α′ < 2β,

as well as

costvar(QN , B(K)) � N.

Proof. We proceed as in the proof of Theorem 4 to obtain

e2(QN , B(K)) �
L∑
`=1

s−(α−α
′)

` n−2β` + s−(α−1)L

as well as

costvar(QN , B(K)) �
L∑
`=1

n` · s`.
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Assume ρ3 6= 1. Then s
−(α−α′)
` · n−2β` ≤ s−(α−1)L and consequently,

e2(QN , B(K)) � (L+ 1) · s
−(α−1)
L � (lnN) ·

{
N−2β , if ρ3 > 1,

N
−2β ρ1
ρ1+1−ρ3 , if ρ3 < 1.

Furthermore, we have s` · n` ≤ s
1−ρ3
` · sρ1L + s` and ρ1 > ρ3, which yields

costvar(QN , B(K)) �
L∑
`=1

(
s1−ρ3` · sρ1L + s`

)
� sρ1L + sL � s

ρ1
L � N

in the case ρ3 > 1, and

costvar(QN , B(K)) � s
ρ1+1−ρ3
L + sL � s

ρ1+1−ρ3
L � N

in the case ρ3 < 1.
Now consider the case ρ3 = 1. Then s

−(α−α′)
` · n−2β` ≤ s−(α−1)L · L2β and we obtain

e2(QN , B(K)) � (L2β+1 + 1) · s
−(α−1)
L � (lnN)2β+1 · N−2β .

Moreover, s` · n` ≤ s
ρ1
L /L+ s` and ρ1 ≥ 1, and we conclude that

costvar(QN , B(K)) �
L∑
`=1

(
sρ1L /L+ s`

)
� sρ1L � N,

which finishes the proof. �

5.3. Examples

As in Section 4.3 we study the case of ρ being the uniform distribution on D = [0, 1] and k given
by (4) or by (8). The building blocks of the multi-level algorithms are the ones that we have already
considered in Section 4.3, namely, scrambled QMC rules for the kernel (4) and classical MC rules for
the kernel (8).

Corollary 4. Assume that k is given by (4) and that

γj � j−α

for any α > 4. Let 0 < ε < min(6, α − 4) and put

ρ1 =
α − 1
3− ε/2

, ρ2 =
α − 5− ε
3− ε/2

.

Choose L, s` and n` according to (25), (26), and (27), respectively, and let a ∈ [0, 1]. Take the corresponding
multi-level algorithm QN according to (22) based on the scrambled QMC rules Qn,s,a provided by (15). Then

e(QN , B(K)) �
{
N−(3−ε)/2, if α ≥ 11,
N−(3−ε)/2

α−1
10 , if α < 11,

and

costvar(QN , B(K)) � N.

Proof. Consider the weights γ ′j = j
−(4+ε) and apply Theorem 4 with the constant c = cε/4 and

β = 3/2− ε/4 according to (17) to obtain costvar(QN , B(K)) � N as well as

e(QN , B(K)) � (lnN)1/2 ·


N−(3/2−ε/4), if α > 11,
(N/ lnN)−(3/2−ε/4), if α = 11,
N−(3/2−ε/4)

α−1
10 , if α < 11.

Clearly, the latter bound implies the error bound in the corollary. �
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Corollary 5. Assume that k is given by (8) and that

γj � j−α

for any α > 1. Let

ε ∈

{
]0, α − 1[, if α ≤ 2,
]0, α − 2[, if α > 2,

and put

ρ1 = α − 1, ρ3 = α − 1− ε/2.

Choose L, s` and n` according to (28), (29) and (30), respectively. Take the corresponding multi-level
algorithm QN according to (22) based on the classical MC rules Qn,s,0 given by (18). Then

e(QN , B(K)) �

{
(lnN)1/2 · N−1/2 if α > 2,

N−
α−1
2(1+ε) if α ≤ 2,

and

costvar(Qn, B(K)) � N.

Proof. Consider the weights γ ′j = j
−(1+ε/2) and apply Theorem 5 with a = 0 and β = 1/2 according

to (19) to obtain costvar(Qn, B(K)) � N and

e(QN , B(K)) � (lnN)1/2 ·

{
N−1/2 if α > 2,

N−
α−1

2(1+ε/2) if α ≤ 2.

The latter bound clearly implies the error bound in the corollary. �

Remark 6. For both kernels, (4) and (8), a comparison of fixed and variable subspace sampling can be
based on the lower bound from Corollary 3 and the respective upper bounds from Corollaries 2 and 4.
Like in Remark 4 we take a slightly simplified view and we define

λvar = sup{χ > 0 : sup
N∈N
eN,var(B(K)) · Nχ <∞}.

Clearly, λvar ≥ λfix.
If k is given by (4), and γj � j−α with α > 4, then

λvar ≥

{3/2, if α ≥ 11,
3/2 · (α − 1)/10, if 8 < α < 11,
3/2 · (α − 1)/(α + 2) if 1 < α ≤ 8.

Weconclude that variable subspace sampling is superior to fixed subspace sampling (at least) ifα > 8.
Moreover, the multi-level algorithm according to Corollary 4 is almost optimal (at least) if α ≥ 11,
since a classical result for one-dimensional integration impliesλvar ≤ 3/2; see the proof of Corollary 3.
For small values of α, however, our analysis of variable subspace sampling suffers from the limitations
in Theorem 3.
In the case of k given by (8) and γj � j−α with α > 1, we have

λvar ≥

{
1/2, if α > 2,
1/2 · (α − 1), if 1 < α ≤ 2,

which shows that variable subspace sampling is superior to fixed subspace sampling (at least) if
1 < α < 5/2. A better lower bound

λvar ≥ λfix ≥
α − 1
α + 1

, α > 3,
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which is due to [11], was already discussed in Remark 4. It would be interesting to know whether
suitable multi-level Monte Carlo algorithms outperform deterministic algorithms that use fixed
subspace sampling for α > 3.
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Appendix. Auxiliary results

Suppose that E = E1 × E2 with E1, E2 6= ∅, fix e2 ∈ E2, and let K denote a reproducing kernel on
E × E. Consider the linear mapping Ψ : RE → RE given by

(Ψ f )(x1, x2) = f (x1, e2), xj ∈ Ej,

and the reproducing kernel J on E × E defined by

J((x1, x2), (y1, y2)) = K((x1, e2), (y1, e2)).

Note that J 6= 0 iff there exists a point x1 ∈ E1 such that K((x1, e2), (x1, e2)) 6= 0. In particular, J = 0
might hold for a kernel K 6= 0.

Lemma 15. We have

{Ψ f : f ∈ H(K), ‖f ‖K ≤ 1} = {g ∈ H(J) : ‖g‖J ≤ 1}.

Proof. Consider the closed subspaces

H0 = {f ∈ H(K) : f |E1×{e2} = 0}

and

H⊥0 = span{K(·, x) : x ∈ E1 × {e2}}

of H(K). For f =
∑n
i=1 a

(i)K(·, (y(i)1 , e2))with a
(i)
∈ R and y(i)1 ∈ E1 we have

(Ψ f )(x1, x2) =
n∑
i=1

a(i)K((x1, e2), (y
(i)
1 , e2)) =

n∑
i=1

a(i)J((x1, x2), (y
(i)
1 , e2)),

which implies Ψ f ∈ H(J) and, by definition, ‖Ψ f ‖J = ‖f ‖K . The same conclusions hold for every
f ∈ H⊥0 , and furthermore Ψ (H

⊥

0 ) = H(J).
Let P denote the orthogonal projection onto H⊥0 . Clearly Ψ f = Ψ Pf for f ∈ H(K), so Ψ f ∈ H(J)

and ‖Ψ f ‖J = ‖Pf ‖K ≤ ‖f ‖K . �

We also consider the reproducing kernel L on E1 × E1 that is given by

L(x1, y1) = K((x1, e2), (y1, e2)).

Lemma 16. We have

H(J) = {f : E → R : ∃ g ∈ H(L)∀ x2 ∈ E2 : f (·, x2) = g}.

Proof. Let H denote the set on the right-hand side in Lemma 16. We define an inner product on H by

〈f , f ′〉 = 〈f (·, e2), f ′(·, e2)〉L,
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which turns H into a Hilbert space. Obviously, J(·, (y1, y2)) ∈ H and

〈f , J(·, (y1, y2))〉 = 〈f (·, e2), L(·, y1)〉L = 〈f (·, y2), L(·, y1)〉L = f (y1, y2)

for all (y1, y2) ∈ E1 × E2 and f ∈ H . �
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