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Abstract

We study relative Gromov–Witten theory via universal relations provided by the degeneration and localization
formulas. We find relative Gromov–Witten theory is completely determined by absolute Gromov–Witten theory.
The relationship between the relative and absolute theories is guided by a strong analogy to classical topology.

As an outcome, we present a mathematical determination of the Gromov–Witten invariants (in all genera) of the
Calabi–Yau quintic 3-fold in terms of known theories.
c© 2006 Elsevier Ltd. All rights reserved.
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0. Introduction

0.1. Overview

Let V be a nonsingular projective variety containing a nonsingular divisor W . All our varieties are
defined over C.

The absolute Gromov–Witten theory of V is defined by integrating descendent classes over the
moduli space of stable maps to V . The relative Gromov–Witten theory of the pair (V,W ) is defined by
descendent integration over the space of stable relative maps to V with prescribed tangency conditions
along W .

We present here a systematic study of relative Gromov–Witten theory via universal relations. We find
the relative theory does not provide new invariants. The relative theory is completely determined by the
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absolute theory. The relation between the relative and absolute theories is guided by a strong analogy to
classical topology.

Our results open new directions in the subject. For example, we present a complete mathematical
determination of the Gromov–Witten theory (in all genera) of the Calabi–Yau quintic hypersurface in P4.

0.2. Leray–Hirsch

Let X be a nonsingular projective variety equipped with a line bundle L . Let Y be the projective
bundle P(L ⊕OX ), and let π be the projection map,

π : Y → X.

The summands L and OX respectively determine divisors

D0, D∞ ⊂ Y

isomorphic to X via π .
We consider four descendent Gromov–Witten theories (in all genera) of the projective bundle Y : the

absolute Gromov–Witten theory of Y and the relative Gromov–Witten theories of the three pairs

(Y, D0), (Y, D∞), (Y, D0 ∪ D∞).

The first result of the paper is a reconstruction theorem for the Gromov–Witten theories of Y in terms of
X .

Theorem 1. All four theories of Y can be uniquely and effectively reconstructed from the
Gromov–Witten theory of X and the class c1(L) ∈ H2(X,Q).

Theorem 1 is proven in Section 1 by exhibiting an explicit set of recursions. The two main techniques
used are localization (with respect to the natural fiberwise C∗-action on Y ) and degeneration. Equivariant
relative invariants of P1 appear as constants in the recursions. We view Theorem 1 as a Leray–Hirsch
result in Gromov–Witten theory.

0.3. Relative in terms of absolute

Let V be a nonsingular projective variety containing a nonsingular divisor W . Let

N → W

be the normal bundle of W in V .
Let F be the degeneration to the normal cone of W , the blow-up of V ×C along the subvariety W ×0.

Let

ε:F → C

be the projection to the second factor. We find

ε−1(0) = V ∪W P(N ⊕OW )

where the inclusion

W ⊂ P(N ⊕OW )
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is determined by summand N . The degeneration formula [2,12,14,15] expresses the absolute
Gromov–Witten theory of V in terms of the relative theories of the pairs (V,W ) and (P(N ⊕OW ),W ).

Theorem 1 together with an inversion of the degeneration formula yields the following result proven
in Section 2.

Theorem 2. The relative Gromov–Witten theory of the pair (V,W ) can be uniquely and effectively
reconstructed from the absolute theory of V , the absolute theory of W , and the restriction map
H∗(V,Q) → H∗(W,Q).

We view Theorem 2 as a Gromov–Witten analogue of the standard long exact sequence relating
absolute and relative cohomology theories.

0.4. Mayer–Vietoris

Let V be a nonsingular projective variety, and let

ε : V → ∆

be a flat family over a disk ∆ ⊂ C at the origin satisfying:

(i) V is nonsingular,
(ii) ε is smooth over the punctured disk ∆∗

= ∆ \ {0},
(iii) ε−1(1) ∼= V ,
(iv) ε−1(0) = V1 ∪W V2 is a normal crossings divisor in V .

The family ε defines a canonical map

H∗(V1 ∪W V2,Q) → H∗(V,Q)

with image defined to be the nonvanishing cohomology of V .
The degeneration formula and Theorem 2 together yield a Mayer–Vietoris result.1

Theorem 3. The Gromov–Witten theory of the nonvanishing cohomology of V can be uniquely and
effectively reconstructed from the absolute theories of V1, V2, and W and the restriction maps

H∗(V1,Q) → H∗(W,Q), H∗(V2,Q) → H∗(W,Q).

0.5. Hypersurfaces

0.5.1. Hypersurface pairs
A hypersurface pair (V,W ) is a nonsingular hypersurface V ⊂ Pr together with a nonsingular divisor

W ⊂ V defined by a complete intersection in Pr .
Let β ∈ H2(V,Z) be a curve class. Let Eµ be an ordered partition,∑

j

µ j =

∫
β

[W ],

1 If H2(V,Z) has torsion τ , the Gromov–Witten theory of V determined by Theorem 3 is defined with curve classes valued
in H2(V,Z)/τ . Torsion differences can be lost in degeneration. However, torsion collapsing is not required for Theorems 1 and
2.



890 D. Maulik, R. Pandharipande / Topology 45 (2006) 887–918

with positive parts. The moduli space Mg,n(V/W, β, Eµ) parameterizes stable relative maps from genus
g, n-pointed curves to V of class β with multiplicities along W determined by Eµ.

The relative conditions in the theory correspond to partitions weighted by the cohomology of W . Let
δ1, . . . , δmW be a basis of H∗(W,Q). A cohomology weighted partition ν consists of an unordered set
of pairs,{

(ν1, δs1), . . . , (ν`(ν), δs`(ν))
}
,

where
∑

j ν j is an unordered partition of
∫
β
[W ]. The automorphism group, Aut(ν), consists of

permutation symmetries of ν.
The standard order on the parts of ν is

(νi , δsi ) > (νi ′, δsi ′
)

if νi > νi ′ or if νi = νi ′ and si > si ′ . Let Eν denote the partition (ν1, . . . , ν`(ν)) obtained from the standard
order.

The descendent Gromov–Witten invariants of the hypersurface pair are defined by integration against
the virtual class of the moduli of maps. Let γ1, . . . , γmV be a basis of H∗(V,Q), and let

〈
τk1(γl1) · · · τkn (γln ) | ν

〉V/W
g,β =

1
|Aut(ν)|

∫
[Mg,n(V/W,β,Eν)]vir

n∏
i=1

ψ
ki
i ev∗

i (γli ) ∪

`(ν)∏
j=1

ev∗

j (δs j ).

Here, the second evaluations,

ev j : Mg,n(V/W, β, Eν) → W

are determined by the relative points.
Gromov–Witten invariants are defined (up to sign) for unordered weighted partitions ν. To fix the

sign, the integrand on the right side requires an ordering. The ordering is corrected by the automorphism
prefactor.

0.5.2. Simple classes
A class γ ∈ H∗(V,Q) is simple if γ lies in the image of the restriction map

H∗(Pr ,Q) → H∗(V,Q).

The simple Gromov–Witten theory of V consists of the integrals of descendents of simple classes.
Similarly, the simple Gromov–Witten theory of the pair (V,W ) consists of integrals of descendents
of simple classes with no restrictions on the cohomology classes of W in the relative constraints.

A refinement of Theorem 2 proven in Section 2 is valid for the geometry of the hypersurface pair
(V,W ).

Corollary 1. The simple Gromov–Witten theory of a hypersurface pair (V,W ) can be uniquely and
effectively reconstructed from the simple Gromov–Witten theory of V , the full Gromov–Witten theory of
W , and the restriction map H∗(V,Q) → H∗(W,Q).

0.5.3. Curves, surfaces, and 3-folds
Nonsingular curves have a rich Gromov–Witten theory including descendents of odd classes. The

Gromov–Witten theory of curves is fully determined in [20–22].
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Nonsingular surfaces in P3 of degree up to 3 are rational with Gromov–Witten theories determined by
localization [9,10]. The K 3 surface in degree 4 is holomorphic symplectic — hence all Gromov–Witten
invariants of the K 3 vanish for nonconstant maps [1]. We will present a complete scheme for calculating
the simple Gromov–Witten theory of surfaces of degree 5 and higher.

Nonsingular 3-folds in P4 are determined by localization methods only in degrees 1 and 2. We present
a complete scheme for calculating the simple Gromov–Witten theory of hypersurfaces of degree 3, 4,
and 5 in P4.

Gromov–Witten theory is not interesting for 3-fold hypersurfaces of degree greater than 5 in P4 since
the moduli spaces of nonconstant maps have negative dimension.

0.5.4. Calculation scheme
Let X ⊂ Pr be a generic hypersurface of degree d ≥ 2 with equation f . Let

h = h1h2

be a product of generic polynomials of degree d − 1 and 1. Let t be a coordinate on C. The ideal

(t f − h)

determines a subvariety

X ⊂ Pr
× C

flat over C. The generic element of the family is a nonsingular hypersurface. The fiber over 0 ∈ C is a
union,

X0 = X1 ∪I X2,

of a hypersurface X1 with equation h1 and a hyperplane X2 with equation h2 along a complete
intersection I ⊂ Pr of type (d − 1, 1).

The total space of X is singular. The singular locus of X over 0 ∈ C is a complete intersection S ⊂ Pr

of type (d, d − 1, 1) contained in I . Locally analytically, the singularities of X over 0 ∈ C are translates
of the 3-fold double point.

Let X̃ denote the blow-up of X along the Weil divisor X2. The total space X̃ is nonsingular over
0 ∈ C. The fiber over 0 ∈ C is a union,

X̃0 = X1 ∪I X̃2,

where X1 and I are as before and X̃2 is the blow-up of X2 along S.
By the degeneration formula, the simple Gromov–Witten theory of X is determined by the simple

Gromov–Witten theories of the pairs (X1, I ) and (X̃2, I ). By Corollary 1, the simple Gromov–Witten
theory of (X1, I ) is determined by the simple theory of X1 and the full theory of I . The simple
Gromov–Witten theory of (X̃2, I ) requires, in addition, the simple theory of X̃2.

By the application of Lemma 1 of Section 0.5.5 below to X̃2, we conclude the simple Gromov–Witten
theory of X is determined by the simple theories of the hypersurfaces

X1, X2 ⊂ Pr

of lower degree and the full theories of the varieties I and S of lower dimension.
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0.5.5. Blow-up lemma
Let V be a nonsingular, projective variety. Let Z ⊂ V be the nonsingular complete intersection of

two nonsingular divisors

W1,W2 ⊂ V,

and let Ṽ be the blow-up of V along Z .

Lemma 1. The Gromov–Witten theory of Ṽ is uniquely and effectively determined by the
Gromov–Witten theories of V , W1, and Z and the restriction maps

H∗(V,Q) → H∗(W1,Q) → H∗(Z ,Q).

Only the absolute Gromov–Witten theory of one of the divisors is needed in Lemma 1. However, an
optimal result should avoid both divisors. Lemma 1 is proven in Section 3.

0.5.6. Surfaces
The calculation scheme determines the simple Gromov–Witten invariants of surfaces of degree d ≥ 5

in P3.
For example, the simple Gromov–Witten theory of the degree 5 surface S5 is determined in terms of

the Gromov–Witten theories of the following spaces:

P2, S4, C4, P0,

where S4 is a K 3 surface and C4 is a nonsingular quartic plane curve.
For surfaces of general type, Gromov–Witten invariants in the adjunction genus with primary field

insertions are determined by gauge theory: Taubes’ tetrology connects these Gromov–Witten invariants
to Seiberg–Witten theory [23–26]. In Section 3.3, we present a calculation of

〈1〉
S5
6,K = −1

by our method. The structure of Gromov–Witten theory in other genera or with descendent insertions is
not known.2

0.5.7. 3-folds
The calculation scheme determines the simple Gromov–Witten invariants of hypersurfaces of degree

3, 4, and 5 in P4 in terms of known theories.
The Calabi–Yau quintic 3-fold Q ⊂ P4 appears to be the most difficult hypersurface captured by the

scheme. The Gromov–Witten invariants of Q are determined in terms of the Gromov–Witten theories of
the following spaces:

P3, P2, S2, S3, S4, C1,2, C2,3, C3,4, C4,5.

Here, Sd ⊂ P3 is a nonsingular degree d surface, and Cd1,d2 ⊂ P3 is a nonsingular complete intersection
curve of type (d1, d2).

The quintic scheme, the first mathematical determination of the Gromov–Witten theory of Q, is
presented in Section 3.2.

2 See [13,18] for recent progress.
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0.5.8. Further directions
Our calculation scheme using degeneration and Mayer–Vietoris can be pursued in several other

contexts — hypersurfaces are treated here as the first illustration of the method. For example, the
simple Gromov–Witten theories of all surface and 3-fold complete intersections in projective space are
determined similarly. See [18] for further directions.

0.6. Gathmann’s proposal

Our last topic concerns Gathmann’s proposal for the calculation of higher genus Gromov–Witten
invariants of the quintic Q ⊂ P4.

Gathmann has studied the Gromov–Witten invariants of Q in genus 0 and 1 via a relation to the
Gromov–Witten theory of P4 — the opposite direction of the scheme discussed in Section 0.5. Theorem 1
allows us to pursue Gathmann’s proposal in all genera.

Let G be the blow-up of P4
× C along the subvariety Q × 0. Let

ε : G → C

be the projection to the second factor. We find

ε−1(0) = P4
∪Q P(OQ(5)⊕OQ)

where the inclusion

Q ⊂ P(OQ(5)⊕OQ)

is determined by the summand OQ(5).
The degeneration formula [2,12,14,15] expresses the absolute Gromov–Witten theory of P4 in terms

of the relative theories of the pairs (P4, Q) and (P(OQ(5) ⊕ OQ), D0). The absolute Gromov–Witten
theory of P4 may be computed by several methods [7,9,10]. Theorem 1 reduces the relative theory of
(P(OQ(5)⊕OQ), D0) to the absolute theory of Q. The degeneration formula then provides a system of
equations for the relative invariants of (P4, Q) and the Gromov–Witten invariants Ng,d of Q.

Conjecture 1. The system of equations obtained from the degeneration formula and Theorem 1
determines both the relative theory of the pair (P4, Q) and the Gromov–Witten invariants Ng,d
of Q.

Gathmann pursued the above method in genus 0 and 1 [5,6,8] via a different approach to the reduction
of the relative theory of the pair

(P(OQ(5)⊕OQ), D0)

to the absolute theory of Q. Theorem 1, however, is valid for all genera. Gathmann’s method and
Theorem 1 together provide a computation scheme for all Ng,d so long as the arising equations are
nonsingular.

We have proven Conjecture 1 in genus 2.3 Even if the nonsingularity is not known beforehand, the
computation can be undertaken in genus g ≥ 3. Gathmann’s proposal, though difficult and not yet
certain for all genera, appears more suitable for calculations than the complete quintic scheme discussed
in Section 0.5.

3 The proof is omitted here.
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A very different approach to the Gromov–Witten theory of Q in genus 1 has been advanced in a series
of papers by Zinger and collaborators [16,27–29].

1. Leray–Hirsch

1.1. Notation

1.1.1. Cohomology
Let X be a nonsingular projective variety equipped with a line bundle L , and let Y be the projective

bundle

π : P(L ⊕OX ) → X

with sections D0, D∞ corresponding to the summands L , OX respectively.
Let δ1, . . . , δm X be a basis of H∗(X,Q) containing the identity element. We will often denote the

identity by δId. The degree of δi is the real grading in H∗(X,Q). We view δi as an element of H∗(Y,Q)
via pull-back by π .

Let [D0], [D∞] ∈ H2(Y,Q) denote the cohomology classes associated to the divisors. Define classes
in H∗(Y,Q) by

γi = δi ,

γm X +i = δi · [D0],

γ2m X +i = δi · [D∞].

We will use the following notation:

γ δi = δi mod m X ,

γ D
i = 1, [D0], or [D∞].

The second assignment depends upon the integer part of (i − 1)/m X . The set {γ1, . . . , γ2m X } determines
a basis of H∗(Y,Q).

1.1.2. Theorem 1 for the absolute theory of Y
There is a fiberwise C∗-action on Y determined by scaling the second factor in the sum L ⊕OX . The

absolute theory of Y can be directly computed via the virtual localization formula of [10].
The C∗-action on Y induces a canonical C∗-action on the moduli space of stable maps Mg,n(Y, β).

The C∗-fixed loci of Mg,n(Y, β) are determined by bipartite graphs. The vertices correspond to spaces
of stable maps to D0 or D∞ — both targets are canonically isomorphic to X . The virtual localization
formula reduces the Gromov–Witten invariants of Y to Hodge integrals in the Gromov–Witten theory
of X . The Hodge insertions may be removed by the relations of [3]. The proof of Theorem 1 for the
absolute theory of Y is complete.

1.1.3. Brackets
We will use the following bracket notation for the Gromov–Witten invariants of the pair (Y, D0):〈

µ

∣∣∣∣∣∏
i

τki (γli )

〉
g,β

=
1

|Aut(µ)|

∫
[Mg,n(Y/D0,β, Eµ)]

vir

∏
i

ψ
ki
i ev∗

i (γli ) ∪

∏
j

ev∗

j (δr j ),
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where

µ = {(µ1, δr1), . . . , (µ`(µ), δr`(µ))}

is a partition weighted by the cohomology of X and∑
j

µ j =

∫
β

[D0].

Relative invariants are defined only when
∫
β
[D0] ≥ 0.

For the pair (Y, D∞), the relative conditions will be written on the right side of the bracket:〈∏
i

τki (γli )

∣∣∣∣∣ ν
〉

g,β

.

The invariants of the pairs (Y, D0) and (Y, D∞) are termed type I.
For the pair (Y, D0 ∪ D∞), the relative conditions for D0 will be written on the left side and the

relative conditions for D∞ will be written on the right side:〈
µ

∣∣∣∣∣∏
i

τki (γli )

∣∣∣∣∣ ν
〉

g,β

.

The invariants of (Y, D0 ∪ D∞) are termed type II.
The above brackets denote Gromov–Witten invariants with connected domain curves. Disconnected

invariants arise naturally in the degeneration formula. We will treat disconnected invariants as products
of connected invariants except in the study of rubber targets in Section 1.5. However, our proof of
Theorem 1 is valid without assuming the product rule. The connected/disconnected issue will be
discussed carefully in Section 1.8.

1.1.4. Partition terminology
The following constants associated to a weighted partition µ will arise often:

• deg(µ) =
∑

i deg(δri ), the total degree of the cohomology weights,
• Id(µ) equals the number occurrences of the pair (1, δId) in µ,
• z(µ) =

∏
i µi · |Aut(µ)|.

We assume the cohomology basis δ1, . . . , δm X is self dual with respect to the Poincaré pairing.
Then, to each weighted partition µ, a dual partition µ∨ is defined by taking the Poincaré duals of the
cohomology weights.

1.1.5. Orderings
All Gromov–Witten invariants 〈, 〉g,β vanish if

β ∈ H2(Y,Z)

is not an effective curve class. We define a partial ordering on H2(Y,Z) as follows:

β ′ < β

if β − β ′ is a nonzero effective curve class.
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The set of pairs (m, δ) where m ∈ Z>0 and δ ∈ H∗(X,Q) is partially ordered by the following size
relation

(m, δ) > (m′, δ′) (1)

if m > m′ or if m = m′ and deg(δ) > deg(δ′).
Let µ be a partition weighted by the cohomology of X ,

µ = {(µ1, δr1), . . . , (µ`(µ), δr`(µ))}.

We may place the pairs of µ in decreasing order by size (1). A lexicographic ordering on weighted
partitions is defined as follows:

µ
l
>µ′

if, after placing µ and µ′ in decreasing order by size, the first pair for which µ and µ′ differ in size is
larger for µ.

1.2. Fiber classes

Let [F] ∈ H2(Y,Z) denote the class of a fiber of π . The fiber class invariants of type I and II are those
for which β is a (possibly zero) multiple of [F]. Our first goal is to calculate the fiber class invariants of
both types in terms of the classical cohomology of X .

Consider a connected type I invariant of a fiber class,〈
µ

∣∣∣∣∣∏
i

τki (γli )

〉
g,d[F]

. (2)

We determine the fiber class invariant (2) from the equivariant theory of P1.
The moduli space of stable relative maps

MY = Mg,n(Y/D0, d[F], Eµ),

is fibered over X ,

π : MY → X,

with fiber isomorphic to the moduli space of maps to P1 relative to 0,

MP1 = Mg,n(P1/0, d, Eµ).

In fact, MY is the fiber bundle constructed from the principal C∗-bundle associated to L and a standard
C∗-action on MP1 .

The π -relative obstruction theory of MY is obtained from the MP1-fiber bundle structure over X . The
relationship between the π -relative virtual fundamental class [MY ]

virπ and the virtual fundamental class
[MY ]

vir is given by the equation

[MY ]
vir

= ctop(E � TX ) ∩ [MY ]
virπ (3)

where E is the Hodge bundle. We may rewrite (3) as
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[MY ]
vir

=

∑
q

hq (c1(E), c2(E), . . .) tq (c1(TX ), c2(TX ), . . .) ∩ [MY ]
virπ

where hq and tq are polynomials.
The invariant (2) can then be computed by pairing cohomology classes in X with the results of

equivariant integrations in the Gromov–Witten theory of MP1 . We write〈
µ

∣∣∣∣∣∏
i

τki (γli )

〉
g,d[F]

=
1

|Aut(µ)|

∑
q

∫
X

(
tq
∏

i

γ δli

∏
j

δr j ∩ π∗

(
hq

∏
i

ψ
ki
i ev∗

i (γ
D

li ) ∩ [MY ]
virπ

))
. (4)

The interior push-forward

π∗

(
hq

∏
i

ψ
ki
i ev∗

i (γ
D

li ) ∩ [MY ]
virπ

)
is obtained from the corresponding Hodge integral in the equivariant Gromov–Witten theory of P1/0
after replacing the hyperplane class on CP∞ by c1(L).

The argument for the pairs (Y, D∞) and (Y, D0∪D∞) is identical. The required Hodge integrals in the
equivariant relative Gromov–Witten theory of P1 are fully determined by the Hodge removal equations
of [3,17] and the results of [20,21].

1.3. Distinguished type II invariants

Distinguished invariants of type II are integrals for which there is a distinguished marked point p with
a pure cohomology condition of the form [D0] · δ where

deg(δ) > 0.

We will write distinguished invariants as

〈µ|τ0([D0] · δ) · ω|ν〉g,β

where τ0([D0] · δ) is the distinguished insertion and ω denotes the product of the non-distinguished
insertions. Let ‖ω‖ denote the number of non-distinguished insertions.

We will compute distinguished type II invariants by an inductive algorithm. A partial ordering
◦
< on

the set of distinguished type II invariants is defined as follows:〈
µ′

|τ0([D0] · δ′) · ω′
|ν′
〉
g′,β ′

◦
< 〈µ|τ0([D0] · δ) · ω|ν〉g,β

if one of the conditions below holds

(1) β ′ < β,
(2) equality in (1) and g′ < g,
(3) equality in (1)–(2) and ‖ω′

‖ < ‖ω‖,
(4) equality in (1)–(3) and deg(µ′) > deg(µ),
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(5) equality in (1)–(4) and deg(ν′) > deg(ν),
(6) equality in (1)–(5) and deg(δ′) > deg(δ),

(7) equality in (1)–(6) and ν′
l
> ν.

For any given distinguished invariant of type II, there are only finitely many distinguished invariants
of type II lower in the partial ordering. Our algorithm consists of relations between type I and type II
invariants which allow us to move down the partial ordering.

1.4. Relation 1

Relation 1 expresses a distinguished invariant of type II in terms of type I invariants and strictly lower
distinguished invariants of type II with respect to

◦
<.

Fix g and β > 0. Type I and II invariants of genus g and class β will be viewed as principal terms of
the equations below. All type I and II invariants of Y with

β ′ < β

or

β ′
= β and g′ < g

are viewed as non-principal terms. The non-principal terms are inductively determined and, therefore,
omitted in the equations.

Let R denote the distinguished type II invariant

〈µ|τ0([D0] · δ) · ω|ν〉g,β

with deg(δ) > 0 and relative conditions

µ = {(µi , δri )}, ν = {(ν j , δs j )}.

Relation 1. We have

〈µ|τ0([D0] · δ) · ω|ν〉g,β C =

〈
µ

∣∣∣∣∣τ0([D0] · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

−

∑
R̃g,βdistinguished type II

R̃
◦
< R

R̃ C R̃,R

−

∑
‖ω′‖≤‖ω‖

deg(µ′)≥deg(µ)+1

Cµ′,ω′

〈
µ′

∣∣∣∣∣ω′
∏

j

τν j −1([D∞] · δs j )

〉
g,β

− · · · ,

where

C =

∏
j

1
(ν j − 1)!

(∫
β

[D∞]

)Id(ν)

6= 0

and the coefficients C∗,∗ are fiber class integrals. The dots stand for non-principal terms of type I and II.
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Proof. Consider the Gromov–Witten invariant of the pair (Y, D0) obtained by replacing the relative
conditions ν along D∞ of R by the insertions

θ =

∏
j

τν j −1([D∞] · δs j ).

The resulting type I invariant,〈
µ

∣∣∣∣∣τ0([D0] · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

, (5)

is the first term on the right side of Relation 1. We will obtain Relation 1 by computing (5) via
degeneration to the normal cone of D∞.

The special fiber of the degeneration to the normal cone of D∞ is a union of two copies of Y ,

Y1 ∪D Y2,

along a divisor D. The intersection D is identified with D∞ on Y1 and D0 on Y2.
The degeneration formula expresses (5) in terms of type II invariants on Y1 and type I invariants on

Y2 relative to D0:

〈µ | τ0([D0] · δ) · ωθ〉g,β =

∑
〈µ|τ0([D0] · δ) · ω1|η〉

•
g1,β1

z(η)
〈
η∨

| ω2θ
〉•
g2,β2

.

The sum on the right is over all splittings of g and β, all distributions of the insertions of ω,
all intermediate cohomology weighted partitions η, and all configurations of connected components
yielding a connected total domain. The invariants on the right are possibly disconnected — indicated by
the superscript •. The subscript gi denotes the arithmetic genus of the total map to Yi .

Let {(ηk, ρk)} be the parts of η. We may assume the insertions of ω with cohomology classes divisible
by [D0] and [D∞] are distributed to Y1 and Y2 respectively. Hence, the invariants of Y1 are distinguished.
For a given distribution,∫

β1

[D∞] =

∫
β2

[D0].

Since we are omitting non-principal terms, we may assume either β1 = β or β2 = β.
Case 1: β1 = β.

The principal terms from Y1 will be shown to be either R or a distinguished invariant of type II lower
than R in our ordering.

Let fi : Ci → Yi be the elements of the relative moduli spaces for a fixed splitting. The condition
β1 = β forces β2 to be a multiple of the fiber class [F]. Let `(η) denote the length of η. We find

g = g1 + g2 + `(η)− 1.

Since β2 is a fiber class, every connected component of C2 intersects D0 and contains at least one relative
marking. Hence,

g2 ≥ 1 − `(η).

We conclude g ≥ g1 with equality if and only if C2 consists of rational components, each totally ramified
over D0. Since an invariant in the degeneration formula with g > g1 is non-principal, we consider only
the extremal configurations.
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If any of the insertions of ω are distributed to Y2, the type II invariant of Y1 will be strictly lower than
R with respect to

◦
<. These principal contributions appear in the second term on the right of Relation 1.

We must analyze the case in which C2 consists of rational components totally ramified over D0 and
the only non-relative insertions on Y2 are given by θ .

The distribution of the `(ν) insertions of θ among the `(η) rational components of C2 decomposes ν
into `(η) cohomology weighted partitions

ν =

`(η)∐
k=1

π (k),

where we allow empty weighted partitions. Here,

π (k) = {(ν(k)n1
, δ

i (k)1
), . . . , (ν(k)ns

, δ
i (k)s
)}.

Then, for each k,

deg(π (k)) =

∑
deg(δ

i (k)j
) ≤ deg(ρk). (6)

We conclude

deg(ν) ≤ deg(η).

By the ordering
◦
<, a strict inequality in (6) implies a strictly lower invariant. We consider only the case

where equality holds in (6) for each k.
The dimension constraint for Y2 yields the equality

ηk − 1 =

`(π (k))∑
j=1

(π
(k)
j − 1) (7)

on each component of the domain C2.
Consider the weighted partition π (k) containing the largest element (ν1, δi1) of ν in the size ordering.

By formula (7), either

ηk > ν1

or ηk = ν1 and all the other pairs of π (k) are of the form (1, δ). In the second case, either

deg(ρk) > deg(δi1)

or ρk = δi1 and all the other pairs of π (k) are of the form (1, δId). Therefore, either η is larger than ν in

the lexicographic ordering and corresponds to a type II invariant strictly lower than R in the
◦
< ordering,

or the maximal pairs of η and ν agree.
We now repeat the above analysis for the second largest element of ν and continue until all the

elements of η are exhausted. We find either a strictly smaller type II invariant in the
◦
< ordering or

η = ν.

In the latter case, we recover R.
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The normalization of θ sets the coefficient of R in the degeneration formula to equal∏
j

1
(v j − 1)!

(∫
β

[D∞]

)Id(ν)

.

The coefficient is a product of z(ν) with genus 0 fiber class integrals. The fiber class integrals are
evaluated using the Gromov–Witten/Hurwitz correspondence of [20] and the divisor equation.
Case 2: β2 = β.

The principal terms from Y2 will be shown to be type I invariants of the form of the third term on the
right of Relation 1.

Let fi : Ci → Yi be the elements of the relative moduli spaces for a fixed splitting. The condition
β2 = β forces β1 to be a multiple of the fiber class [F]. As before, after neglecting lower terms, we may
assume C1 consists of `(η) rational components, each totally ramified over D∞.

The distribution of the `(µ) relative markings among the `(η) rational components of C1 decomposing
µ into `(η) cohomology weighted partitions

µ =

`(η)∐
k=1

π (k),

where empty weighted partitions are not allowed.
If the kth component of C1 does not contain the distinguished marked point, then

deg(π (k))+ deg(ρk) ≤ dimR(X)

since all these classes are pulled-back from the same projection map to X . If the kth component of C1
does contain the distinguished marked point, then

deg(π (k))+ deg(ρk) ≤ dimR(X)− 1

since there is an additional class of nonzero degree from the distinguished marking. The result follows
since the cohomology weights of η∨ are Poincaré dual to the classes ρk . �

1.5. Rubber calculus

1.5.1. Rubber targets
We will study the Gromov–Witten theory of the pair (Y, D0) via virtual localization [10,11] with

respect to the natural fiberwise C∗-action on Y discussed in Section 1.1.2.
The C∗-action on Y induces a canonical C∗-action on the moduli space of stable relative maps to the

pair (Y, D0). The C∗-fixed loci of the latter action involve stable relative maps to non-rigid targets. Let

M
•

= M
•

g,n(Y/D0 ∪ D∞, β, Eµ, Eν)

denote the moduli space of stable maps to Y relative to both divisors, and let

M
•∼

= M
•∼

g,n(Y/D0 ∪ D∞, β, Eµ, Eν)

denote the corresponding space of stable maps to a non-rigid target — termed a rubber target in [4,22].
Let

ε: M
•

→ M
•∼

be the canonical forgetful map.
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The superscripted • indicates the moduli spaces M
•

and M
•∼

may parameterize maps with
disconnected domains with specified genus and class distributions. The latter data is not made explicit in
our notation. The subscripted g is the arithmetic genus of the total domain. Similarly, the brackets 〈, 〉•

and 〈, 〉•∼ will denote invariants with possibly disconnected domains. There is no product rule relating
connected and disconnected rubber invariants.

1.5.2. Cotangent classes
The moduli space M

•
and M

•∼
carry tautological cotangent line bundles L0 and L∞ determined by

the relative divisors. The associated cotangent line classes

Ψ0 = c1(L0), Ψ∞ = c1(L∞),

play an important role in relative Gromov–Witten theory.
Let pr1 and pr2 denote the projections onto the first and second factors of the product

D0 × M
•
.

Let τ : T → M
•

denote the universal family of targets over the moduli space, and let

ι : D0 × M
•

→ T

denote the inclusion of the relative divisor. The cotangent line determined by D0 is defined by

L0 = pr2∗

(
Conorm(ι)⊗ pr1

∗(Norm(Y/D0))
)
, (8)

where Conorm(ι) is the conormal bundle of the embedding ι and

Norm(Y/D0) = L∗

is the normal bundle of D0 in Y . The push-forward (8) is easily seen to define a line bundle L0.
The line bundle L∞ on M

•
is similarly defined. The constructions in the rubber case are identical.

1.5.3. Rigidification
The following rigidification lemma plays a fundamental role in our localization analysis.

Lemma 2. Let p be a non-relative marking with evaluation map

evp : M
•

→ Y.

Then,

[M
•∼

]
vir

= ε∗

(
ev∗

p([D0]) ∩ [M
•
]
vir
)

= ε∗

(
ev∗

p([D∞]) ∩ [M
•
]
vir
)
.

Proof. The forgetful map ε is equivariant with respect to the canonical C∗-action on M
•

induced from
the fiberwise C∗-action on Y and the trivial C∗-action on M

•∼
. We prove the first equality by C∗-

localization.
A stable relative map corresponding to an element of a typical C∗-fixed locus of M

•
is a union of

three basic submaps:
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(i) a nonrigid stable map to the degeneration of Y over D0,
(ii) a nonrigid stable map to the degeneration of Y over D∞,

(iii) a collection of C∗-invariant, fiber class, rational Galois covers joining (i)–(ii).

The forgetful map simply contracts the intermediate rational curves (iii).
Assuming we have a proper degeneration on each side of Y , the virtual dimension of the C∗-fixed

locus is 2 less than the virtual dimension of M
•
. Since the dimension of

ε∗

(
ev∗([D0]) ∩ [M

•
]
vir
)

(9)

is only 1 less than the virtual dimension of M
•
, the contributions of the above loci cancel in the

computation of the push-forward (9).
The only fixed loci which may contribute are those with target degeneration on only one side of

Y . Since the marking p is constrained by an insertion of [D0], we need only consider degenerations
along D0.

There is a unique C∗-fixed locus which provides non-cancelling contributions to the push-forward (9).
Moreover, the C∗-fixed locus is isomorphic to M

•∼
. The contribution,

−ev∗
p(c1(L))+ t

−Ψ∞ + t
∩ [M

•∼
]
vir,

is obtained from the virtual localization formula. Here, Ψ∞ is the cotangent line class on M
•∼

at the
relative divisor D∞. By dimension considerations, the only non-cancelling part is [M

•∼
]
vir — proving

the first equality. The proof of the second equality is identical. �

1.5.4. Dilaton and divisor
As before, let Ψ∞ denote the cotangent line class on M

•∼
at the relative divisor D∞. The dilaton

equation for rubber integrals is〈
µ

∣∣∣∣∣τ1(1)
n∏

i=1

τki (γli )Ψ
k
∞

∣∣∣∣∣ ν
〉•∼

g,β

= (2g − 2 + n + `(µ)+ `(ν))

〈
µ

∣∣∣∣∣τ1(1)
n∏

i=1

τki (γli )Ψ
k
∞

∣∣∣∣∣ ν
〉•∼

g,β

.

The divisor equation for H ∈ H2(X,Q), however, takes a modified form:〈
µ

∣∣∣∣∣τ0(H)
n∏

i=1

τki (γli )Ψ
k
∞

∣∣∣∣∣ ν
〉•∼

g,β

=

(∫
π∗(β)

H

)
·

〈
µ

∣∣∣∣∣ n∏
i=1

τki (γli )Ψ
k
∞

∣∣∣∣∣ ν
〉•∼

g,β

+

n∑
j=1

〈
µ

∣∣∣. . . τk j −1(γl j · H) . . .Ψ k
∞

∣∣∣ ν〉•∼

g,β

+

`(ν)∑
j=1

〈
µ

∣∣∣∣∣ n∏
i=1

τki (γli )Ψ
k−1
∞

∣∣∣∣∣ {. . . (ν j , δs j · H) . . .}

〉•∼

g,β

· ν j .

The dilaton and divisor equations are proven by the standard cotangent line comparison method.
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1.5.5. Calculus I: Fiber class
The rubber calculus relates Gromov–Witten rubber invariants with Ψ∞ insertions to Gromov–Witten

invariants of the pair (Y, D0 ∪ D∞).
Consider first a rubber integral with descendent insertions ω for which β is a multiple of the fiber

class:〈
µ

∣∣∣ω Ψ k
∞

∣∣∣ ν〉•∼

g,β
. (10)

A contracted genus 0 component of the domain must carry at least 3 non-relative markings by stability.
Similarly, a contracted genus 1 domain component must carry at least 1 non-relative marking. A non-
contracted domain component must carry at least 2 relative markings — the intersection points with D0
and D∞. Finally, by target stability, not all domain components can be genus 0 and fully ramified over
D0 and D∞. We conclude

2g − 2 + n + `(µ)+ `(ν) > 0.

Therefore, the fiber class rubber integral (10) is determined by〈
µ

∣∣∣τ1(1) · ω Ψ k
∞

∣∣∣ ν〉•∼

g,β
(11)

and the dilaton equation.
Let p denote the marked point carrying the insertion τ1(1) in the rubber integral (11). There is a

canonical map to the Artin stack of genus 0, 3-pointed curves,

α : M
•∼

→ M0,3.

Given [ f ] ∈ M
∼

, α( f ) is the genus 0 curve

C f = π−1 (π( f (p)))

with the 3 markings determined by

D0 ∩ C f , f (p), D∞ ∩ C f .

The class

Ψ∞ − ev∗
p(c1(L))

is the pull-back of the cotangent line of the third marking on the Artin stack.
The topological recursion relation with respect to the cotangent class of the third marking of M0,3

can be pulled-back via α:〈
µ

∣∣∣τ1(1) · ω Ψ k
∞

∣∣∣ ν〉•∼

g,β
=

〈
µ

∣∣∣τ1(c1(L)) · ω Ψ k−1
∞

∣∣∣ ν〉•∼

g,β

+

∑
〈µ |τ1(1) · ω1| η〉

•∼
g1,β1

z(η)
〈
η∨

∣∣∣ω2Ψ k−1
∞

∣∣∣ ν〉•∼

g2,β2
,

where the sum is over all splittings of g and β, all distributions of the insertions, and all intermediate
cohomology weighted partitions.

The first term of the sum on the right can be expressed as a type II invariant by Lemma 2:

〈µ |τ1(1) · ω1| η〉
•∼
g1,β1

= 〈µ |τ1([D0]) · ω1| η〉
•
g1,β1

.
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For the application of Lemma 2 here, we require the compatibility of ε with the cotangent lines at the
marked points.

We have reduced the original fiber class rubber invariant (10) to invariants of the same type with fewer
Ψ∞ insertions. Repeating the cycle yields rubber invariants without Ψ∞ insertions. The latter are related
to type II invariants by Lemma 2 after adding a dilaton insertion.

1.5.6. Calculus II: π∗(β) 6= 0
If β is not fiber class, then π∗(β) 6= 0. Consider a non-fiber class rubber integral:〈

µ

∣∣∣ω Ψ k
∞

∣∣∣ ν〉•∼

g,β
. (12)

If H ∈ H2(X,Q) is an ample class, then∫
π∗(β)

H > 0.

Therefore, by the divisor equation, the rubber integral〈
µ

∣∣∣τ0(H) · ω Ψ k
∞

∣∣∣ ν〉•∼

g,β
(13)

determines (12) modulo rubber integrals with strictly fewer cotangent lines.
As in the fiber case, we may apply the topological recursion relations to (13). By repeating the cycle

and applying Lemma 2 after all Ψ∞ insertions are removed, we can express the original rubber invariant
(12) in terms of type II invariants.

A refined consequence of the rubber calculus will be needed in the proof of Relation 2 in the following
section.

Lemma 3. A rubber invariant with connected domain and class satisfying π∗(β) 6= 0 is expressed by
the calculus in terms of type II invariants as:〈

µ

∣∣∣ω Ψ k
∞

∣∣∣ ν〉∼
g,β

=

∑
‖ω′‖≤‖ω‖

deg(µ′)≥deg(µ)
deg(ν′)≥deg(ν)

m≥0

Cµ′,ω′,ν′

〈
µ′
∣∣τ0([D0] · H · c1(L)

m) · ω′
∣∣ ν′
〉
g,β + · · · . (14)

The brackets 〈, 〉 on the right denote connected invariants. The coefficients C∗,∗,∗ are determined by fiber
class integrals, and the dots stand for non-principal terms of type II.

1.6. Relation 2

The next relation expresses the type I invariants occurring in Relation 1 in terms of type II invariants
and the Gromov–Witten theory of X .

Consider the type I invariant〈
µ

∣∣∣∣∣τ0([D0] · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β
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with π∗(β) 6= 0, deg(δ) > 0, and relative conditions

µ =
{
(µi , δri )

}
, ν =

{
(ν j , δs j )

}
.

Relation 2. We have,〈
µ

∣∣∣∣∣τ0([D0] · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

=

∑
‖ω′‖≤‖ω‖

deg(µ′)≥deg(µ)+1
deg(ν′)≥deg(ν)

m≥0

Cµ′,ν′,ω′

〈
µ′
∣∣τ0([D0] · H · c1(L)

m) · ω′
∣∣ ν′
〉
g,β

+

∑
‖ω′‖≤‖ω‖

deg(µ′)≥deg(µ)
deg(ν′)≥deg(ν)+1

m≥0

Cµ′,ν′,ω′

〈
µ′
∣∣τ0([D0] · H · c1(L)

m) · ω′
∣∣ ν′
〉
g,β

−

∑
‖ω′‖≤‖ω‖

deg(µ′)≥deg(µ)
deg(ν′)≥deg(ν)

m≥0

Cµ′,ν′,ω′

〈
µ′

∣∣∣τ0([D0] · c1(L)
m+1

· δ) · ω′

∣∣∣ ν′

〉
g,β

+ · · ·

where H ∈ H2(X,Q) is an ample class and the coefficients C∗,∗,∗ are fiber class integrals. The dots
stand for non-principal terms of type II and integrals in the Gromov–Witten theory of X

Proof. The first step is to use the basic divisor relation in H2(Y,Q),

[D0] = [D∞] − c1(L),

to rewrite the invariant on the left side of Relation 2:〈
µ

∣∣∣∣∣τ0([D0] · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

=

〈
µ

∣∣∣∣∣τ0([D∞] · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

−

〈
µ

∣∣∣∣∣τ0(c1(L) · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

.

We will calculate the two latter type I invariants by localization on (Y, D0).
The fiberwise C∗-action on Y induces a canonical action on the moduli space of stable relative maps to

the pair (Y, D0). The C∗-fixed loci consist of moduli spaces of stable maps to rubber over D0 connected
by fiberwise rational Galois covers to moduli spaces of stable maps to D∞. The connection data of
the Galois covers is described by a sum over cohomology weighted partitions η specifying the rubber
relative conditions on the connecting divisor.

We first study the localization calculation of the type I invariant〈
µ

∣∣∣∣∣τ0([D∞] · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

. (15)
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The insertions of (15) all have canonical equivariant lifts. The marked points not included in ω are all
distributed to the moduli space of stable maps to D∞. By the localization formula, the contribution of
the latter moduli space is simply a Hodge integral in the Gromov–Witten theory of X . The Hodge class
may be removed by [3].

Since we neglect lower terms, we only need to consider C∗-fixed loci for which the maps to rubber
are of genus g and class β. Let C0 be the subcurve of the domain mapping to rubber, and let C∞ be the
subcurve mapping to D∞. Since all components of C∞ are contracted, the argument used for rational
fibers in the proof of Relation 1 shows

deg(η) ≥ deg(ν)+ deg(δ).

The principal terms of the localization formula for (15) are therefore of the form〈
µ

∣∣∣ω′ Ψ k
∞

∣∣∣ η〉∼
g,β

where ‖ω′
‖ ≤ ‖ω‖ and deg(η) ≥ deg(ν)+ 1.

By Lemma 3, the invariant (15) contributes only principal terms of the type of the second summand
on the right side of Relation 2.

Next, we study the localization calculation of the type I invariant〈
µ

∣∣∣∣∣τ0(c1(L) · δ) · ω
∏

j

τν j −1([D∞] · δs j )

〉
g,β

. (16)

If the insertion τ0(c1(L) · δ) is distributed to D∞, then, as above, we only obtain principal terms of the
type of the second summand on the right of Relation 2.

If the insertion τ0(c1(L) ·δ) is distributed to D0, then, by the rubber calculus, we only obtain principal
terms of the type of the first and third summands on the right of Relation 2. �

We will also require a version of Relation 2 without the distinguished insertion τ0([D0] · δ). The proof
is identical.

Relation 2′. We have〈
µ

∣∣∣∣∣ω∏
j

τν j −1([D∞] · δs j )

〉
g,β

=

∑
‖ω′‖≤‖ω‖

deg(µ′)≥deg(µ)
deg(ν′)≥deg(ν)

m≥0

Cµ′,ν′,ω′

〈
µ′

|τ0([D0] · H · c1(L)
m) · ω′

|ν′
〉
g,β + · · · ,

where the dots stand for non-principal terms of type II and integrals in the Gromov–Witten theory of X.

1.7. Proof of Theorem 1

Our primary induction is on the pair (g, β) where

(g′, β ′) < (g, β)
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if β ′ < β or if β ′
= β and g′ < g. If π∗(β) = 0, the invariants are fiber class and are determined for all

g by Section 1.2.
By a secondary induction on the

◦
< ordering, Relations 1, 2, and 2′ determine all distinguished

invariants of type II. Consider an invariant

〈µ|τ0([D0] · δ) · ω|ν〉g,β (17)

for which π∗(β) 6= 0. We apply Relation 1 to (17). To the first term on the right, we apply Relation 2. To
the third term on the right, we apply relation Relation 2′. The outcome modulo the primary induction is
a determination of (17) in terms of distinguished type II invariants lower in the

◦
< ordering. The proof of

Theorem 1 for distinguished type II invariants is complete.
By localization and the rubber calculus, every type I and II invariant can be expressed in terms of

distinguished type II invariants and Hodge integrals in the Gromov–Witten theory of X. �

1.8. Connected/disconnected invariants

For simplicity, we have assumed the disconnected invariants of the pairs (Y, D0), (Y, D∞), and
(Y, D0 ∪ D∞) factor as a product of connected invariants. Unfortunately, the product rule for
disconnected invariants has not been included in the foundational treatments of the subject.

The entire proof of Theorem 1 is valid without assuming the product rule. The induction argument
reduces the disconnected invariants of the three relative pairs to the Gromov–Witten theory of X .

If the product rule is not assumed, the only difference in the proof of Theorem 1 occurs in the treatment
of the fiber class integrals in Section 1.2. Disconnected fiber class invariants must be considered. Let

P =

n⋃
i=1

P1

be a disconnected set of projective lines. Denote the disconnected divisors

{0, . . . , 0}, {∞, . . . ,∞} ⊂ P

by D0 and D∞. The disconnected fiber class invariants require the computation of the (C∗)n-equivariant
Gromov–Witten theory of the pairs

(P, D0), (P, D∞), (P, D0 ∪ D∞).

An elementary (C∗)n-localization argument reduces the study of P to the product of n copies of P1 —
as predicted by the product rule. We leave the details to the reader.

Indeed, our study of relative Gromov–Witten theory can be used to prove the product rule. The
argument will be presented elsewhere.

2. Relative in terms of absolute

2.1. Notation

Let V be a nonsingular projective variety containing a nonsingular divisor W ,

ι : W → V .



D. Maulik, R. Pandharipande / Topology 45 (2006) 887–918 909

Let ι∗ denote the restriction map on cohomology,

ι∗ : H∗(V,Q) → H∗(W,Q).

The cohomological push-forward

ι∗ : H∗(W,Q) → H∗(V,Q)

is determined by the restriction map ι∗ and Poincaré duality.
Let N be the normal bundle of W in V . Since

c1(N ) = ι∗(c1(TV ))− c1(TW ) ∈ H∗(W,Q),

the Chern class c1(N ) is also determined by the restriction map ι∗.
We denote the Gromov–Witten invariants of the pair (V,W ) by the right bracket〈∏

i

τki (γli )

∣∣∣∣∣ ν
〉V/W

g,β

(18)

where

{γ1, . . . , γmV }, {δ1, . . . , δmW }

are bases of H∗(V,Q) and H∗(W,Q),

ν =
{
(ν1, δs1), . . . , (ν`(ν), δs`(ν))

}
,

and
∑

j ν j =
∫
β
[W ].

The above bracket denotes Gromov–Witten invariants with connected domain curves. As before, we
treat disconnected invariants as products of connected invariants. Our proof of Theorem 2 is valid without
assuming the product rule — see the discussion of Section 1.8.

2.2. Degeneration

Let F be the degeneration to the normal cone of W . The degeneration formula [2,12,14,15] applied
to F expresses the absolute Gromov–Witten theory of V in terms of the relative theories of (V,W ) and
(P(N ⊕OW ),W ).

By Theorem 1, the relative theory of (P(N ⊕ OW ),W ) is determined by the absolute theory of
W and the Chern class c1(N ) ∈ H2(W,Q). In order to prove Theorem 2, we view the degeneration
formula as providing equations for the invariants (18) in terms of the Gromov–Witten theories of V and
(P(N ⊕OW ),W ).

2.3. Ordering

We partially order the invariants of (V,W ) by a relation very similar to the ordering of distinguished
type II invariants of Section 1.3:〈

ω′
| ν′
〉
g′,β ′

◦
< 〈ω | ν〉g,β

if one of the conditions below holds
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(1) β ′ < β,
(2) equality in (1) and g′ < g,
(3) equality in (1)–(2) and ‖ω′

‖ < ‖ω‖,
(4) equality in (1)–(3) and deg(ν′) > deg(ν),

(5) equality in (1)–(4) and ν′
l
> ν.

Here, ω′ and ω represent products of descendent insertions. For any given invariant of (V,W ), there
are only finitely many invariants of (V,W ) lower in the partial ordering.

The degeneration equations for the invariants (V,W )will be proven to be lower triangular with respect
to the

◦
< ordering — and therefore nonsingular.

2.4. Proof of Theorem 2

To each relative invariant (18) of the pair (V,W ), we associate the following absolute invariant of V〈∏
i

τki (γli ) ·

∏
j

τν j −1
(
ι∗(δs j )

)〉V

g,β

. (19)

In order to evaluate the absolute invariant (19) by the degeneration formula, we must lift the
cohomology classes γli and ι∗(δs j ) to the total space of the family F :

(i) the classes γli are lifted by pull-back via the first factor of the blow-down map

F → V × C,

(ii) the classes ι∗(δs j ) are lifted by

ιW×C,∗(δs j ⊗ Id) ∈ H∗(F,Q)
where

ιW×C : W × C → F
is the inclusion in the blow-up via strict transform.

Lemma 4. The principal terms of the degeneration equation are〈∏
i

τki (γli ) ·

∏
j

τν j −1
(
ι∗(δs j )

)〉V

g,β

=

〈∏
i

τki (γli )

∣∣∣∣∣ ν
〉V/W

g,β

C +

∑〈
ω′

| ν′
〉V/W
g,β Cω′,ν′ + · · · ,

where

C =

∏
j

1
(ν j − 1)!

(∫
β

[W ]

)Id(ν)

6= 0,

the coefficients C∗,∗ are fiber class integrals, and the sum is over lower invariants in the
◦
< ordering.

Following the notation of Section 1.4, the principal terms of the equation are the invariants of (V,W )

of genus g and class β.
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Proof. The strategy is identical to the proof of Relation 1. We need only consider degeneration splittings
for which the (V,W ) side carries genus g, class β, and all the insertions∏

i

τki (γli ).

By the lifting choice, all the insertions∏
j

τν j −1
(
ι∗(δs j )

)
are distributed to the (P(N ⊕OW ),W ) side. The analysis of the rational fiber class integrals then exactly
follows Case 1 of the proof of Relation 1. �

By Lemma 4, the degeneration equations form a lower triangular system determining the invariants
of (V,W ) in terms of the invariants of V and (P(N ⊕ OW ),W ). The proof of Theorem 2 is complete.

�

2.5. Proof of Corollary 1

Let (V,W ) be a hypersurface pair in Pr . We first prove

ι∗(δ) ∈ H∗(V,Q)

is simple for any δ ∈ H∗(W,Q). If δ is simple, the result is clear. If δ is not simple, then

deg(δ) = r − 2

by Lefchetz. We conclude

deg(ι∗(δ)) = r,

and thus ι∗(δ) is simple by Lefchetz.
Consider the degeneration equation of Lemma 4 associated to a simple invariant of (V,W ). The

left side involves a simple invariant of V since ι∗(δ) is always simple. The right side involves simple
invariants of (V,W ) and general invariants of (P(N ⊕OW ),W ).

The degeneration equations form a lower triangular system determining the simple invariants of
(V,W ) in terms of the simple invariants of V and general invariants of (P(N ⊕OW ),W ). �

3. Mayer–Vietoris and the quintic scheme

3.1. Proof of Lemma 1

Our calculation scheme for hypersurfaces depends upon Theorem 3 and Lemma 1. Theorem 3 is an
immediate consequence of the degeneration formula and Theorem 2.

Let V be a nonsingular, projective variety. Let Z ⊂ V be the nonsingular complete intersection of
two nonsingular divisors

W1,W2 ⊂ V,

and let Ṽ be the blow-up of V along Z .
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Lemma 1. The Gromov–Witten theory of Ṽ is uniquely and effectively determined by the
Gromov–Witten theories of V , W1, and Z and the restriction maps

H∗(V,Q) → H∗(W1,Q) → H∗(Z ,Q).

Proof. Let Ni be the normal bundle to Wi in V . Let F be the degeneration to the normal cone of W1 in
V . By strict transform, there is an inclusion

ιW1×C: W1 × C → F .

Let F̃ be the blow-up of F along Z × C embedded via

Z × C ⊂ W1 × C
ιW1×C
−→ F .

The family F is a degeneration of V to (V,W1) and (P(N1 ⊕ OW1), D0). The family F̃ is a
degeneration of Ṽ to (V,W1) and (̃P(N1⊕OW1), D0)where P̃(N1⊕OW1) is the blow-up of P(N1⊕OW1)

along Z ⊂ D∞.
By the degeneration formula, the Gromov–Witten theory of Ṽ is determined by the Gromov–Witten

theories of (V,W1) and (̃P(N1 ⊕OW1), D0) since the nonvanishing cohomology for the family F̃ is all
of H∗(Ṽ ,Q). By Theorem 2, the two relative theories are determined by the Gromov–Witten theories
of V , W1, and P̃(N1 ⊕OW1) and the classical restriction maps.

The projective bundle P(N1|Z ⊕ OZ ) over Z is a divisor in P(N1 ⊕ OW1) containing the center
Z ⊂ D∞ of the blow-up. The normal bundle of

P(N1|Z ⊕OZ ) ⊂ P(N1 ⊕OW1)

is the pull-back of N2|Z .
By repeating the first construction of the proof, we find the Gromov–Witten theory of P̃(N1 ⊕ OW1)

is determined by the Gromov–Witten theories of

P(N1 ⊕OW1), P(N1|Z ⊕OZ ),

and the blow-up of

P(N1|Z ⊕OZ )×Z P(N2|Z ⊕OZ )

along Z embedded as D∞ ×Z D∞.
Finally, the last blown-up variety can be studied via the virtual localization formula [10]. The variety

P(N1|Z ⊕OZ )×Z P(N2|Z ⊕OZ ) (20)

carries a fiberwise C∗
× C∗-action over Z . The action lifts to the blow-up of (20) along the C∗

× C∗-
fixed locus D∞ ×Z D∞. The C∗

× C∗-action on the blown-up space has 5 fixed loci — each isomorphic
to Z . The localization formula reduces the Gromov–Witten invariants of the blown-up space to Hodge
integrals in the Gromov–Witten theory of Z . �

A direct generalization of the proof of Lemma 1 yields the following related result. Let Z ⊂ V be the
nonsingular complete intersection of n nonsingular divisors

W1, . . . ,Wn ⊂ V,
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and let Ṽ be the blow-up of V along Z . The Gromov–Witten theory of Ṽ is determined by the
Gromov–Witten theories of

V,W1,W1 ∩ W2,W1 ∩ W2 ∩ W3, . . . ,∩
n
i=1 Wi = Z

and the classical restriction maps.

Conjecture 2. The Gromov–Witten theory of Ṽ is uniquely and effectively determined by the
Gromov–Witten theories of V and Z and the restriction map H∗(V,Q) → H∗(Z ,Q).

3.2. The Calabi–Yau quintic

3.2.1. Notation
The following notation for curves, surfaces, and 3-folds will be convenient for the study of the quintic:

(i) let Cd1,d2 ⊂ P3 be a nonsingular complete intersection of type (d1, d2),
(ii) let Sd ⊂ P3 be a nonsingular surface of degree d,

(iii) let Td ⊂ P4 be a nonsingular 3-fold of degree d.

Finally, let P3
[d1, d2] be the blow-up of P3 along Cd1,d2 .

3.2.2. The quintic scheme
The calculation scheme for the quintic is diagrammed below by arrows showing the dependencies of

Gromov–Witten theories.

(a) The superscript ∗ denotes simple Gromov–Witten theories,

(b) the arrow
k

−→ denotes the application of Theorem k in simple or full form,

(c) the arrow
l

−→ denotes the application of Lemma 1.

The quintic scheme:

T ∗

5
3

−→(T4, S4)
∗, (P3

[4, 5], S4),

(T4, S4)
∗ 2
−→ T ∗

4 , S4,

T ∗

4
3

−→(T3, S3)
∗, (P3

[3, 4], S3)

(T3, S3)
∗ 2
−→ T ∗

3 , S3,

T ∗

3
3

−→(T2, S2)
∗, (P3

[2, 3], S2)

(T2, S2)
∗ 2
−→ T ∗

2 , S2,

T ∗

2
3

−→(T1, S1)
∗, (P3

[1, 2], S1)

(T1, S1)
∗ 2
−→ T ∗

1 , S1,

(P3
[4, 5], S4)

2
−→ P3

[4, 5], S4,

P3
[4, 5]

l
−→ P3, S4,C4,5,

(P3
[3, 4], S3)

2
−→ P3

[3, 4], S3,
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P3
[3, 4]

l
−→ P3, S3,C3,4,

(P3
[2, 3], S2)

2
−→ P3

[2, 3], S2,

P3
[2, 3]

l
−→ P3, S2,C2,3,

(P3
[1, 2], S1)

2
−→ P3

[1, 2], S1,

P3
[1, 2]

l
−→ P3, S1,C1,2.

The end points of the quintic scheme are the following absolute Gromov–Witten theories:

P3,P2, S2, S3, S4,C1,2,C2,3,C3,4,C4,5,

all previously determined.

3.3. The quintic surface S5

We end the paper with a basic calculation for the quintic surface

S5 ⊂ P3.

Let K denote the canonical class of S5. The adjunction genus of curves in class K is 6. The expected
dimension of genus 6 curves of class K is 0. By Taubes’ result equating Gromov and Seiberg–Witten
invariants,

〈1〉
S5
6,K = SW (−PS5).

Since S5 is a minimal surface of general type,

SW (−PS5) = (−1)(1+pg(S5)+q(S5)) = −1.

Here, PS5 is the Spinc-structure induced by the complex structure of S5 and pg and q are the geometric
genus and irregularity of the surface S5 [19]. We will calculate 〈1〉

S5
6,K directly via our method.

The first step is the degeneration of the quintic to a union of a K3 surface and a blown-up projective
plane along a plane quartic curve:

S∗

5 → (S4,C4)
∗, (P2

[4, 5],C4).

Let B denote P2
[4, 5], the blow-up of P2 in 20 points. The degeneration formula yields

〈1〉
S5
6,K =

∑
gi ,βi ,µ

〈1 | µ〉
S4/C4
g1,β1

〈µ∨
| 1〉

B/C4
g2,β2

(21)

where the summation is over all possible genus splittings g1 + g2 + `(µ) − 1 = 6, class splitting
β1 + β2 = K , and cohomology-weighted partitions µ.

Let H, L denote the hyperplane classes on S4 and B respectively and let Ei denote the class of the i th
exceptional divisor of B.

Although all configurations on the right side of (21) can be treated algorithmically, most can be easily
ruled out without any computation. For example, configurations with g1 = 5, β1 = H , require four fixed
point condition in µ1. However, since the dimension of the linear system |H | is 3, the solution set will
be empty.



D. Maulik, R. Pandharipande / Topology 45 (2006) 887–918 915

For configurations with β1 = 0, we can show only

β2 = 5L −

20∑
i=1

Ei

is allowed as follows. Consider a configuration with

β2 = 5L − 2E1 − E3 − · · · − E20.

A curve mapped to B gives a section of OC(5) on C with divisor

2p1 + p3 + · · · + p20.

However, a monodromy argument shows that such a linear equivalence is impossible for a generic choice
of

p1 + · · · + p20 ∈ |OC(5)|.

Finally, for many configurations, the relative invariant for (B,C4) is easily seen to vanish. For instance,
when g1 = 3, β2 = L with

µ = {(2, [p]), (1, 1), (1, 1)},

the relative invariant for the curve mapped to B is the number of tangents to C4 ⊂ P2 which pass through
two fixed generic points.

After ruling out these easy cases, there is the single β1 = 0 case discussed above and five
configurations with β1 = H . For g1 = 3, the possible partitions with β1 = H are

µ1 = {(1, [p]), (1, [p]), (1, 1), (1, 1)},

µ2 = {(1, α), (1, α∨), (1, [p]), (1, 1)},

µ3 = {(1, α1), (1, α∨

1 ), (1, α2), (1, α∨

2 )}

where [p] ∈ H2(C,Z) is the Poincaré-dual class to a point and αi , α
∨

i are basis elements of H1(C,Z).
For g1 = 4, the possible partitions are

ν1 = {(2, [p]), (1, [p]), (1, 1)},

ν2 = {(2, 1), (1, [p]), (1, [p])}.

In each of these cases, we have g2 = 0 and β2 = L for the curve mapped to B.
For each relative invariant of S4, we study the associated absolute invariant on S4 via the degeneration

to

S4 ∪C4 P(KC4 ⊕OC4).

We will denote the latter projective bundle by P and the sections corresponding to the summands KC
and OC by D0 and D∞. For g1 = 3, we obtain the equations

〈τ0([p])τ0([p])〉
S4
3,H = 〈1 | µ1〉

S4/C4
3,H + 〈(0) | τ0([p])τ0([p])〉

P/D∞

3,[D0]
, (22)

〈τ0(ι∗α)τ0(ι∗α
∨)τ0([p])〉

S4
3,H

= 〈1 | µ2〉
S4/C4
3,H + 〈1 | µ1〉

S4/C4
3,H + 〈(0) | τ0(ι∗α)τ0(ι∗α

∨)τ0([p])〉
P/D∞

3,[D0]
, (23)
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and

〈τ0(ι∗α1)τ0(ι∗α
∨

1 )τ0(ι∗α2)τ0(ι∗α
∨

2 )〉
S4
3,H = 〈1 | µ3〉

S4/C4
3,H + 2〈1 | µ2〉

S4/C4
3,H + 〈1 | µ1〉

S4/C4
3,H

+ 〈(0) | τ0(ι∗α1)τ0(ι∗α
∨

1 )τ0(ι∗α2)τ0(ι∗α
∨

2 )〉
P/D∞

3,[D0]
. (24)

Since there exist Kahler deformations of the K3 surface S4 with no embedded curves, all absolute
invariants vanish. The relative invariants of (P,C∞) are immediately calculated via relative localization
to yield 1, 0, and 0 respectively. The genus 3 relative invariants are

〈1 | µ1〉
S4/C4
3,H = −1, 〈1 | µ2〉

S4/C4
3,H = 1, 〈1 | µ3〉

S4/C4
3,H = −1.

The same procedure for the two genus 4 invariants shows they both vanish.
It remains to compute the relative invariants of the pair (B,C4). For the relative invariants

〈µ∨

i | 1〉
B/C4
0,L , we argue directly. The moduli space

M0,4(B/C4, (1, 1, 1, 1))

is a blowup of the two dimensional space

Z =

{
(p1, p2, p3, p4) ∈ C × C × C × C | OC

(∑
pi

)
∼= KC

}
.

Since the relative conditions are pulled back from C4, we only need to cap these classes with the
fundamental class of Z in H2(C4,Z). The latter class is given by a degeneracy locus calculation, [Z ]

equals the second Chern class of the rank 4 bundle whose fiber at (p1, p2, p3, p4) is
⊕

K |
∑

pi . The
invariants are

〈µ∨

1 | 1〉
B/C4
0,L = 1, 〈µ∨

2 | 1〉
B/C4
0,L = 1, 〈µ∨

3 | 1〉
B/C4
0,L = 1.

The remaining contribution is the relative invariant for (B,C4) where the entire genus 6 curve is
mapped to B with homology class β = 5H −

∑20
i=1 Ei . The corresponding absolute invariant is

〈1〉
B
6,β = 1. (25)

The invariant (25) is computed by considering the blow-up of P2 at 20 general points. Degenerating
along C4 gives the following relation between the relative invariants for (B,C4) and (P, D0)

1 = 〈1〉
B
6,β =

∑
gi ,βi ,µ

〈1 | µ〉
P/D0
g1,β1

〈µ∨
| 1〉

B/C4
g2,β2

, (26)

where again we sum over all configurations.
The situation is identical to our degeneration of S5 with P in place of S4. In particular, the same

arguments allow us to reduce to the same five configurations with g1 = 3 or 4, in addition to the
configuration where the entire curve is mapped to B. Moreover, the relative invariants are computed by
the same set of Eqs. (22)–(24) with P instead of S4. The only difference is the absolute invariants on P
no longer vanish identically and must be computed directly by localization. Omitting the details, we find
for genus 3, the relative invariants are

〈1 | µ1〉
P/D0
3,[D0]

= 7, 〈1 | µ2〉
P/D0
3,[D0]

= −3, 〈1 | µ3〉
P/D0
3,[D0]

= 1.

For genus 4, the relative invariants again vanish.
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Finally, if we subtract equation Eq. (26) from equation Eq. (21), we have

〈1〉
S5
6,K = 1 +

∑
i

(
〈1 | µi 〉

S4/C4
3,H − 〈1 | µi 〉

P/D0
3,[D0]

)
〈µ∨

i | 1〉
B/C4
0,L

= 1 + (−1 − 7) · 1 + 3(1 − (−3)) · 1 + 3(−1 − 1) · 1

= −1

where the factors of 3 arise from the different combinations of odd cohomology conditions α ∈

H1(C,Z).
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