
Information and Computation 208 (2010)385–394

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

More concise representation of regular languages by automata

and regular expressions�

Viliam Geffert a, Carlo Mereghetti b,∗, Beatrice Palanob

a Department of Computer Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia
b Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, via Comelico 39, 20135 Milano, Italy

A R T I C L E I N F O A B S T R A C T

Article history:

Received 12 February 2009

Revised 27 July 2009

Available online 18 January 2010

Keywords:

Pushdown automata

Regular expressions

Straight line programs

Descriptional complexity

We consider two formalisms for representing regular languages: constant height pushdown

automata and straight line programs for regular expressions. We constructively prove that

their sizes are polynomially related. Comparing themwith the sizes of finite state automata

and regular expressions, we obtain optimal exponential and double exponential gaps, i.e., a

more concise representation of regular languages.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Several systems for representing regular languages have been presented and studied in the literature. For instance,

for the original model of finite state automaton [11], a lot of modifications have been introduced: nondeterminism [11],

alternation [4], probabilistic evolution [10], two-way input head motion [12], etc. Other important formalisms for defining

regular languages are, e.g., regular grammars [7] and regular expressions [8]. All these models have been proved to share the

same expressive power by exhibiting simulation results.

However, representation of regular languages may be much more “economical” in one system than another. This consid-

eration has lead to a consolidated line of research—sometimes referred to as descriptional complexity—aiming to compare

formalisms by comparing their size. The oldest and most famous result in this sense is the optimal exponential gap between

the size of a deterministic (dfa) and nondeterministic (nfa) finite state automaton [9,11].

In this paper, we study the size of two formalisms for specifying regular languages, namely: a constant height pushdown

automaton and a straight line program for a regular expression.

First, it is well known that the languages recognized by nondeterministic pushdown automata (npdas) form the class of

context-free languages, a proper superclass of the languages accepted by deterministic pushdown automata (dpdas), which

in turn is a proper superclass of regular languages [7]. However, if themaximumheight of the pushdown store is bounded by

a constant, i.e., if it does not depend on the input length, it is a routine exercise to show that such machine accepts a regular

�
This work was partially supported by the Slovak Grant Agency for Science (VEGA) under contract “Combinatorial structures and complexity of algo-

rithms”, and by the Italian MIUR under project “Aspetti matematici e applicazioni emergenti degli automi e dei linguaggi formali: metodi probabilistici

e combinatori in ambito di linguaggi formali”. A preliminary version of this work was presented at the 12th International Conference Developments in

Language Theory, Kyoto, Japan, September 16–19, 2008.
∗
Corresponding author.

E-mail addresses: viliam.geffert@upjs.sk (V. Geffert), mereghetti@dsi.unimi.it (C. Mereghetti), palano@dsi.unimi.it (B. Palano).

0890-5401/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2010.01.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82735985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic

386 V. Geffert et al. / Information and Computation 208 (2010) 385–394

language. (In general, it is not possible to bound the pushdown height by a constant.) Nevertheless, a representation by

constant height pdas can potentially be more succinct than by the standard finite state automata, both for deterministic and

nondeterministic machines. Here, we prove optimal exponential and optimal double exponential simulation costs of constant

height pdas by finite state automata. We also get an exponential lower bound for eliminating nondeterminism in constant

height pdas. (Some related results on pdas accepting regular languages vs. finite state automata can be found in [13].)

Second, a natural counterpart to constant height pdas turned out to be straight line programs (slps), in perfect analogy

to the relation of finite state automata vs. regular expressions. An slp is a loopless program representing a directed acyclic

graph, the internal nodes ofwhich represent the basic regular operations (i.e., union, concatenation, and star). Comparedwith

the size of the standard regular expression represented by a binary tree, an slp can be more succinct by using the fact that

replicated subtrees are shared. Here, we prove an optimal exponential gap between the sizes of regular expressions and slps.

It is well known that the sizes of the classical nfas and regular expressions are not polynomially related: the cost for

the conversion of regular expressions to nfas is linear [2,3], but it is exponential for the opposite conversion [5]. (For more

bibliography related to these results, the reader is referred to [6].) On the contrary, here we design conversions constructing

equivalent constant height pdas from slps and vice versa, in such a way that the costs are polynomial in both directions. This

clearly shows that the exponential gap between the classical nfas and the classical regular expressions has been obtained

only due to the fact that the resulting regular expressionmust contain several (in fact, exponentially many) replicated copies

of the same subexpression. (Otherwise, such a witness regular expression could not be “compressed” into a polynomial-size

slp, as stated by our result.)

2. Preliminaries

In this section, we present the formalisms we shall be dealing with. We begin by introducing straight line programs

for representing regular expressions, emphasizing also their directed acyclic graph (dag) form. Then we turn to finite state

and pushdown automata, the latter machines being presented in an equivalent but simplified dynamics. Finally, the notion

of constant height pushdown automata is considered. For each formalism, a size measure is introduced, to compare their

descriptive powers.

We assume the reader is familiar with the basic notions from formal language theory (see, e.g., [7]). The set of natural

numbers, including zero, is denoted here by N.

2.1. Straight line programs for regular expressions

A regular expression, defined over a given alphabet �, is:

(i) ∅, ε, or any symbol a ∈ �,

(ii) r1+r2, r1 ·r2, or r∗
1, if r1 and r2 are regular expressions.

The language represented by a given regular expression r, denoted by L(r), is inductively defined as: ∅, {ε}, {a} in case (i),

and L(r1) ∪ L(r2), L(r1) · L(r2), L(r1)∗, respectively, in case (ii).With a slight abuse of terminology, we often identify a regular

expression with the language it represents. Thus, �∗ is the set of words over �, including the empty word ε. By |w|, we

denote the length of a wordw ∈ �∗ and by�i the set of words of length i ∈ N, with�0 = {ε} and��m = ⋃m
i=0 �i. By |�|,

we denote the cardinality of the set �.

Definition 1. The size of a regular expression r over �, denoted by size(r), is the number of occurrences of symbols of

{∅, ε} ∪ �, plus the number of occurrences of operators+, ·, and ∗ inside r.

Example 1. For r = a · (a+ b)∗ + (a+ b)∗ · b · a∗, we have size(r) = 16.

A convenient way for representing regular expressions is provided by straight line programs (see, e.g., [1]). Given a set of

variables X = {x1, . . . , x�}, a straight line program for regular expressions (slp) on � is a finite sequence of instructions

P ≡ instr1 ; . . . instri ; . . . instr�,

where the ith instruction instri has one of the following forms:

(i) xi := ∅, xi := ε, or xi := a for any symbol a ∈ �,

(ii) xi := xj+xk , xi := xj ·xk , or xi := x∗
j , for 1� j, k < i.

Such program P expands to the regular expression reg-exp(P) = x�, obtained by nested macro-expansion of the variables

x1, . . . , x�−1, using the right parts of their instructions. Notice that a variable may be reused several times in the right parts.

Such a number of occurrences is called a fan-out of the variable. The fan-out of x� is 0, while the fan-out of any other variable

is at least 1, since, with the exception of x�, we can remove instructions defining variables not used at least once in some

right part.

V. Geffert et al. / Information and Computation 208 (2010) 385–394 387

Fig. 1. Left: The dag DP associated with the slp P introduced in Example 2. Labels are written inside the nodes, sources are labeled by a, b ∈ �, and the

sink is the topmost vertex. The number of vertices is length(P) = 9, the maximum out-degree is fan-out(P) = 3 (given by the vertex labeled by a), and

depth(DP) = 4. Right: The corresponding classical representation as a binary tree of the regular expression.

Definition 2. The size of a straight line program P is the ordered pair

size(P) = (length(P), fan-out(P)),

where length(P) denotes the number of instructions in P, and fan-out(P) the maximum fan-out of its variables.

Example 2. Let us show an slp for the regular expression in Example 1:

P ≡ x1 := a;
x2 := b;
x3 := x1 + x2;
x4 := x∗

1;
x5 := x∗

3;
x6 := x2 · x4;
x7 := x1 · x5;
x8 := x5 · x6;
x9 := x7 + x8.

Clearly, reg-exp(P) = x9 = a · (a+ b)∗ + (a+ b)∗ · b · a∗, and size(P) = (9, 3).

Each slp P can be associated with a vertex-labeled directed acyclic graph (dag) DP = (V, E), where the vertices in V =
{v1, . . . , v�} correspond to the respective variables in X = {x1, . . . , x�}. That is, a vertex vi is labeled by e ∈ {∅, ε} ∪ �,

whenever the ith instruction is xi := e, and by ‘+’ or ‘·’, whenever this instruction is xi := xj + xk or xi := xj · xk , respectively.
In the case of a binary operation, the directed arcs (vj, vi) and (vk, vi) are included in E, to connect vi with its left and right

sons, respectively. Similarly, vi is labeled by ‘∗’, if the ith instruction is xi := x∗
j , with (vj, vi) included in E.

This idea is illustrated by Fig. 1, where the dag DP corresponding to the slp P in Example 2 is displayed, together with the

usual tree-like representation for the computed regular expression.

From the definition of P, it is easy to see that DP does not contain any directed cycle and that the fan-out of a variable

establishes the out-degree of the corresponding vertex. Thus, there exists a unique sink v� (vertex without outgoing arcs)

corresponding to the variable x� and some sources (vertices without ingoing arcs) labeled by e ∈ {∅, ε} ∪ �. We define the

depth of DP , depth(DP), as the maximum length of a path from a source to the sink.

Inwhat follows,wepoint out some relations between the sizes of an slp and the corresponding regular expression. Clearly,

an slpwith fan-out 1 is just an ordinary regular expression written down in a slightly different way:

Proposition 1. For each slp P, length(P) = size(reg-exp(P)) if and only if fan-out(P) = 1.

In general, however, slps can be exponentially more succinct than the classical regular expressions. The following example

shows that, even only with fan-out 2, we get an exponential gap.

Example 3. Consider the slp P� on � = {a}:
P� ≡ x1 := a;

x2 := x1 · x1;
x3 := x2 · x2;

...
x� := x�−1 · x�−1.

388 V. Geffert et al. / Information and Computation 208 (2010) 385–394

It is easy to see that fan-out(P�) = 2 and reg-exp(P�) = a2
�−1

. Thus, for any � � 1, we obtain size(reg-exp(P�)) =
2length(P�)−1.

The above example establishes the optimality of the following general result.

Proposition 2. Let P and P′ be two equivalent slps such that fan-out(P′)=1. Then, length(P′) � 2depth(P).

2.2. Constant height pushdown automata

It is well known that the regular expressions (hence, slps as well) represent the class of regular languages [7]. This class

can also be represented by automata.

A nondeterministic finite state automaton (nfa) is formally defined as a 5-tuple A = 〈Q,�, H, q0, F〉, where Q is the finite

set of states, � the finite input alphabet, H ⊆ Q × (�∪{ε})× Q the transition relation, q0∈Q the initial state, and F⊆Q

the set of final (accepting) states. An input string is accepted, if there exists a computation beginning in the state q0 and

ending in some final state q∈F after reading this input. The language accepted by A, denoted by L(A), is the set of all inputs

accepted by A. The automaton A is deterministic (dfa), if there are no ε-transitions in H and, for every q∈Q and a∈�, there

exists at most one p∈Q such that (q, a, p) ∈ H.

In the literature, a nondeterministic pushdown automaton (npda) is usually obtained from an nfa by adding a pushdown

store, containing symbols from �, the pushdown alphabet. At the beginning, the pushdown contains a single initial symbol

Z0∈�. The transition relation is usually given in the form of δ, amapping fromQ × (�∪{ε})× � to finite subsets ofQ × �∗.
Let δ(q, x, X)
 (p,ω). Then A, being in the state q, reading x on the input and X on top of the pushdown, can reach the state p,

replace X by ω and finally, if x /= ε, advance the input head one symbol. Its deterministic version (dpda) is obtained in the

usual way. (For more details, see, e.g., [7].)

For technical reasons, we shall introduce thenpdas in the following form,wheremovesmanipulating the pushdown store

are clearly distinguished from those reading the input tape: an npda is a 6-tuple A = 〈Q,�,�, H, q0, F〉, where Q,�,�, q0, F

are defined as above, while H ⊆ Q × ({ε} ∪ � ∪ {+,−}·�)× Q is the transition relationwith the following meaning:

(i) (p, ε, q) ∈ H: A reaches the state q from the state pwithout using the input tape or the pushdown store,

(ii) (p, a, q) ∈ H: A reaches the state q from the state p by reading the symbol a from the input, not using the pushdown

store,

(iii) (p,−X, q) ∈ H: if the symbol on top of the pushdown is X , A reaches the state q from the state p by popping X , not using

the input tape,

(iv) (p,+X, q) ∈ H: A reaches the state q from the state p by pushing the symbol X onto the pushdown, not using the input

tape.

Such machine does not use any initial pushdown symbol: an accepting computation begins in the state q0 with the empty

pushdown store and the input head at the beginning, and ends in a final state q ∈ F after reading the entire input. A deter-

ministic pushdown automaton (dpda) is obtained from npda by claiming that it can never get into a situation in which more

than one instruction can be executed. (As an example, a dpda cannot have a pair of instructions of the form (q, ε, p1) and

(q, a, p2).) As usual, L(A) denotes the language accepted by A.

It is not hard to see that any npda in the classical form can be turned into this latter form and vice versa, preserving

determinism in the case of dpdas.

At the cost of one more state, we can transform our npdas so that they accept by entering a unique final state at the

end of input processing, with empty pushdown store. Notice, however, that the following transformation does not preserve

determinism.

Lemma 1. For any npda A = 〈Q,�,�, H, q0, F〉, there exists an equivalent npda A′ = 〈Q ∪ {qf },�,�, H′, q0, {qf }〉, where A′
accepts by entering the unique final state qf �∈ Q with empty pushdown store at the end of the input.

Proof. The new transition relationH′ consists ofH plus the following new transitions: for any q ∈ F , we add the ε-transition
(q, ε, qf). This leads A

′ to the unique final state qf whenever A reaches any final state in F . Then, we empty the pushdown by

adding transitions (qf ,−X, qf) for every X ∈ �. It is easy to verify that L(A′) = L(A). �
Given a constant h ∈ N, we say that the npda A is of pushdown height h if, for any word in L(A), there exists an accepting

computation along which the pushdown store never contains more than h symbols.

Fromnowon,we shall consider constant height npdas only. Suchmachinewill be denoted by a 7-tuple A = 〈Q,�,�, H, q0,

F , h〉, where h ∈ N is a constant denoting the pushdown height, and all other elements are defined as above. By definition,

the meaning of the transitions in the form (iv) is modified as follows:

(iv’) (p,+X, q) ∈ H: if the current pushdown store height is smaller than h, then A reaches the state q from the state p by pushing

the symbol X onto the pushdown, not using the input tape.

V. Geffert et al. / Information and Computation 208 (2010) 385–394 389

Thus, this kind of transitions is disabled if the current pushdown height is equal to h. A constant height npda can be replaced

by an equivalent standard npda (without a built-in limit h on the pushdown) by storing, in the finite control states, a counter

recording permitted pushdown heights (i.e., a number ranging within {0, . . . , h}), hence, paying by a constant increase in

the number of states.

Note that, for h = 0, the definition of constant height npda exactly coincides with that of an nfa, as onemay easily verify.

Moreover, Lemma 1 holds for constant height npdas as well, which enables us to consider acceptance by a single final state

and, at the same time, with empty pushdown store. Therefore, from now on, a constant height npda will assume the form

A = 〈Q,�,�, H, q0, {qf }, h〉.
Definition 3. The size of a constant height npda A = 〈Q,�,�, H, q0, {qf }, h〉 is the ordered triple

size(A) = (|Q |, |�|, h).
Observe that this definition immediately gives that the size of an nfa is completely determined by the number of its

states, since it is (|Q |, 0, 0).
3. From a constant height NPDA to an SLP

In this section, we show how to convert a constant height npda into an equivalent slp. Yet, we focus on the cost of such a

conversion and prove that the size of the resulting slp is polynomial in the size of the original npda.

In what follows, in order to simplify our notation, a “long” regular expression r1 + r2 + · · · + rn will also be written as∑n
i=1 ri. We define an “empty sum” as the regular expression ∅.
Let A = 〈{q1, . . . , qk},�,�, H, q1, {qk}, h〉 be a constant height npda. For each i, j ∈ {1, . . . , k}, s ∈ {0, . . . , k}, and t ∈

{0, . . . , h}, wedefine [qi, s, t, qj] to be the set of strings x ∈ �∗ such that, for eachof them, there exists at least one computation

with the following properties.

• The computation begins in the state qi, with the pushdown empty.

• After reading the entire string x from the input, the computation ends in the state qj , with the pushdown empty again.

• Any time the pushdown is empty during this computation, the current finite control state is from the set {q1, . . . , qs}.
(This restriction does not apply to qi, qj themselves.) For s = 0, the pushdown is never empty in the meantime.

• During this computation, the pushdown height never exceeds t.

We are now going to give an algorithm, consisting of two phases, which dynamically constructs regular expressions

describing all sets [qi, s, t, qj]. The ultimate goal is to obtain [q1, k, h, qk], the regular expression for the language L(A). First,
we easily construct [qi, 0, 0, qj] for each qi, qj , basically by a direct inspection of the transitions in H. After that, we gradually

increment the parameter s from 1 to k, thus obtaining [qi, k, 0, qj] for each qi, qj . Second, we show how to upgrade from the

parameters k, t−1 to parameters 0, t, and then from parameters s, t to s+1, t leading up to [qi, k, h, qj] for each qi, qj .

For any 1� i, j � k, we let

�0(qi, qj)={α ∈ � ∪ {ε} : (qi,α, qj) ∈ H} ∪
i,j , where

i,j=
{∅, if i /= j,

{ε}, if i = j.

Thus,�0(qi, qj) consists of the input symbols, possiblywith ε, taking A from qi to qj in atmost one computation step, without

involving the pushdown.

phase i:

for each 1� i, j � k do

[qi, 0, 0, qj] = ∑
α∈�0(qi,qj) α;

for s = 0 to k−1 do

for each 1� i, j � k do

[qi, s+1, 0, qj] = [qi, s, 0, qj] + [qi, s, 0, qs+1] · [qs+1, s, 0, qs+1]∗ · [qs+1, s, 0, qj];
Actually, [qi, 0, 0, qj] is the regular expression representing the set�0(qi, qj) by a formal sum of its elements, if any, otherwise

by ∅. After that, this phase computes the regular expression [qi, s+ 1, 0, qj] by adding to [qi, s, 0, qj] the strings which

enable A to use also the state qs+1, without using the pushdown. This is exactly the Kleene’s recursion for computing

regular expressions from nfas [7].

Then the second phase starts, for which we need some more notation. For any 1� i, j � k and X ∈ �, we let

�+(qi, X) = {q ∈ Q : (qi,+X, q) ∈ H},
�−(X, qj) = {q ∈ Q : (q,−X, qj) ∈ H}.

390 V. Geffert et al. / Information and Computation 208 (2010) 385–394

Thus, �+(qi, X) is the set of states reachable by A from qi while pushing the symbol X onto the stack, and �−(X, qj) is the

set of states from which A reaches qj while popping X .

phase ii:

for t = 1 to h do begin

for each 1� i, j � k do

(�)[qi, 0, t, qj] = [qi, 0, t−1, qj] +∑
X∈�

∑
p∈�+(qi,X)

∑
q∈�−(X,qj)[p, k, t−1, q];

for s = 0 to k−1 do

for each 1� i, j � k do

[qi, s+1, t, qj] = [qi, s, t, qj] + [qi, s, t, qs+1]·[qs+1, s, t, qs+1]∗ · [qs+1, s, t, qj];
end;

return [q1, k, h, qk]
For this phase, the construction marked by (�) is worth explaining. By definition, [qi, 0, t, qj] consists of [qi, 0, t − 1, qj] plus
the set of all strings x such that:

• starting in the state qi with empty pushdown, A pushes some symbol X on the stack in the first move—the first two

summands in (�),
• pops this symbol X in the last move only, by entering the state qj with empty pushdown—third summand in (�)—and,

• during the computation processing the input string x, A pushes no more than t−1 symbols over X , so that globally the

pushdown height is at least 1 and never exceeds t—variables [p, k, t−1, q] in (�).
Notice that our algorithm can easily be regarded to as an slp PA for L(A). Informally, we can consider all [qi, s, t, qj]’s as

the variables of PA. Before phase i, we need to define some input variables, by instructions xα := α of the form (i), at most

one per each α ∈ � ∪ {ε,∅}. (See the definition of slps in Section 2.1.) Then, we easily unroll the for-cycles and sums, which

translates the two phases into a finite sequence of instructions. To keep all such instructions in the form (ii), we only have to

introduce some new auxiliary variables. Clearly, the output variable is [q1, k, h, qk]. The correctness can formally be proved

by a double-induction on parameters s, t in [qi, s, t, qj].
Concerning the length of PA, there exist no more than |�| + 2 input instructions, while those of phase i do not exceed

k2 · |�| + k3 · 4. Finally, phase ii requires nomore than h · k3 · (k · |�| + 4) instructions, using also the fact that the number

of variables involved in the triple sum of (�) is bounded by |�| · k2. Summing up, we get length(PA) ≤ O(h · k4 · |�| + k2 ·
|�|). Moreover, the fan-out of any variable in PA does not exceed k2 + 1. Formally, we have shown:

Theorem 1. Let A = 〈Q,�,�, H, q0, {qf }, h〉 be a constant height npda. Then there exists an slp PA such that reg-exp(PA)
denotes L(A), with

length(PA) ≤ O(h · |Q |4 · |�| + |Q |2 · |�|) and fan-out(PA) � |Q |2 + 1.

That is, for regular languages over a fixed alphabet, the size of PA is polynomial in the size of A.

4. From an SLP to a constant height NPDA

Let us now show the converse result, namely, that any slp can be turned into an equivalent constant height npdawhose

size is linear in the size of the slp.

Let P be an slpwith variables {x1, . . . , x�} on �. To help intuition, we present our construction of an equivalent constant

height npda by referring to the associated dag DP , as described in Section 2.1, where the vertex vi corresponds to the

variable xi. The enumeration of the variables in P induces a topological ordering on the vertices of DP . Now we proceed as

follows.

For i = 1, . . . , �, we construct an npda Ai = 〈Qi,�,�i, Hi, q0,i , {qf ,i}〉 such that L(Ai) is exactly the language denoted

by reg-exp(xi), a regular expression obtained by expanding the dag rooted in vi. For a source node vi, we define an “ele-

mentary” npdawithout a pushdown store—actually an nfa. An npda for an inner node is constructed inductively, using, as

subprograms, npdas for vertices that are topologically smaller. The desired npda is A�. We start with the construction for

sources.

sources: Let the source node vi be labeled byα ∈ � ∪ {ε,∅}. Ifα /= ∅, the single-transitionnpda recognizingα is defined

as

Ai = 〈{q0,i , qf ,i},�,∅, {(q0,i ,α, qf ,i)}, q0,i , {qf ,i}〉.
For α = ∅, we define the transition-free npda

Ai = 〈{q0,i , qf ,i},�,∅,∅, q0,i , {qf ,i}〉.
In the latter case, the final state qf ,i is settled only for technical reasons, but actually it cannot be reached. This completes the

basis of our inductive construction.

V. Geffert et al. / Information and Computation 208 (2010) 385–394 391

Now, let us define the inductive step. Let vi be an internal node in the dag DP . The construction of Ai depends on the label

of vi, and so we have the following cases:

label ‘+’: vi is a vertex labeled by ‘+’, with two ingoing arcs from vertices va and vb, for 1� a, b < i, representing the

instruction xi := xa + xb. By the inductive hypothesis, we assume the npdas Aa and Ab are given for the vertices va and vb,

respectively. Then we define

Ai=〈Qa∪Qb∪{q0,i , qf ,i},�,�a∪�b∪{Xi}, Hi, q0,i , {qf ,i}〉, with

Hi=Ha ∪ Hb ∪ {(q0,i ,+Xi, q0,a), (qf ,a,−Xi, qf ,i), (q0,i ,+Xi, q0,b), (qf ,b,−Xi, qf ,i)}.
Basically, Ai nondeterministically chooses to activate either the npda Aa or the npda Ab. Before activation, Ai pushes the

symbol Xi onto the pushdown, and pops it right at the end of the processing of the activated npda.

label ‘·’: vi is a vertex labeled by ‘·’, with two ingoing arcs from vertices va and vb, for 1� a, b < i, representing the

instruction xi := xa · xb. For the respective vertices va and vb, we assume inductively again that the npdas Aa and Ab are

given. Then we define

Ai=〈Qa∪Qb∪{q0,i , qm,i, qf ,i},�,�a∪�b∪{Li, Ri}, Hi, q0,i , {qf ,i}〉, with

Hi=Ha ∪ Hb ∪ {(q0,i ,+Li, q0,a), (qf ,a,−Li, qm,i), (qm,i,+Ri, q0,b), (qf ,b,−Ri, qf ,i)}.
Here, Ai sequentially activates Aa and Ab. Before activating Aa, it pushes the symbol Li onto the pushdown, and pops it out at

the end of Aa-processing, by reaching the state qm,i. From this state, Ai pushes another symbol Ri onto the pushdown, thus

activating Ab, and pops it out at the end of Ab-processing.

label ‘∗’: vi is a vertex labeled by ‘∗’, with a single ingoing arc from a vertex va, for 1� a < i, representing the instruction

xi := x∗
a . By inductive hypothesis, we assume the npda Aa is given for the vertex va. Then we define

Ai=〈Qa∪{q0,i , qf ,i},�,�a∪{Xi}, Hi, q0,i , {qf ,i}〉, with

Hi=Ha ∪ {(q0,i , ε, qf ,i), (q0,i ,+Xi, q0,a), (qf ,a,−Xi, q0,i)}.
Here, Ai nondeterministically chooses to activate Aa a certain number of times, including zero. Each time Aa is going to

be activated, Ai pushes the symbol Xi onto the pushdown, and pops it out at the end of Aa-processing by returning to the

state q0,i. In the state q0,i, Ai can also terminate the iteration by reaching the state qf ,i with an ε-move. Notice that the final

state qf ,i is used only for technical reasons, but it can actually be eliminated, together with the transition (q0,i , ε, qf ,i), by
setting q0,i = qf ,i.

Informally, for parsing an input string, A� verifies matching with reg-exp(P) by starting from the source node of DP and

traveling along the arcs. When traveling towards sources, one symbol per each visited vertex is pushed onto the pushdown.

Vice versa, when traveling back towards the sink, the pushdown symbols are popped. These operations are needed to record

the sequence of visited vertices, since some of them are shared (i.e., their fan-out is greater than 1). By induction on the

depth of DP , one may formally prove that L(A�) is the language denoted by reg-exp(P).
Let us measure the size of the npda A�. In the construction of each Ai, we use at most three new states and two new

pushdown symbols, if vi is an inner node, but only two states with no pushdown symbols if it is a source node. Hence,

|Q�| < 3� and |��| < 2�. Finally, the pushdown height of A� is easily seen to be equal to depth(DP) < �.
Actually, some improvements on the size of A� can be obtained. Given the dynamics of A� above described, the use of

the pushdown turns out to be necessary only for shared vertices, so that the machine can identify the proper ancestor by

popping a symbol from the pushdown. Thus, by renaming the pushdown symbols, we can reduce the size of the pushdown

alphabet to fan-out(P). Moreover, for verticeswith fan-out equal to 1, themoves involving the pushdown can be transformed

into ε-moves, thus reducing the pushdown height. Clearly, one may also eliminate ε-moves, possibly reducing the number

of states. In conclusion:

Theorem 2. Let P be an slp. Then there exists a constant height npda AP = 〈Q,�,�, H, q0, {qf }, h〉 such that L(AP) is denoted
by reg-exp(P) and the size of AP is linear in the size of P. In particular

|Q | < 3·length(P), |�| = fan-out(P), and h < length(P).

More precisely, h equals to the maximum number of vertices with fan-out greater than 1 along paths from sources to the sink.

5. Constant height PDAs vs. finite state automata

Here, we compare the sizes of constant height pdas and the standard finite state automata. In what follows, npdas (but

not dpdas) are in the form stated in Lemma 1, i.e., they accept by entering a unique final state with empty pushdown. First,

we prove an exponential upper bound on the size of nfas (dfas) simulating constant height npdas (dpdas, respectively).

392 V. Geffert et al. / Information and Computation 208 (2010) 385–394

Proposition 3. Foreachconstantheightnpda A = 〈Q,�,�, H, q0, {qf }, h〉, thereexists anequivalentnfa A′ = (Q ′,�, H′, q′0, {q′f })
with |Q ′| ≤ |Q | · |�� h| states. If B = 〈Q,�,�, H, q0, F , h〉 is a constant height dpda, we can construct an equivalent dfa with

no more than |Q | · |�� h| states.

Proof. We define the set of states in A′ as Q ′ = Q × �� h. During the simulation, A′ records the current state q of A together

with the current pushdown content γ . (Here, γ grows to right.) We set q′0 = (q0, ε) and q′f = (qf , ε). The transitions in H′
are defined as follows, for each p, q ∈ Q , α ∈ � ∪ {ε}, γ ∈ �� h, and X ∈ �:

• If (p,α, q) ∈ H, then ((p, γ),α, (q, γ)) ∈ H′.
• If (p,+X, q) ∈ H and |γ | < h, then ((p, γ), ε, (q, γ X)) ∈ H′.
• If (p,−X, q) ∈ H and |γ | < h, then ((p, γ X), ε, (q, γ)) ∈ H′.

It is an easy task to verify that L(A′) = L(A).
In the deterministic case, we convert B into the nfa A′ as above, with the only exception: instead of {q′f }, we take F ′ =

F × �� h as the set of final states. It is easy to see that, for each q′ ∈ Q ′ and a ∈ � ∪ {ε}, there exists at most one transition

in A′. Moreover, if there exists an ε-move from q′ ∈ Q ′, then there is no ε-free move from q′, for any a ∈ �. For this type of

nfa, the standard technique for ε-move elimination is easily seen to yield an equivalent dfawithout increasing the number

of states. �
By Proposition 3 and the usual subset construction, one immediately gets:

Corollary 1. Let A = 〈Q,�,�, H, q0, {qf }, h〉 be a constant height npda. Then there exists an equivalent dfa with no more than

2|Q |·|�� h| states.

Weare now going to show that the simulation costs in Proposition 3 and Corollary 1 are optimal by exhibiting twowitness

languages with matching exponential and double exponential gaps.

For a string x = x1 · · · xn, let xR = xn · · · x1 denote its reverse. Given an h > 0, an alphabet �, and two separator symbols

�, $ �∈ �, we define the language

L�,h = {�w1�w2� · · · �wm$w : w1, . . . , wm∈�∗, w ∈ �
� h, and w ∈ ⋃m

i=1{wR
i }}.

We begin by providing upper bounds on the size of machines accepting L�,h:

Lemma 2. For each h > 0 and each alphabet �:

(i) The language L�,h can be accepted by an npda with O(1) states, pushdown alphabet �, and constant height h.

(ii) The language L�,h can also be accepted by an nfa (or dfa) with O(|�� h|) states (or 2O(|�� h|) states, respectively).

Proof. We informally describe accepting devices for L�,h:

(i) An npda A of constant height h runs as follows: first, it nondeterministically chooses a block wi and pushes this block

onto thepushdownstore. If |wi| > h, thenA is blocked as soon as it tries to push the (h+1)st symbol onto thepushdown.

Otherwise, Amoves its input head on the first symbol ofw, and then checkswhetherw = wR
i by comparing the symbols

of w with those in the pushdown store. With the pushdown of height h and the alphabet �, O(1) states are sufficient

to load wi and then to match w against wR
i .

(ii) An nfaN for L�,h nondeterministically chooses a blockwi and stores it in its finite control, using nomore than O(|�� h|)
states. If the length of the chosen block exceeds h, then N rejects. Next, N reaches the first symbol of w, and checks,

symbol by symbol, whether w = wR
i . It is easy to see that O(|�� h|) states are sufficient to store all possible blocks of

length up to h, and tomatch a stored block againstw. From this result and by applying the standard subset construction,

one immediately gets a 2O(|�� h|)-state dfa for L�,h. �

Now we show that the sizes of an nfa or a dfa for L�,h stated in Lemma 2 (ii) are optimal.

Lemma 3. For each h > 0 and each alphabet �, any dfa (or nfa) accepting the language L�,h must use at least 2|�� h| states (or

|�� h| states, respectively).

Proof. Let us startwith thedfa. Using the lexicographical ordering on the set�� h, we can associate, with each ordered subset

S = {v1, v2, . . . , vk} ⊆ �� h, the word vS = �v1�v2� · · · �vk . Let L be the set of all such words vS . Clearly, |L| = 2|�� h|. Now,

V. Geffert et al. / Information and Computation 208 (2010) 385–394 393

Fig. 2. Costs of simulations among different types of formalisms defining regular languages. An arc labeled by lin (poly, exp, double exp) from a vertex A to a

vertex Bmeans that, given a representation of type A, we can construct an equivalent representation of type B, paying by a linear (polynomial, exponential,

double exponential, respectively) increase in the size. For clarity, some trivial linear conversions are omitted.

suppose by contradiction that L�,h is accepted by a dfa B with fewer states than 2|�� h|. By counting arguments, there exist

two differentwords vS1 , vS2 ∈ L onwhich the computations of B end in the same state. Since vS1 /= vS2 , we have that S1 differs

from S2 in at least one element, say v. So, without loss of generality, assume that v ∈ S1 \ S2. This gives two different inputs

x = vS1$v
R and y = vS2$v

R satisfying x ∈ L�,h and y �∈ L�,h. However, for both these inputs, the dfa B ends its computations

in the same state, yielding that x ∈ L�,h if and only if y ∈ L�,h. This gives a contradiction.

From this lower bound, one immediately gets that any nfa accepting L�,h must use at least |�� h| states. Otherwise, by

the usual subset construction, we could obtain an equivalent dfawith fewer states than 2|�� h|, thus contradicting our lower

bound on the size of dfas. �
Let us now show the optimality of the exponential simulation cost of constant height dpdas by dfas presented in

Proposition 3. Consider the following witness language: given an h > 0, an alphabet �, and a separator symbol � �∈ �,

let

D�,h = {w�wR : w ∈ �
� h}.

Lemma 4. For each h > 0 and each alphabet �:
(i) The language D�,h is accepted by a dpda with O(1) states, pushdown alphabet � and constant height h, and also by a dfa

with 2 · |�� h| + 1 states.

(ii) Any dfa accepting the language D�,h must have at least |�� h| states.

Proof. Point (i) can easily be checked by the reader. To prove the lower bound at point (ii), assume a dfa B for D�,h with less

than |�� h| states. Then, by counting arguments, there exist two different words v, u ∈ �� h taking B to the same state. This

means that B accepts v�vR ∈ D�,h if and only if it accepts u�vR �∈ D�,h, which is clearly a contradiction. �

6. The final picture

In conclusion, in Fig. 2, we sum up the main relations on the sizes of the different types of formalisms defining regular

languages we considered in this paper. By h-dpda (h-npda), we denote the constant height dpda (npda, respectively). Let us

briefly discuss the simulation costs displayed in this figure.

The costs of the following simulations are asymptotically optimal:

• h-dpda→ dfa: the exponential cost comes from Proposition 3, while its optimality follows from Lemma 4.

• h-npda→ nfa: the exponential cost comes from Proposition 3, while its optimality follows from Lemmas 2(i) and 3.

• slp→ reg-exp: the exponential cost comes from Proposition 2, while its optimality follows, e.g., from Example 3 in

Section 2.1.

• h-npda→ dfa: the double exponential cost is presented by Corollary 1, its optimality follows from Lemmas 2(i) and 3.

• nfa→ dfa: the exponential cost is known from [11], its optimality from [9].

• nfa↔ reg-exp: the linear cost for the “←” conversion comes directly from the Kleene’s Theorem (see also [2,3] formore

sophisticated translations), while its optimality follows trivially by considering, e.g., the regular expression an, for a fixed

n > 0. The exponential cost for the converse direction and its optimality is from [5].

394 V. Geffert et al. / Information and Computation 208 (2010) 385–394

• dfa→ nfa, dfa→ h-dpda, dfa→ h-npda, nfa→ h-npda, reg-exp→ slp, h-dpda→ h-npda: all these costs are trivially

linear. Their asymptotic optimality can be obtained, e.g., by considering a single word language {a1a2 . . . an}, where the

symbols a1, a2, . . . , an are all distinct.

The costs of the following simulations are not yet known to be optimal:

• h-npda↔ slp: Theorems 1 and 2 prove polynomial and linear, respectively, upper bounds.

• h-npda→ h-dpda: the exponential lower bound comes from the following consideration: a sub-exponential cost of

h-npda→ h-dpda conversion together with the optimal exponential cost for h-dpda→ dfawould lead to a sub-double

exponential cost of h-npda→dfa, thus contradicting the optimality of the double exponential cost. In general, for h-npda

→ h-dpda conversion, we conjecture a double exponential optimal cost.

Acknowledgments

The authors thank the anonymous referee for kind and helpful comments.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974..
[2] A. Brüggemann-Klein, Regular expressions into finite automata, Theor. Comput. Sci. 120 (1993) 197–213.
[3] P. Caron, D. Ziadi, Characterization of Glushkov automata, Theor. Comput. Sci. 233 (2000) 75–90.
[4] A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. ACM 28 (1981) 114–133.
[5] A. Ehrenfeucht, P. Zieger, Complexity measures for regular expressions, J. Comput. Syst. Sci. 12 (1976) 134–146.
[6] H. Gruber,M.Holzer, Provably shorter regular expressions fromdeterministic finite automata, in: Proceedings of theDevelopments in Language Theory,

Lecture Notes in Computer Science, vol. 5257, Springer, Berlin, 2008, pp. 383–395.
[7] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 2001.
[8] S. Kleene, Representation of events in nerve nets and finite automata, in: C. Shannon, J. McCarthy (Eds.), Automata Studies, Princeton University Press,

Princeton, NJ, 1956, pp. 3–42.
[9] A.R.Meyer,M.J. Fischer, Economyof description by automata, grammars, and formal systems, in: Proceedings of the IEEE 12th Symposiumon Switching

and Automata Theory, 1971, pp. 188–191.
[10] M. Rabin, Probabilistic automata, Inform. Control 6 (1963) 230–245.
[11] M. Rabin, D. Scott, Finite automata and their decision problems, IBM J. Res. Develop. 3 (1959) 114–125.
[12] J.C. Shepherdson, The reduction of two-way automata to one-way automata, IBM J. Res. Develop. 3 (1959) 198–200.
[13] L.G. Valiant, Regularity and related problems for deterministic pushdown automata, J. ACM 22 (1975) 1–10.

	Introduction
	Preliminaries
	Straight line programs for regular expressions
	Constant height pushdown automata

	From a constant height NPDA to an SLP
	From an SLP to a constant height NPDA
	Constant height PDAs vs. finite state automata
	The final picture
	References

