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Over 50% of the energy losses associated with the conversion of solar energy into chemical energy during
photosynthesis are attributed to kinetic constraints between the fast rate of photon capture by the light
harvesting apparatus and the slower downstream rate of photosynthetic electron transfer. At full sunlight in-
tensities, energy flux from the light harvesting antennae to the reaction centers may be 100-folds greater
than the overall linear electron flow resulting in the dissipation of up to 75% of the captured energy as
heat or fluorescence. One possible means to couple energy capture and photosynthetic electron transfer
more efficiently is to reduce the optical cross-section of the light harvesting antennae. We show that by par-
tially reducing chlorophyll b levels in the green alga, Chlamydomonas reinhardtii, we can tune the peripheral
light harvesting antennae size for increased photosynthetic efficiency resulting in more than a two-fold in-
crease in photosynthetic rate at high light intensities and a 30% increase in growth rate at saturating light in-
tensities. Unlike chlorophyll b-less mutants which lack the peripheral light harvesting antennae; transgenics
with intermediate sized peripheral antennae have the advantage that they can carry out state transitions fa-
cilitating enhanced cyclic ATP synthesis and have robust zeaxanthin–violaxanthin cycles providing protec-
tion from high light levels. It is hypothesized that the large antennae size of wild-type algae and land
plants offers a competitive advantage in mixed cultures due to the ability of photosynthetic organisms
with large light harvesting antennae to shade competing species and to harvest light at low flux densities.

Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
1. Introduction

Single celled microalgae are among the most productive autotro-
phic organisms in nature due to their high photosynthetic efficiencies
and the lack of heterotrophic tissues [1–4]. Yet, photosynthetic effi-
ciencies and areal productivities are 2 to 3-folds lower than their
theoretical potential [5,6]. This inefficiency is attributed in large part
to the poor kinetic coupling between light capture by the light
harvesting apparatus and down-stream photochemical and electron
transfer processes. During photosynthesis, light captured by the pe-
ripheral light-harvesting antenna complexes (LHC) is transferred at
nearly 100% efficiency (via quantum coherence processes) to the
proximal antenna complexes of the photosystem II (PSII) and photo-
system I (PSI) reaction center (RC) complexes where the primary
charge separation occurs [7]. Wild-type (WT) algae typically possess
large PSII peripheral antennae complexes (LHCII), which maximize
light capture at both high and limiting light intensities [2]. However,
light harvesting antenna size is not optimized for achieving maximal
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apparent quantum efficiency in monocultures where competition for
light between different species is absent. In nearly all photosynthetic
organisms, photosynthesis light saturates at ~25% of the full sunlight
intensity [8]. This is due to the fact that at saturating light intensities,
the rate of photon capture substantially (>100×) exceeds the rate of
linear photosynthetic electron transfer resulting in a large fraction of
the captured light energy being dissipated as heat or fluorescence by
non-photochemical quenching (NPQ) processes [9]. These dissipative
energy losses account for the greatest inefficiencies (~50%) in the
conversion of light into chemical energy during photosynthesis
[5,6]. Since light is a resource for photosynthetic organisms, it is
expected that competition for this resource drives the evolution of
antennae size. Ironically, having large, inefficient antennae may in-
crease evolutionary fitness since organisms that compete better for
light effectively shade those that are less efficient at capturing light.
In mixed species communities, being best at capturing light may be
a selective advantage but in monocultures being more efficient at
light utilization (energy conversion) may be the better fitness or
growth strategy.

To date, the most effective strategy to increase photosynthetic light
utilization efficiency is to reduce the size of the light-harvesting anten-
na per RC complex [5,8,10]. By reducing the effective optical cross sec-
tion of the antennae complexes the probability of saturating electron
transfer at full sunlight intensities is reduced. Significantly, a reduction
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in antennae size/RC is also predicted to reduce cell shading and increase
the penetration of photosynthetically active radiation to greater depths
in the culture water column (Fig. 1A). In Chlamydomonas reinhardtii, it
has been demonstrated that mutants with reduced antenna size can
be generated by eliminating chlorophyll (Chl) b synthesis as well as
by reducing expression of LHC genes [10,11]. Previous studies have
shown thatmicroalgae lacking the peripheral LHCII have increased pho-
tosynthetic rates; however, few studies have demonstrated an increase
in growth rate with reduced peripheral antennae size under fully
autotrophic growth conditions [8,11–15]. To date, nearly all growth
studies with algae having altered antennae sizes have been done
under mixotrophic (plus acetate) growth conditions.

In addition to harvesting light members of the LHCII gene/protein
family also play important roles in; 1) balancing energy distribution be-
tween the photosystems (state transitions), 2) regulating cyclic photo-
phosphorylation or ATP synthesis, and 3) mediating the dissipation of
excess captured energy as heat through NPQ [9,16,17]. Thus, while the
complete elimination of LHCII reduces kinetic constraints between
light capture and energy conversion, elimination of all of the peripheral
LHCII would be expected to impair the distribution of energy between
the two photosystems, reduce the ability to modulate ATP/NADPH ra-
tios, and increase susceptibility to photodamage. Hence, the complete
lack of a peripheral antenna may not be the optimal solution for en-
hancing energy conversion efficiency and growth of algalmonocultures.

To determine if there are more optimal antenna sizes for more ef-
ficient net photosynthesis, we generated transgenic C. reinhardtii
strains having a range of LHCII antenna sizes that were intermediate
between WT and a Chl b less strain which entirely lacks LHCII. We
Fig. 1. Algae with truncated LHCII. (A) Model for light absorption and utilization by algae wi
kinetics in parental (CC-424), Chl b reduced transgenics (CR) and Chl b less mutant (cbs3).
every 1 μs. (C) Correlation between Chl a/b ratio and percent closure of PSII RCs.
hypothesized that reducing but not eliminating the Chl b content
would result in algal transgenics with intermediate LHCII levels. We
demonstrate that transgenic algae having intermediate LHCII content
are capable of state transitions as well as non-photochemical
quenching of excess energy via the violaxanthin–zeaxanthin cycle.
Algae with intermediate antennae sizes also have substantially higher
growth rates thanWT or Chl b lacking algal strains when grown auto-
trophically at saturating (in WT) light intensities while having
growth rates similar to WT at low light intensities. We propose that
these observations also have implications for improving the light
harvesting efficiency of photosynthesis in the canopies of terrestrial
plants. Leaves having smaller antennae in the upper canopy and larg-
er antennae in the lower canopy may also have increased the appar-
ent photosynthesis efficiency and improved productivity when
grown in monocultures.

2. Materials and methods

2.1. Vector construction

The plasmid for inducing RNAi-mediated silencing of the
chlorophyllide a oxygenase (CAO) gene in C. reinhardtii strain CC-
424 (arg2 cw15 sr-u-2-60 mt−, Chlamydomonas Genetic Center)
was constructed using a genomic-sense/cDNA-antisense strategy.
The first two exons and introns of the CAO gene were amplified
by PCR using GCTTTCGTCATATGCTTCCTGCGTCGCTTC and CTC
TGGATCCGTCTGTGTAAATGTGATGAAGC as forward and reverse
primers respectively and the resulting product was digested with
th large and truncated antennae at saturating light intensities. (B) Chl fluorescence rise
Chl fluorescence levels were measured under continuous, non-saturating illumination
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restriction enzymes NdeI and BamHI. The corresponding cDNA re-
gion spanning exons 1 and 2 of the CAO gene was amplified using
GACGAATTCGTCAGATGCTTCCTGCGTCG and CTCTAGATCTGTCGC
CTCCGCCTTCAGCTC as the forward and reverse primers and
digested with restriction enzymes EcoRI and BglII. The genomic
DNA and cDNA fragments were cloned into the PSL18 vector [18]
using the NdeI and EcoRI sites to generate the CAO-RNAi vector
(Fig. S1A). The psaD promoter and terminator cassette of the
PSL18 vector was used to drive RNAi. The PSL18 vector contains
the paromomycin resistance gene driven by the Hsp70/RbcS2 fu-
sion promoter [19], placed in tandem with the PsaD promoter and
terminator cassette. Chlamydomonas transformants generated
using the CAO-RNAi vector were selected based on resistance to
paromomycin.

2.2. Generation and screening of the CAO-RNAi transformants

For the generation of the CAO-RNAi lines (CR), the cell wall-less
CC-424 C. reinhardtii strainwas transformedwith 1 μg of ScaI linearized
CAO-RNAi plasmid by glass bead-mediated nuclear transformation [20].
Transformants were selected on TAP agar plates containing 100 μg/mL
of L-arginine and 50 μg/mL of paromomycin. Transformants were fur-
ther screened by pigment extraction and spectrophotometric analysis
of Chl a/b ratios, which were expected to increase as a consequence of
CAO gene silencing. For this, cells were grown in culture tubes
containing 3 mL of high salt (HS) media [21]+arginine (100 μg/mL) for
5–6 days under continuous illumination of ~50 μmol light m−2 s−1

and the relative amounts of Chl a and b were determined as described
inArnon [22]. The presence of theCAO-RNAi and paramomycin resistance
cassettes in the transgenicswas further confirmed by PCRusing a forward
primer binding within the PsaD promoter (GTATCAATATTGTTGCGT
TCGGGCAC) and a reverse primer binding within the CAO-RNAi cassette
(ATCAGTTGCGTGCGCCTTGCCAAACC) to yield an ~780 bp fragment as
well as a forward primer binding within the Hsp70/Rbcs2 fusion
promoter (GGAGCGCAGCCAAACCAGGATGATG) and a reverse primer
(GTCCCCACCACCCTCCACAACACG) binding within the paramomycin re-
sistance gene to yield a 630 bp fragment (Fig. S1B).

2.3. Chl fluorescence induction measurements

For Chl fluorescence induction analysis, cell suspensions of the pa-
rental WT and transgenic Chlamydomonaswere adjusted to a Chl con-
centration of ~2.5 μg Chl/mL. Flash Chl fluorescence induction was
measured using the FL-3500 fluorometer (Photon System Instru-
ments) as described in Nedbal et al. [23]. The cells were dark adapted
for 10 min prior to the experiment. Chl fluorescence was induced
using non-saturating continuous illumination and Chl fluorescence
levels were measured every 1 μs using a weak pulse-modulated mea-
suring flash. The values of Chl fluorescence were normalized to the
maximum achieved for a given sample. For the state transition
experiments, low light grown cultures were dark adapted or pre-
illuminated with 715 nm or 650 nm light for 10 min prior to the in-
duction of Chl fluorescence. The actinic flash duration for this
experiment was set to 50 μs and Chl fluorescence was measured
every 1 μs.

2.4. Non-denaturing gel electrophoresis

The CC-424, CR-118 andCR-133 strains, and the Chlamydomonas Chl b
lessmutant, cbs3 [24],were grown in high salt (HS) under low light inten-
sities (50 μmol light m−2 s−1) with continuous shaking at 225 rpm for
6 days. Cells were harvested by centrifugation at 3000×g for 5 min at
4 °C. The cell pellet was resuspended in buffer A (0.3 M sucrose, 25 mM
HEPES, pH 7.5, 1 mMMgCl2) plus 20 μL/mL of protease inhibitor cocktail
(Roche), to yield a final Chl concentration of 1 mg/mL. Cells were
then broken by sonication (Biologics, Inc., Model 300 V/T Ultrasonic
Homogenizer) two times for 10 s each time (pulse mode, 50% duty
cycle, output power 5) on ice. The unbroken cells were pelleted by centri-
fugation at 3000×g for 2 min at 4 °C. The supernatant was centrifuged at
12,000×g for 20 min and the resulting pellet was washed with buffer A.
The sample was subjected to a second centrifugation step at 11,000×g
to collect thylakoids. Thylakoid membranes were then solubilized with
LiDodSO4 [25]. Briefly, 15 μg Chl equivalent of thylakoids was solubilized
in a buffer containing 50 mMNa2CO3, 50 mM dithiothreitol, 12% sucrose
and 2% lithium dodecyl sulfate to yield a final Chl concentration of
1 mg/mL and a Chl/LiDodSO4 (wt/wt) ratio of 1:20. The sample was
gently shaken for 60 s. Equal amounts of the sample buffer (62.5 mM
Tris–HCl, pH 6.8 and 25% glycerol) were added to the solubilized
thylakoids before loading. The samples were then loaded onto a Ready
Tris–HCl Gel (Bio-rad 161‐1225) and LiDodSO4 and EDTA were added
to the upper reservoir buffer (25 mM Tris, 192 mM glycine) to a final
concentration of 0.1% and 1 mM, respectively. Electrophoresis was
performed at 4 °C in the dark for 2–2.5 h at 12 mA constant current.

2.5. Quantitative real-time PCR

RNAwas isolated from 25 mL of the log phase cultures grown under
50 μmol m−2 s−1 light using Trizol according to the manufacturer's
instructions (TRI Reagent®, Ambion, Catalog # AM9738). DNase
(Promega, Catalog # M610A) treated RNA samples (2 μg) were reverse
transcribed using the qScript™ cDNA SuperMix kit (Quanta Biosci-
ences). Real-time quantitative RT-PCR was carried out using an
ABI-Step one plus using the SYBR Green PCR Master Mix Reagent Kit
(Quanta Biosciences). The Chlamydomonas CBLP genewas used as inter-
nal control andwas amplified in parallel for gene expression normaliza-
tion. The forward and reverse primers used for amplification of the CBLP
gene were GCAAGTACACCATTGGCGAGC and CCTTTGCACAGCGCACAC
respectively and the forward and reverse primers used for the amplifi-
cation of the CAO gene were GACTTCCTGCCCTGGATGC and GGG
TTGGACCAGTTGCTGC respectively. The PCR cycling conditions included
an initial polymerase activation step at 95 °C for 10 min, followed by 40
PCR cycles at 95 °C for 15 s, 61 °C for 15 s and 72 °C for 30 s and a final
melting step of 60–95 °C each for 15 s. The quantification of the relative
transcript levels was performed using the comparative CT (threshold
cycle) method [26].

2.6. Photosynthetic oxygen evolution

The oxygen evolving activity of the log-phase cultures (0.4–0.7
OD750 nm) of CC-424, CR-118, CR-133, CC-2677 (cw15 nit1-305 mt−
5D, Chlamydomonas Genetic Center) and cbs3 was assayed using a
Clark-type oxygen electrode (Hansatech Instruments) using low light
(50 μmol photons m−2 s−1) grown cultures. Cells were resuspended
in 20 mM HEPES buffer (pH 7.4) and the rate of oxygen evolution was
measured as a function of increasing light intensity (650 nm wave-
length red light). The photon flux density was maintained for 1.5 min
at 50, 150, 300, 450, 600, 750 and 850 μE m−2 s−1 of red light to obtain
a light saturation curve of photosynthesis. The same experimentwas re-
peated in the presence of 10 mMNaHCO3. Light saturation curves were
normalized on the basis of Chl as well as cell density (OD 750 nm).

2.7. Photoautotrophic growth measurements

Photoautotrophic growth of the CC-424, CR-118, CR-133, CC-
2677 and cbs3 Chlamydomonas strains was measured in a time
dependent manner, in 125 mL flasks in liquid HS media, at either
low light (LL, 50 μmol photons m−2 s−1) or high light (HL,
500 μmol photons m−2 s−1) conditions with constant shaking at
175 rpm. The media was supplemented with 100 μg/mL of L-
arginine. The optical density of the cultures was monitored on a
daily basis at 750 nm using a Cary 300 Bio UV–vis spectrophotometer.



137Z. Perrine et al. / Algal Research 1 (2012) 134–142
2.8. Pigment analysis by HPLC

Chlamydomonas cultures were grown in low (50 μmol photons
m−2 s−1) and high light (500 μmol photons m−2 s−1) intensities
for 5 days. Cells were centrifuged at 3000 rpm for 3 min and immedi-
ately frozen in liquid nitrogen and lyophilized. Carotenoids and Chls
were extracted with 100% acetone in the dark for 20 min. After incu-
bation samples were centrifuged at 14,000 rpm for 2 min in a
microfuge and the supernatant was transferred to a glass tube and
dried under vacuum. The dried samples were resuspended in 1 mL of
acetonitrile:water:triethylamine (900:99:1, v/v/v) for HPLC analysis.
Pigment separation and chromatographic analysis were performed on
a Beckman HPLC equipped with a UV–vis detector, using a C18 reverse
phase column at a flow rate of 1.5 mL/min. Mobile phases were (A)
acetonitrile/H2O/triethylamine (900:99:1, v/v/v) and (B) ethyl acetate.
Pigment detection was carried out at 445 nm with reference at
550 nm. Pigment standards were bought from DHI, Denmark.

3. Results

3.1. RNAi-mediated silencing of the CAO gene leads to transgenic algae
with truncated (intermediately-sized) PSII antenna complexes

To generate transgenic algae with reduced Chl b levels and inter-
mediate PSII antenna size, we used an RNAi approach to modulate
the expression of CAO, the gene responsible for the synthesis of Chl
b via the oxidation of Chl a [27]. A genomic-sense/cDNA-antisense
construct spanning the first two exons of the CAO gene was used to
generate the CAO-RNAi transgene (Fig. S1A). After transformation
with the CAO-RNAi plasmid, transgenics were selected on the basis
of paromomycin resistance encoded on the integrating plasmid.
Eight independent CAO-RNAi (CR) transgenics with Chl a/b ratios
ranging from 3.2 to 4.9 were generated and confirmed by PCR for
the presence of the RNAi cassette as well as the paromomycin resis-
tance marker (Fig. S1B). To determine the effects of reduced Chl b
levels on the PSII antenna absorption cross-section, we measured
Chl fluorescence induction kinetics in the CR strains and their parent
(CC-424) as well as a Chl b less mutant, cbs3 [24]. The rate at which
Chl fluorescence rises is indicative of the rate of closure of PSII RCs
and the PSII antenna size under conditions of non-saturating, contin-
uous illumination [23,28]. As shown in Fig. 1B, the CR transgenics had
slower Chl fluorescence induction kinetics relative to WT (Chl a/b=
2.2) reflective of a smaller PSII antenna size and only reached ~75
to 85% PSII RC normalizedmaximum fluorescence level when the par-
ent strain had reached 90% of saturation. Significantly, the PSII RC clo-
sure rate was inversely correlated with the Chl a/b ratio, implying
that the Chl a/b ratio is a direct indicator of the antenna size over
the Chl a/b ranges tested (Fig. 1C). Reductions in LHCII content in
the two CR strains and the cbs3 mutant were also confirmed using
non-denaturing polyacrylamide gel electrophoresis [25]. The two CR
transgenics (CR-118 and CR-133), having Chl a/b ratios representa-
tive of an intermediate and the highest CR Chl a/b ratio, had a ~20–
30% reduction in LHCII (CPII band) content relative to WT. The CPII
band [29] was absent in the cbs3 mutant (Fig. 2A). As expected, re-
ductions in CR LHCII content were associated with reductions in
CAO mRNA levels (Fig. 2B). It is noteworthy that large reductions in
CAO transcript levels in the CR transgenics relative to their parental
WT led to only modest decreases (30–48%) in Chl b levels. It has pre-
viously been shown that low levels of CAO protein are sufficient to
support normal levels of Chl b synthesis [30]. Therefore, it is likely
that low CAO transcript levels in the CR lines are sufficient to support
moderate levels of Chl b synthesis. Interestingly, chlorophyll pigment
analyses of the CR strains grown under low and high light conditions
showed some plasticity in Chl b levels as a function of growth light
intensity. In contrast to the parental WT, Chl a/b ratios were signifi-
cantly higher (pb0.01) in high-light grown cultures of the CR strains
than in low-light grown cultures (Fig. 2C). The CR lines also exhibited
substantial decreases in Chl b (41–43%) content and antenna size
when grown in high relative to low light intensities (Fig. 2D). In addi-
tion, we observed a 40–60% decrease in the total Chl content per unit
dry weight in high light grown cultures of strains compared to low
light grown cultures (Fig. S3).

3.2. CR strains have higher light-saturated photosynthesis rates and
higher growth rates than WT cells under high light intensities

To study the effect of reduced LHCII abundance on light-dependent
rates of photosynthetic oxygen evolution, we compared rates of photo-
synthesis in the two CR strains, the cbs3 mutant, and their parent
strains, CC-424 and CC-2677, respectively. The CR lines had 2–2.6 fold
higher light-saturated photosynthetic rates (Pmax) than WT on a Chl
basis (Fig. 3A) and up to ~1.5–2 fold greater photosynthetic rates
when measured in the presence of saturating inorganic carbon levels
(10 mMNaHCO3) (Fig. 3B). The higher photosynthetic rates in the pres-
ence of saturating levels of bicarbonate are presumably associated with
the active transport of bicarbonate into the cells resulting in the eleva-
tion of internal CO2 concentrations [31]. Similar increases in Pmax were
also observed in the CR transgenics when oxygen evolution rates were
expressed on the basis of cell density indicating that the reduction in
Chl content per cell did not substantially bias the rates of photosynthe-
sis reported on a Chl basis for the CR transgenics (Fig. S2). In contrast,
we observed a ~4 fold increase in Pmax for the Chl b less mutant, com-
pared to its parent measured on a Chl basis, but when expressed on a
cell density basis, there was only a 2-fold increase in light-saturated
rates of photosynthesis relative to WT indicative of substantial reduc-
tions in total Chl/cell (Fig. S2).

To determine the impact of antenna size on photoautotrophic
growth, we measured growth rates under limiting and saturating light
conditions (50 and 500 μmol light m−2 s−1). Growth of the CR trans-
genics was unimpaired compared to its parental WT under limiting
light intensities (Fig. 3C). On the other hand, the cbs3 mutant had a
25% reduction in stationary phase cell density under low light growth
conditions relative to its parent WT strain (CC-2677), presumably due
to the smaller optical cross section of the antennae. Under saturating
light intensities, however, the CR strains had ~15 to 35% higher station-
ary phase culture densities than the parental WT, while the cbs3 strain
had a substantially reduced stationary phase cell density (~80% of
WT) indicating that photosynthetic and growth rates were not correlat-
ed in this mutant presumably reflecting additional impairments in pho-
tosynthetic activities (Fig. 3D).

3.3. Reduction of LHCII content in the CR strains does not impair state
transitions

In C. reinhardtii, the peripheral PSII antenna is able to migrate lat-
erally between PSII and PSI, in a process known as state transitions, to
balance the excitation energy distribution between the two photosys-
tems and to regulate the ratio of linear and cyclic electron flows [16].
Linear electron transfer produces ATP and NADPH, while cyclic elec-
tron transfer driven by PSI produces only ATP. Increasing the antenna
size of the PSI complex facilitates cyclic electron transfer and has been
shown to enhance ATP production and support the optimal growth of
Chlamydomonas [16,32,33]. Thus, LHCII minus strains would presum-
ably have an impaired ability to synthesize ATP by cyclic photophos-
phorylation. To assess the impact of reduced LHCII content on the
ability to carry out state transitions, Chl fluorescence induction kinet-
ics were measured in low-light grownWT, cbs3 and CR cells that were
either dark adapted, pre-illuminated with PSI (715 nm), or pre-
illuminated with PSII (650 nm) light. PSI light pre-illumination pro-
motes LHCII migration from PSI to PSII while PSII light does the oppo-
site. An increase in the PSII antenna size would accelerate Chl
fluorescence rise kinetics and increase the maximal Chl fluorescence



Fig. 2. Analysis of peripheral LHCII content, CAO transcript levels, Chl a/b ratios and Chl fluorescence induction kinetics in parental (CC-424) and Chl b reduced transgenics (CR). (A) LHCII abun-
dance on non-denaturing PAGE. (B) Real-time PCR analysis of CAO transcript levels in CC-424 and CR strains. (C) Chl a/b ratios of CR strains grown in low (50 μmol photons m−2 s−1) and high
(500 μmol photons m−2 s−1) light. The asterisk (*) indicates a significant difference in the two light conditions determined by Student's t-test, with (pb0.01). (D) Chl fluorescence induction
kinetics of high-light grown CR transgenics. Chl fluorescence levels were measured under continuous, non-saturating illumination every 1 μs.
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level at sub-saturating light intensities. As expected, CR and WT
strains had faster Chl fluorescence rise kinetics and achieved greater
maximum Chl fluorescence levels following pre-illumination with
PSI light (Fig. 4). However, no observable increase in Chl fluorescence
yield was observed in the cbs3 strain following pre-illumination with
PSI light, indicating that cbs3 lacked the ability to carry out state tran-
sitions (Fig. 4). The absence of LHCII and state transitions and pre-
sumably diminished potential for cyclic photophosphorylation and
ATP synthesis, may partially account for the impaired photoautotro-
phic growth of cbs3.

3.4. High light grown CR strains have an increased level of photoprotective
pigments

The peripheral PSII antenna binds an array of carotenoids involved
in energy capture or dissipation. Under high light intensities acidifica-
tion of the chloroplast lumen activates de-epoxidases that convert
violaxanthin into zeaxanthin. Violaxanthin transfers energy to Chl fa-
cilitating light harvesting at low light intensities while zeaxanthin
dissipates excess Chl excited states at high light as heat [34]. We hy-
pothesized that modulating LHCII content in the CR and cbs3
transgenics would also alter cellular carotenoid abundance and com-
position at different light intensities. To examine the effects of re-
duced antenna size on carotenoid levels, we carried out pigment
analyses of low and high light grown strains (Fig. 5 and Figs. S3,
S4). As expected, we observed a decrease in carotenoid levels in
low-light grown CR (76–80% of WT) and cbs3 (76% of WT) strains
(Fig. S4). The high-light grown CR parental WT strains had a 2.8 and
3 fold increase in antheraxanthin and zeaxanthin pools respectively,
compared to low-light grown cells (Fig. 5A). However, high-light
grown CR lines displayed a 15–30% increase in de-epoxidation status
(antheraxanthin+zeaxanthin/violaxanthin+antheraxanthin+zea-
xanthin) compared to their WT parental strain. Hence, even greater
increases in the levels of antheraxanthin and zeaxanthin were ob-
served in high-light grown CR-118 (5 and 5.6 folds) and CR-133
(5.3 and 6.8 folds) than in its parental (CC-424) WT (3 folds), which
is indicative of a more active xanthophyll cycle in the CR transgenics
(Fig. 5B and C). Further, a 1.2 fold increase in lutein content was ob-
served in high-light grown CR-133 relative to low-light grown cells
(Fig. 5C). In contrast, the cbs3 parent strain (CC-2677) had no change
in its carotenoid de-epoxidation state or xanthophyll cycle carotenoid
levels under high-light relative to low-light growth (Fig. 5D). Howev-
er, the CC-2677 strain had higher beta-carotene (2 folds) levels when
grown under high versus low-light growth conditions (Fig. S4),
suggesting that this strain differs in its carotenoid regulation from
the WT parent (CC-424) of the CR transgenics. Unexpectedly,
high-light grown cbs3 exhibited a 1.8 fold increase in its carotenoid
de-epoxidation state compared to its parent (CC-2677) and had a
2-fold increase in zeaxanthin content, however, the total levels of
de-epoxidated carotenoids were substantially lower in CC-2677 de-
rived lines than in CC-424 derived lines (Fig. 5E and F). Similar to its
parent strain, an elevation (2-fold) in beta-carotene levels was also
observed in high-light grown cbs3 relative to low-light growth
(Figs. 5E, S4). Overall, the differences in carotenoid de-epoxidation

image of Fig.�2


Fig. 3. Photosynthetic oxygen evolution and growth rates in Chl b reduced (CR), Chl b less (cbs3) and parental (CC-424 and CC-2677) strains. Light-dependent rates of photosyn-
thesis for log-phase cultures grown photoautotrophically at 50 μmol photons m−2 s−1 measured in (A) the absence of NaHCO3 or (B) presence of 10 mM NaHCO3. (C) Photoau-
totrophic growth under limiting light intensities (50 μmol photons m−2 s−1). (D) Photoautotrophic growth under saturating light intensities (500 μmol photons m−2 s−1).
Results represent the average and SE of three to four independent measurements.
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levels observed in the truncated antenna mutants and WT parental
strains indicate that xanthophyll cycle activity is not directly correlat-
ed with LHCII content in these particular Chlamydomonas strains.

4. Discussion

We demonstrate that modulating Chl b levels, which binds prefer-
entially to peripheral antenna protein complexes, substantially alters
the LHCII content (Figs. 1 and 2). We also show that there is an in-
verse relationship between Chl a/b ratios and the PSII antenna size
(Fig. 1B). In the present work, truncation of LHCII was achieved
through RNAi-mediated silencing of the Chl b synthesis gene
resulting in transgenic algae with intermediate antenna size. Other
strategies have also been used to modulate light harvesting antenna
size including reduction in LHCII transcript and protein levels
[8,10–15]. The overwhelming consensus that emerges from these
studies is that mutants with smaller peripheral antenna size have in-
creased light utilization efficiency since they do not saturate rate-
limiting, downstream electron transfer processes. However, previous
studies had not shown how increased light utilization manifests into
photoautotrophic growth under low and high light intensities and
what the optimal antennae size was for maximal growth across a
range of light intensities. We show that the CR transgenics with inter-
mediate antenna sizes grew at WT rates at low light intensities but
had ~15 to 35% higher culture densities than their parental WT strain
when grown at saturating light intensities (25% of full sunlight inten-
sity) (Fig. 3). These studies indicate that at low light intensities the
size of the peripheral antennae complex is more than sufficient to
support the maximal rates of photosynthesis and that the reductions
in antennae size within the range tested had no impact on algal
growth rates. The large antenna absorption cross-section of wild
type algae reduces available light for competing algal species provid-
ing a selective advantage even at very low light levels [35]. The trade
off for having a large peripheral antennae complex is reduced photo-
synthetic efficiencies at high light intensities when electron transfer
reactions are light saturated.

Previous studies have shown that enhanced cyclic photophos-
phorylation, associated with increased photosystem I excitation, is re-
quired to meet the demands of the inorganic carbon concentrating
system and to support sufficient rates of photosynthesis for optimal
growth [16,32]. The observation that in Chlamydomonas, 80% of the
peripheral PSII antenna is involved in state transitions compared to
15–20% in Arabidopsis [36], lends further support to the idea that
state transitions are critically important for the maintenance of
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Fig. 4. Chl fluorescence induction kinetics of low-light grown Chl b reduced (CR), Chl b less (cbs3) and parental strains (CC-424 and CC-2677). Cultures were either dark adapted or
pre-illuminated with 715 or 650 nm light prior to measurement. For Chl fluorescence induction measurements, Chl fluorescence was measured under continuous, non-saturating
illumination every 1 μs.
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intracellular ATP levels in C. reinhardtii [32] to support the additional
ATP demands for active bicarbonate import. Unlike the cbs3 mutant,
the intermediate antennae size CR transgenics retained the ability to
carry out state transitions and presumably high rates of cyclic ATP
synthesis (Fig. 4). The inability of the cbs3 strain to carry out state
transitions and presumably to support high rates of cyclic photophos-
phorylation could partially account for its poor photoautotrophic
growth relative to the CR transgenics.

Photosynthetic organisms have evolved a variety of strategies to
reduce photodamage under saturating light conditions. In excess light,
a reduction in the thylakoid lumenal pH activates a rapid and reversible
de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin
[37,38]. The accumulation of zeaxanthin under high light stress helps
reduce photo-damage by, 1) quenching excess Chl excited states
through NPQ, 2) scavenging reactive oxygen species, and 3) reducing
lipid peroxidation [34]. Further, it is known that the photoprotection
by zeaxanthin can occur in the absence of LHCII, although it is enhanced
by LHCII [39,40]. Lutein is another photoprotective carotenoid present
in LHCII complexeswhich also plays a vital role in quenchingChl triplets
[34,41]. Lutein deficient mutants of Arabidopsis have smaller antenna
size, reduced LHCII trimer stability, lower levels of NPQ, and impaired
state transitions [42,43]. Conversely, Arabidopsis lycopene-ε-cyclase
mutants that over-accumulate lutein have increased NPQ levels and
photoprotection [44]. In the present study, substantial reductions in lu-
tein levels were only observed between the low-light and high-light
transitions for the cbs3 mutant, indicating that the absence of LHCII
can impact lutein steady-state levels. Higher levels of xanthophyll
cycle carotenoids have also been correlated with higher rates of photo-
synthetic recovery following photoinhibition and superior levels of bio-
mass production in ‘super high yield’ cultivars of rice [45,46]. The
increased accumulation of the photoprotective pigments zeaxanthin
and lutein observed in the CR transgenics relative to their parent strain
(CC-424) under high-light growth conditions (Fig. 5) likely contributes
to their enhanced growth under high-light conditions (Fig. 3D). Unex-
pectedly, the presence of intermediate LHCII levels in the CR transgenics
apparently facilitates zeaxanthin cycle activity. In green algae, the
LHCSR3 protein is known to accumulate in response to high light stress
conditions [47]. LHCSR proteins bind Chl a, b and xanthophylls, particu-
larly lutein and zeaxanthin and become protonated at lowpHhelping to
quench excess Chl excited states [47]. The fact that the CR transgenics
retain some level of Chl b suggests that the photoprotective function
of LHSCR3 is less likely to be impaired than in the LHCII minus strains.
The mechanism for the enhanced zeaxanthin levels in the CR trans-
genics relative to their parental strain, however, remains unknown at
the present time.

Collectively, these findings re-affirm the hypothesis that trunca-
tion of the peripheral LHCII light harvesting complex in green algae
leads to increased photosynthetic energy conversion efficiency by re-
ducing flux constraints between light capture and linear electron flow
at high light intensities. However, unlike algae that lack the PSII pe-
ripheral antenna, the CR transgenics retain the photoprotective func-
tions of the antenna and to quench excess potentially damaging Chl
excited states and combine improved photon capture and energy
conversion with the ability to dynamically regulate light distribution
between the photosystems to support cyclic photophosphorylation.
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Fig. 5. Carotenoid levels of low (50 μmol photons m−2 s−1) and high light (500 μmol photons m−2 s−1) grown Chl b reduced (CR), Chl b less (cbs3), and parental (CC-424 and CC-2677)
strains. Cells were grown in low and high light intensities for 5 days and pigments (Neo—neoxanthin, Viola—violaxanthin, Anthera—antheraxanthin, Lutein, Zea—zeaxanthin, and beta
carotene) were analyzed by HPLC. (A) CC-424 (CR parent), (B) CR-118, (C) CR-133, (D) CC-2677 (cbs3 parent), (E) cbs3. (F) De-epoxidation status in low and high light. Results are
the average and SE of three independent experiments.

141Z. Perrine et al. / Algal Research 1 (2012) 134–142
analyses as well as determination of LHC levels; and to Dr. Sayre from
the U.S. Department of Energy (DOE), Office of Basic Energy Sciences,
as part of the Photosynthetic Antenna Research Center (PARC) Energy
Frontier Research Center, DE-SC0001035 for Dr. Sangeeta Negi, who
was primarily responsible for carotenoid analyses and analyses of
state transitions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.algal.2012.07.002.

References
[1] Y. Chisti, Biodiesel from microalgae, Biotechnology Advances 25 (2007) 294–306.
[2] P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten,

O. Kruse, B. Hankamer, Second generation biofuels: high-efficiency microalgae
for biodiesel production, Bioenergetics Research 1 (2008) 20–43.

[3] T.M.Mata, A.A.Martins, N.S. Caetano,Microalgae for biodiesel production and other ap-
plications: a review, Renewable & Sustainable Energy Reviews 14 (2010) 217–232.

[4] R. Sayre, Microalgae: the potential for carbon capture, Bioscience 60 (2010) 722–727.
[5] A.Melis, Solar energy conversion efficiencies in photosynthesis:minimizing the chloro-

phyll antennae to maximize efficiency, Plant Science 177 (2009) 272–280.
[6] D.R. Ort, X. Zhu, A. Melis, Optimizing antenna size to maximize photosynthetic ef-

ficiency, Plant Physiology 155 (2011) 79–85.
[7] Z. Gokhale, R.T. Sayre, Photosystem II, a structural perspective, In: in: D.B. Stern

(Ed.), The Chlamydomonas Sourcebook, Second edition, Academic Press, San
Diego, 2009, pp. 573–602.

[8] J.E.W. Polle, S. Kanakagiri, E. Jin, T. Masuda, A. Melis, Truncated chlorophyll anten-
na size of the photosystems — a practical method to improve microalgal produc-
tivity and hydrogen production in mass culture, International Journal of
Hydrogen Energy 27 (2002) 1257–1264.
[9] P. Müller, X.-P. Li, K.K. Niyogi, Non-photochemical quenching. A response to ex-
cess light energy, Plant Physiology 125 (2001) 1558–1566.

[10] J.E.W. Polle, J.R. Benemann, A. Tanaka, A. Melis, Photosynthetic apparatus
organization and function in the wild type and a chlorophyll b-less mutant of
Chlamydomonas reinhardtii, dependence on carbon source, Planta 211 (2000)
335–344.

[11] J.H. Mussgnug, S. Thomas-Hall, J. Rupprecht, A. Foo, V. Klassen, A. McDowall, P.M.
Schenk, O. Kruse, B. Hankamer, Engineering photosynthetic light capture: im-
pacts on improved solar energy to biomass conversion, Plant Biotechnology Jour-
nal 5 (2007) 802–814.

[12] Y. Nakajima, R. Ueda, Improvement of photosynthesis in dense microalgal sus-
pension by reduction of light harvesting pigments, Journal of Applied Phycology
9 (1997) 503–510.

[13] J. Polle, S. Kanakagiri, A. Melis, tla1, a DNA insertional transformant of the green
alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll
antenna size, Planta 217 (2003) 49–59.

[14] M. Mitra, A. Melis, Optical properties of microalgae for enhanced biofuels produc-
tion, Optics Express 16 (2008) 21807–21820.

[15] J. Beckmann, F. Lehr, G. Finazzi, B. Hankamer, C. Posten, L. Wobbe, O. Kruse, Im-
provement of light to biomass conversion by de-regulation of light-harvesting
protein translation in Chlamydomonas reinhardtii, Journal of Biotechnology 142
(2009) 70–77.

[16] F.A. Wollman, State transitions reveal the dynamics and flexibility of the photo-
synthetic apparatus, The EMBO Journal 20 (2001) 3623–3630.

[17] J.A.D. Neilson, D.G. Dunford, Structural and functional diversification of the light
harvesting complexes in photosynthetic eukaryotes, Photosynthesis Research
106 (2010) 57–71.

[18] N. Depège, S. Bellafiore, J.-D. Rochaix, Role of chloroplast protein kinase Stt7 in
LHCII phosphorylation and state transition in Chlamydomonas, Science 299
(2003) 1572–1575.

[19] I. Sizova, M. Fuhrmann, P. Hegemann, A Streptomyces rimosus aphVIII gene coding
for a new type phosphotransferase provides stable antibiotic resistance to
Chlamydomonas reinhardtii, Gene 277 (2001) 221–229.

[20] K.L. Kindle, High-frequency nuclear transformation of Chlamydomonas reinhardtii,
Proceedings of the National Academy of Sciences of the United States of America
87 (1990) 1228–1232.

[21] E.H. Harris, The Chlamydomonas Sourcebook: a Comprehensive Guide to Biology
and Laboratory Use, In: Academic Press, San Diego, 1989, pp. 25–63.

image of Fig.�5


142 Z. Perrine et al. / Algal Research 1 (2012) 134–142
[22] D.I. Arnon, Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta
vulgaris, Plant Physiology 24 (1949) 1–15.

[23] L. Nedbal, M. Trtílek, D. Kaftan, Flash fluorescence induction: a novel method to study
regulation of photosystem II, Photochemistry and Photobiology B 48 (1999) 154–157.

[24] A. Tanaka, H. Ito, R. Tanaka, N.K. Tanaka, K. Yoshida, K. Okada, Chlorophyll a oxy-
genase (CAO) is involved in chlorophyll b formation from chlorophyll a, Proceed-
ings of the National Academy of Sciences of the United States of America 95
(1998) 12719–12723.

[25] P. Delepelaire, N.-H. Chua, Lithium dodecyl sulfate/polyacrylamide gel electro-
phoresis of thylakoid membranes at 4 °C: characterizations of two additional
chlorophyll a-protein complexes, Proceedings of the National Academy of
Sciences of the United States of America 76 (1979) 111–115.

[26] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time
quantitative PCR and the 2(−delta delta C(T)) method, Methods 25 (2001) 402–408.

[27] D. von Wettstein, S. Gough, C.G. Kannangara, Chlorophyll biosynthesis, The Plant
Cell 7 (1995) 1039–1057.

[28] A. Melis, Spectroscopic methods in photosynthesis: photosystem stoichiometry
and chlorophyll antenna size, Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences 323 (1989) 397–409.

[29] T.A. Martinson, F.G. Plumley, Isolation and characterization of plant and algal pigment–
protein complexes, In: in: W.V. Dashek (Ed.), Methods in Plant Biochemistry and Mo-
lecular Biology, CRC Press LLC, Boca Raton, FL, 1997, pp. 243–264.

[30] A. Yamasato, N. Nagata, R. Tanaka, A. Tanaka, The N-terminal domain of
chlorophyllide a oxygenase confers protein instability in response to chlorophyll
b accumulation in Arabidopsis, The Plant Cell 17 (2005) 1585–1597.

[31] G.D. Price, M.R. Badger, S. von Caemmerer, The prospect of using cyanobacterial
bicarbonate transporters to improve leaf photosynthesis in C3, crop plants,
Plant Physiology 155 (2011) 20–26.

[32] P. Cardol, J. Alric, J. Girard-Bascou, F. Franck, F.-A. Wollman, G. Finazzi, Impaired
respiration discloses the physiological significance of state transitions in
Chlamydomonas, Proceedings of the National Academy of Sciences of the United
States of America 106 (2009) 15979–15984.

[33] J. Alric, Cyclic electron flow around photosystem I in unicellular green algae, Pho-
tosynthesis Research 106 (2010) 47–56.

[34] Z. Li, S. Wakao, B.B. Fischer, K.K. Niyogi, Sensing and responding to excess light,
Annual Review of Plant Biology 60 (2009) 239–260.

[35] R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi,
M.R. Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera,
A.J. Nozik, D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre, Comparing photosynthetic
and photovoltaic efficiencies and recognizing the potential for improvement,
Science 332 (2011) 805–809.
[36] R. Delosme, J. Olive, F.A.Wollman, Changes in light energy distribution upon state tran-
sitions: an in vivo photoacoustic study of the wild-type and photosynthesis mutants
from Chlamydomonas reinhardtii, Biochimica et Biophysica Acta 1273 (1996) 150–158.

[37] K.K. Niyogi, A.R. Grossman, O. Björkman, Arabidopsis mutants define a central
role for the xanthophyll cycle in regulation of photosynthetic energy conversion,
The Plant Cell 10 (1998) 1121–1134.

[38] R. Goss, T. Jakob, Regulation and function of xanthophyll cycle-dependent
photoprotection in algae, Photosynthesis Research 106 (2010) 103–122.

[39] M. Havaux, L. Dall'Osto, R. Bassi, Zeaxanthin has enhanced antioxidant capac-
ity with respect to all other xanthophylls in Arabidopsis leaves and function
independent of binding to PSII antenna, Plant Physiology 145 (2007)
1506–1520.

[40] L. Dall'Osto, S. Cazzaniga, M. Havaux, R. Bassi, Enhanced photoprotection by
protein-bound vs free xanthophyll pools: a comparative analysis of chloro-
phyll b and xanthophyll biosynthesis mutants, Molecular Plant 3 (2010)
576–593.

[41] E. Formaggio, G. Cinque, R. Bassi, Functional architecture of the major light-
harvesting complex from higher plants, Journal of Molecular Biology 314 (2001)
1157–1166.

[42] H. Lokstein, L. Tian, J.E.W. Polle, D. DellaPenna, Xanthophyll biosynthetic mutants
of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluo-
rescence is due to changes in photosystem II antenna size and stability,
Biochimica et Biophysica Acta 1553 (2002) 309–319.

[43] L. Dall'Osto, C. Lico, J. Alric, G. Giuliano, M. Havaux, R. Bassi, Lutein is needed for
efficient chlorophyll triplet quenching in the major LHCII antenna complex of
higher plants and effective photoprotection in vivo under strong light, BMC
Plant Biology 6 (2006) 32.

[44] B.J. Pogoson, H.M. Rissler, Genetic manipulation of carotenoid biosynthesis and
photoprotection, Philosophical Transactions of the Royal Society of London. Series
B: Biological Sciences 355 (2000) 1395–1403.

[45] S.P. Long, S. Humphries, P.G. Falkowski, Photoinhibition of photosynthesis in nature,
Annual Review Plant Physiology Plant Molecular Biology 45 (1994) 633–662.

[46] Q. Wang, Q.D. Zhang, X.G. Zhu, C.M. Lu, T.Y. Kuang, C.Q. Li, PSII photochemistry
and xanthophyll cycle in two super high yield rice hybrids, Liangyoupeijiu and
Hua-an 3 during photoinhibition and subsequent restoration, Acta Botanica
Sinica 44 (2002) 1297–1302.

[47] G. Bonente,M. Ballottari, T.B. Truong, T.Morosinotto, T.K. Ahn, G.R. Fleming, K.K. Niyogi,
R. Bassi, Analysis of LhcSR3, a protein essential for feedback de-excitation in green alga
Chlamydomonas reinhardtii, PLoS Biology 9 (2010) e1000577.


	Optimization of photosynthetic light energy utilization by microalgae
	1. Introduction
	2. Materials and methods
	2.1. Vector construction
	2.2. Generation and screening of the CAO-RNAi transformants
	2.3. Chl fluorescence induction measurements
	2.4. Non-denaturing gel electrophoresis
	2.5. Quantitative real-time PCR
	2.6. Photosynthetic oxygen evolution
	2.7. Photoautotrophic growth measurements
	2.8. Pigment analysis by HPLC

	3. Results
	3.1. RNAi-mediated silencing of the CAO gene leads to transgenic algae with truncated (intermediately-sized) PSII antenna complexes
	3.2. CR strains have higher light-saturated photosynthesis rates and higher growth rates than WT cells under high light intensities
	3.3. Reduction of LHCII content in the CR strains does not impair state transitions
	3.4. High light grown CR strains have an increased level of photoprotective pigments

	4. Discussion
	Acknowledgement
	Supplementary data
	References


