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We analyze the supersymmetric contributions to the direct CP asymmetries of the decays B → π K ∗
and B → ρK within Soft Collinear Effective Theory. We extend the Standard Model analysis of these
asymmetries to include the next leading order QCD corrections. We find that, even with QCD correction, 
the Standard Model predictions cannot accommodate the direct CP asymmetries in these decay modes. 
Using Mass Insertion Approximation (MIA), we show that non-minimal flavor SUSY contributions 
mediated by gluino exchange can enhance the CP asymmetries significantly and thus can accommodate 
the experimental results.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

In the standard model (SM), Charge conjugation Parity (CP) vi-
olation and flavor transition arise from the complex Yukawa cou-
plings in the Cabibbo Kobayashi Maskawa (CKM) matrix. The effect 
of this phase has been first observed in kaon system and confirmed 
in B decays. However, the expected CP asymmetries in some decay 
channels for B meson are in contradiction with the experimental 
measurements carried by Babar and Belle B-factories and proton 
antiproton collider as Tevatron, with its experiments CDF and D0. 
The largest discrepancy has been observed in the decay B → Kπ
where the world averages for the CP asymmetries of B0 → K ±π∓
and B± → K ±π0 are given by [1]:

ACP
(

B0 → K ±π∓) = −0.098 ± 0.012, (1)

ACP
(

B± → K ±π0 ) = 0.050 ± 0.025, (2)

which implies that

�ACP = ACP
(

B± → K ±π0 ) − ACP 
(

B0 → K ±π∓)
= 0.14 ± 0.029. (3)

In the SM and using QCD factorization approach, the results of the 
above two asymmetries read [2]:

ACP
(

B± → K ±π0 ) = (
7.1+1.7+2.0+0.8+9.0

−1.8−2.0−0.6−9.7

)
%, (4)
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ACP
(

B0 → K ±π∓) = (
4.5+1.1+2.2+0.5+8.7

−1.1−2.5−0.6−9.5

)
%, (5) 

where the first error corresponds to uncertainties on the CKM pa-
rameters and the other three errors correspond to variation of 
various hadronic parameters. These results imply that �AQCD

CP =
0.025 ± 0.015, which differs from the experimental value by 3.5σ
and thus motivate exploring new physics beyond SM.

The decay modes B → π K ∗ and B → ρK are generated at the
quark level in the same way as B → Kπ and hence it is interest-
ing to explore hints of New Physics (NP) in these decays. These 
decay modes are studied within SM in framework of QCDF [2], 
PQCD [3,4,6,5] and Soft Collinear Effective Theory (SCET) [7]. A de-
tailed comparison between the results for the branching ratios and 
CP asymmetries in these different factorizations methods can be 
found in Ref. [7]. The comparison showed that PQCD results for 
most B → π K ∗ and B → ρK channels are much larger than SCET
results. On the other hand the QCDF results are small and compa-
rable with SCET results but with a relative minus sign. Moreover, in 
SCET, the direct CP asymmetries of B− → π− K̄ ∗ 0 and B− → ρ− K̄ 0

are zero while the CP asymmetries in other channels are small. 
Recently, in Ref. [8] fits to B → π K ∗ and B → ρK decays are
performed where data can be accommodated within the standard 
model due principally to the large experimental uncertainties, par-
ticularly in the CP-violating asymmetries.

One of the four large experiments operating at the Large 
Hadron Collider (LHC) is LHCb. The main task of the LHCb is 
to measure precisely the CP asymmetries in B meson decays. 
These measurements are so important to test the different mech-
anisms proposed by many models beyond SM to explain the 
matter–antimatter asymmetry. This test can be regarded as an in-
direct search for physics beyond SM.
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Supersymmetry (SUSY) is one of the most interesting candi-
dates for physics beyond the standard model as it naturally solves
the hierarchy problem. In addition, SUSY has new sources for CP
violation which can account for the baryon number asymmetry
and affect other CP violating observables in the B and K decays.
The effects of these phases on the CP asymmetries in semi-leptonic
τ decays has been studied in Refs. [11,10,9].

In this Letter, we analyze the SUSY contributions to the CP
asymmetries of the B → π K ∗ and B → ρK decays in the frame-
work of SCET [12–15]. SCET is an effective field theory describing
the dynamics of highly energetic particles moving close to the
light-cone interacting with a background field of soft quanta [16].
It provides a systematic and rigorous way to deal with the de-
cays of the heavy hadrons that involve different energy scales. The
scaling of fields and momenta in SCET depends on a small pa-
rameter λ. Generally λ is defined as the ratio of the smallest and
the largest energy scales in the given process. Then, the SCET La-
grangian and effective Hamiltonian are expanded in terms of λ that
help to reduce the complexity of the calculations. In addition, the
factorization formula provided by SCET is perturbative to all pow-
ers in αs expansion.

This Letter is organized as follows. In Section 2, we briefly re-
view the decay amplitude for B → M1M2 within SCET framework.
Accordingly, we analyze the CP asymmetries and branching ratios
for B → π K ∗ and B → ρK within SM in Section 3. In Section 4,
we discuss the SUSY contributions to the CP asymmetries of the
B → π K ∗ and B → ρK decays. We give our conclusion in Sec-
tion 5.

2. B → M1 M2 in SCET

The amplitude of B → M1M2 where M1 and M2 are light
mesons in SCET can be written as follows

ASCET
B→M1 M2

= AL O
B→M1 M2

+ Aχ
B→M1 M2

+ Aann
B→M1 M2

+ Ac.c
B→M1 M2

.

(6)

Here AL O
B→M1 M2

denotes the leading order amplitude in the

expansion 1/mb , Aχ
B→M1 M2

denotes the chirally enhanced pen-
guin amplitude, Aann

B→M1 M2
denotes the annihilation amplitude and

Ac.c
B→M1 M2

denotes the long distance charm penguin contributions.
In the following we give a brief account for each amplitude.

2.1. Leading order amplitude

At leading power in (1/mb) expansion, the full QCD effective
weak Hamiltonian of the �B = 1 decays is matched into the cor-
responding weak Hamiltonian in SCETI by integrating out the hard
scale mb . Then, the SCETI weak Hamiltonian is matched into the
weak Hamiltonian SCETII by integrating out the hard collinear
modes with p2 ∼ Λmb and the amplitude of the �B = 1 decays
at leading order in αs expansion can be obtained via [17]:

AL O
B→M1 M2

= −i〈M1M2|HSCETII
W |B̄〉

= G F m2
B√

2

(
f M1

[ 1∫
0

du dz T M1 J (u, z)ζ BM2
J (z)φM1(u)

+ ζ BM2

1∫
0

du T M1ζ (u)φM1(u)

]
+ (M1 ↔ M2)

)
.

(7)
At leading order in αs expansion, the parameters ζ B(M1,M2) ,
ζ

B(M1,M2)
J are treated as hadronic parameters and can be deter-

mined through the χ2 fit method using the nonleptonic decay
experimental data of the branching fractions and CP asymmetries.
At first order in αs expansion, ζ BM

J (z) can be written as a polyno-
mial in z as follows [18]

ζ BM
J (z) = 2zζ BM

J − ABM
1

(
4z − 6z2) + 5

6
ABM

2

(
z − 6z2 + 6z3),

(8)

where again ζ BM
J are treated as hadronic parameters which are

determined through the fit to the nonleptonic decay data. The hard
kernels T(M1,M2)ζ and T(M1,M2) J are expressed in terms of c( f )

i and

b( f )
i which are functions of the Wilson coefficients as follows [18]

T1ζ (u) = C BM2
uL C M1

f L uc( f )
1 (u) + C BM2

f L
C M1

uL uc( f )
2 (u)

+ C BM2
f L

C M1
uR uc( f )

3 (u) + C BM2
qL C M1

f Lqc( f )
4 (u),

T1 J (u, z) = C BM2
uL C M1

f L ub( f )
1 (u, z) + C BM2

f L
C M1

uL ub( f )
2 (u, z)

+ C BM2
f L

C M1
uR ub( f )

3 (u, z) + C BM2
qL C M1

f Lqb( f )
4 (u, z), (9)

here f stands for d or s and C BM
i and C M

i are Clebsch–Gordan
coefficients that depend on the flavor content of the final states.

For instance, we have C B̄0π+
uL

= +1, Cπ−
dL u = +1, Cπ−

dR u = −1, C B̄0ρ+
uL =

+1, and Cρ−
dL u = Cρ−

dR u = +1, C B−π−
dL

= +1 and Cπ0

ur u = − 1√
2

and c( f )
i

and b( f )
i are given by [19]

c( f )
1,2 = λ

( f )
u

[
C1,2 + 1

N
C2,1

]
− λ

( f )
t

3

2

[
1

N
C9,10 + C10,9

]
+ �c( f )

1,2,

c( f )
3 = −3

2
λ

( f )
t

[
C7 + 1

N
C8

]
+ �c( f )

3 ,

c4( f ) = −λ
( f )
t

[
1

N
C3 + C4 − 1

2N
C9 − 1

2
C10

]
+ �c( f )

4 , (10)

and

b( f )
1,2 = λ

( f )
u

[
C1,2 + 1

N

(
1 − mb

ω3

)
C2,1

]

− λ
( f )
t

3

2

[
C10,9 + 1

N

(
1 − mb

ω3

)
C9,10

]
+ �b( f )

1,2,

b( f )
3 = −λ

( f )
t

3

2

[
C7 +

(
1 − mb

ω2

)
1

N
C8

]
+ �b( f )

3 ,

b( f )
4 = −λ

( f )
t

[
C4 + 1

N

(
1 − mb

ω3

)
C3

]

+ λ
( f )
t

1

2

[
C10 + 1

N

(
1 − mb

ω3

)
C9

]
+ �b( f )

4 , (11)

where ω2 = mbu and ω3 = −mbū. u and ū = 1 − u are momentum
fractions for the quark and antiquark n̄ collinear fields. The �c( f )

i

and �b( f )
i denote terms depending on αs generated by matching

from HW . The O(αs) contribution to �c( f )
i has been calculated in

Refs. [21,20,15] and later in Ref. [18] while the O(αs) contribution
to �b( f )

i has been calculated in Refs. [22,23,18].

2.2. Chirally enhanced penguins amplitude

Corrections of order αs(μh)(μMΛ/m2
b) where μM is the chiral

scale parameter generate the so called Chirally enhanced penguins
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amplitude Aχ
B→M1 M2

[18]. μM for kaons and pions can be of order
(2 GeV) and therefore chirally enhanced terms can compete with
the order αs(μh)(Λ/mb) terms. The chirally enhanced amplitude
for B → M1M2 decays is given by [18]

Aχ (B̄ → M1M2)

= G F m2
B√

2

{
−μM1 f M1

3mB
ζ BM2

1∫
0

du R1(u)φ
M1
pp (u) + (1 ↔ 2)

− μM1 f M1

3mB

1∫
0

du dz R J
1(u, z)ζ BM2

J (z)φM1
pp (u) + (1 ↔ 2)

− μM2 f M1

6mB

1∫
0

du dz Rχ
1 (u, z)ζ BM2

χ (z)φM1(u) + (1 ↔ 2)

}
.

(12)

The factors μM are generated by pseudoscalars and so they
vanish for vector mesons [18]. The pseudoscalar light cone am-
plitude φM

pp(u) is defined as [25,24]

φ P
pp(u) = 3u

[
φ P

p (u) + φ P ′
σ (u)/6

+ 2 f3P /( f P μP )

∫
dy′/y′φ3P

(
y − y′, y

)]
. (13)

φM
pp are commonly expressed in terms of the first few terms in

the Gegenbauer series

φM
pp(x) = 6x(1 − x)

{
1 + aM

1pp(6x − 3) + 6aM
2pp

(
1 − 5x + 5x2)}.

(14)

As before, following the same procedure for treating ζ BM
J (z) we

take ζ BM
χ (z) as [18]

ζ BM
χ (z) = 2zζ BM

χ − ABM
χ1

(
4z − 6z2) + 5

6
ABM

χ2

(
z − 6z2 + 6z3).

(15)

The hard kernels R K , Rπ , R J
K , R J

π , Rχ
K and Rχ

π can be ex-
pressed in terms of Clebsch–Gordan coefficients for the different
final states as [18]

R1(u) = C BM2
qR C M1

f Lq

[
cχ

1(qf q)
+ 3

2
eqcχ

2(qf q)

]
,

R J
1(u, z) = C BM2

qR C M1
f Lq

[
bχ

3(qf q)
+ 3

2
eqbχ

4(qf q)

]
,

Rχ
1 (u, z) = C BM2

qL C M1
f Lqbχ

1(qf q)
+ C BM2

uL C M1
f L ubχ

1(u f u)

+ C BM2
f L

C M1
uL ubχ

1( f uu)
+ C BM2

f L
C M1

uR ubχ
2( f uu)

. (16)

Summation over q = u,d, s is implicit and cχ
i and bχ

i are expressed
in terms of the short distance Wilson coefficients as [18]

cχ
1(qf q)

= λ
( f )
t

(
C6 + C5

Nc

)
1

uū
+ �cχ

1(qf q)
,

cχ
2(qf q)

= λ
( f )
t

(
C8 + C7

Nc

)
1

uū
+ �cχ

2(qf q)
,

bχ
1(qf q)

= 2λ
( f )
t

[
(1 + uz)

(
C3 − C9

)
+ C4 − C10

]
+ �bχ

1(qf q)
,

uz Nc 2Nc 2
bχ
2( f uu)

= 3λ
( f )
t

[
C7 + C8

Nc
− 1

ūz

C8

Nc

]
+ �bχ

2( f uu)
,

bχ
3(qf q)

= λ
( f )
t

1

uū

(
C6 + C5

Nc

)
+ �bχ

3(qf q)
,

bχ
4(qf q)

= λ
( f )
t

1

uū

(
C8 + C7

Nc

)
+ �bχ

4(qf q)
,

bχ
1(u f u)

= 2(1 + uz)

uz

(
− C2

Nc
λ

( f )
u + 3C9

2Nc
λ

( f )
t

)

− (
2C1λ

( f )
u − 3C10λ

( f )
t

) + �bχ
1(u f u)

,

bχ
1( f uu)

= 2(1 + uz)

uz

(
−λ

( f )
u

C1

Nc
+ λ

( f )
t

3C10

2Nc

)

− (
2C2λ

( f )
u − 3C9λ

( f )
t

) + �bχ
1( f uu)

. (17)

The �cχ
i and �bχ

i terms denote perturbative corrections that
can be found in Ref. [18].

2.3. Annihilation amplitudes

Annihilation amplitudes Aann
B→M1 M2

have been studied in PQCD
and QCD factorization in Refs. [26–29]. Within SCET, the annihi-
lation contribution becomes factorizable and real at leading order,
O(αs(mb)Λ/mb) [30]. In our numerical calculation, we do not in-
clude the contributions from penguin annihilation as their size is
small and contains large uncertainty compared to the other contri-
butions [24,18].

2.4. Long distance charm penguin amplitude

The long distance charm penguin amplitude Ac.c
B→M1 M2

is given
as follows

Ac.c
B→M1 M2

= |Ac.c
B→M1 M2

|eiδcc (18)

where δcc is the strong phase of the charm penguin. The modulus
and the phase of the charm penguin are fixed through the fitting
with nonleptonic decays in a similar way to the hadronic parame-
ters ζ B(M1,M2) , ζ

B(M1,M2)
J .

3. SM contribution to the CP asymmetries and branching ratios
of B → π K ∗ and B → ρK decays

In this section, we analyze the SM contribution to the CP asym-
metries and the branching ratios for B → π K ∗ and B → ρK de-
cays. We follow Ref. [18] and work in the next leading order of
αs expansion. We take αs(mZ ) = 0.118, mt = 170.9 GeV, mb =
4.7 GeV and the Wilson coefficients Ci can be found in Ref. [31].
For the other hadronic parameters, we use the same input values
given in Ref. [18]. For the charm penguin parameters we use the
values listed in Ref. [7].

The decay modes B → π K ∗ and B → ρK are generated at the
quark level via b → s transition and thus we can decompose their
amplitudes A according to the unitarity of the CKM matrix as

A = λs
u

(
Atree

u + AQCD
u + A EW

u

) + λs
c

(
Acc

c + Anon-cc
c

)
. (19)

Here λs
p = V pb V ∗

ps with p = u, c and Atree
u , AQCD

u , A EW
u refer to

tree, QCD penguin and Electroweak penguins amplitudes respec-
tively. Acc

c refers to long distance charming penguin and Anon-cc
c

refers to contributions from other QCD and Electroweak penguins.
It should be noted here that, the different amplitudes in Eq. (19)
can have zero or nonzero values depending on the final state
mesons. In the SM we see that Atree

u � AQCD
u , A EW

u , Anon-cc
c due to
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Table 1
Branching ratios in units 10−6 of B → π K ∗ and B → ρK decays. For comparison,
we list the experimental results given in Ref. [1]. The first uncertainty in the predic-
tions is due to the uncertainties in SCET parameters while the second uncertainty
is due to the uncertainties in the CKM matrix elements.

Decay channel Exp. SM prediction

π0 K (∗)+ 6.9 ± 2.3 7.2+0.3+1.1
−0.2−0.9

π− K (∗)+ 8.6 ± 0.9 7.8+0.2+1.1
−0.2−1.0

π0 K̄ (∗)0 2.4 ± 0.7 7.8+0.5+1.2
−0.5−1.0

π+ K̄ (∗)0 9.9+0.8
−0.9 10.3+0.7+1.7

−0.7−1.4

ρ0 K + 3.81+0.48
−0.46 4.8+0.6+0.8

−0.6−0.7

ρ+ K̄ 0 8.0+1.5
−1.4 10.9+0.6+1.7

−0.6−1.5

ρ0 K̄ 0 4.7 ± 0.7 10.2+0.6+1.6
−0.6−1.4

ρ− K + 8.6+0.9
−1.1 2.6+0.5+0.4

−0.4−0.4

the hierarchy of the Wilson coefficients C1,2 � C3−10. One should
note that the amplitudes AQCD

u , A EW
u , Anon-cc

c can receive contri-
butions from QCD corrections that are proportional to the large
Wilson coefficients C1,2,8g .

The dominant NLO QCD corrections to Wilson coefficients given
in Refs. [21,20,15,22,23,18] are taken into account in our analy-
sis. These corrections are important since they contribute to the
strong phase required for CP violation. In fact contributions to the
strong phase from NLO QCD corrections to Atree

u , AQCD
u , A EW

u will

be suppressed roughly speaking by a factor αs/π × |λs
u |

|λs
c | ∼ 0.0008

in comparison with the strong phase of the charm penguin. On
the other hand NLO QCD corrections to Anon-cc

c will be suppressed
roughly speaking by a factor αs/π ∼ 0.04 in comparison with the
strong phase of the charm penguin. Thus, in SCET, the strong phase
of the charm penguin is the dominant in all cases.

Now we consider two cases, first case we have Atree
u = 0 while

the second Atree
u �= 0. In the first case we can write to a good ap-

proximation, after using |λs
u |

|λs
c | ∼ 0.02,

A = λs
c

(
Acc

c + Anon-cc
c

)
(20)

which shows that the long distance charm penguin gives the
dominant contribution to the amplitude as Anon-cc

c are highly
suppressed by the Wilson coefficients C3–10. As an example for
this case, the decay modes B+ → π+ K̄ (∗)0 and B+ → ρ+ K̄ 0

where Atree
u = 0 and thus we expect that Br(B+ → π+ K̄ (∗)0) ∼

Br(B+ → ρ+ K̄ 0) which is clear from Table 1.
Turning now to the second case where Atree

u �= 0, to a good
approximation we can write

A = λs
u Atree

u + λs
c

(
Acc

c + Anon-cc
c

)
(21)

which shows also that the long distance charm penguin gives the
dominant contribution to the amplitude, as Atree

u will be sup-
pressed by a factor |λs

u| ∼ 0.02|λs
c | in comparison to Acc

c . Thus in
all cases the long distance charm penguin gives the dominant con-
tribution and as a consequence the amplitude in each decay mode
will be of the same order of the long distance charming penguin
amplitude.

For decay modes which do not receive contribution from charm
penguin one expects very small branching ratios. Hence non-
perturbative charming penguin plays crucial rule in the branching
ratios using SCET.

The branching ratios of the decay modes B → π K ∗ and B →
ρK are given in Table 1 where the first uncertainty in the pre-
dictions is due to the uncertainties in SCET parameters while the
second uncertainty is due to the uncertainties in the CKM matrix
Table 2
Direct CP asymmetries of B → π K ∗ and B → ρK decays. As before, we list the
experimental results given in Ref. [1]. The first uncertainty in the predictions is due
to the uncertainties in SCET parameters while the second uncertainty is due to the
uncertainties in the CKM matrix elements.

Decay channel Exp. SM prediction

π0 K ∗+ 0.04 ± 0.29 −0.08+0.03+0.002
−0.03−0.002

π− K ∗+ −0.18 ± 0.07 −0.12+0.04+0.01
−0.03−0.001

π0 K̄ ∗0 −0.15 ± 0.12 −0.01+0.002+0.0003
−0.003−0.003

π+ K̄ ∗0 −0.038 ± 0.042 −0.004+0.001+0.001
−0.001−0.0003

ρ0 K + 0.37 ± 0.11 0.06+0.07+0.002
−0.08−0.002

ρ+ K̄ 0 −0.12 ± 0.17 −0.005+0.001+0.0004
−0.001−0.0001

ρ0 K̄ 0 −0.02 ± 0.27 ± 0.08 ± 0.06 −0.02+0.01+0.002
−0.01−0.001

ρ− K + 0.15 ± 0.06 0.14+0.11+0.004
−0.11−0.01

elements. As can be seen from that table, within SM, the branch-
ing ratios are in agreements with their corresponding experimental
values in most of the decay modes.

Turning now to the SM predictions for the CP asymmetries
which are presented in Table 2 where, as before, where the first
uncertainty in the predictions is due to the uncertainties in SCET
parameters while the second uncertainty is due to the uncertain-
ties in the CKM matrix elements. Clearly from the table, the SM
predictions for the CP asymmetries of B+ → π0 K ∗+ has differ-
ent sign in comparison with the experimental measurement and
the predicted CP asymmetries in many of the decay modes are in
agreement with the experimental measurements due to the large
errors in these measurements. Moreover, we see from the table
that, the predicted CP asymmetry of B̄ → π0 K̄ ∗ 0 and B+ → ρ0 K +
disagree with the experimental results within 1σ error of the ex-
perimental data. This can be attributed to the lack of the weak CP
violating phases as SM Wilson coefficients are real and the only
source of the weak phase is the phase of the CKM matrix.

Note, SCET provides large strong phases and thus with new
sources of weak CP violation one would expect enhancement in
these asymmetries. In the next section we consider the case of
SUSY models with non-universal A terms where new sources of
weak CP phases exist.

4. SUSY contributions to the CP asymmetries of B → ρK and
B → π K ∗

In this section we analyze the SUSY contributions to the CP
asymmetries of B− → π− K̄ (∗)0, B− → ρ− K̄ 0, B̄0 → ρ+K − and
B− → ρ0 K − as their SM prediction is very small and cannot
accommodate the experimental results. In SUSY, Flavor Changing
Neutral Current (FCNC) and CP quantities are sensitive to partic-
ular entries in the mass matrices of the scalar fermions. Thus it
is useful to adopt a model independent-parametrization, the so-
called Mass Insertion Approximation (MIA) where all the couplings
of fermions and sfermions to neutral gauginos are flavor diago-
nal [32]. Denoting by � the off-diagonal terms in the (M2

f̃
)AB

where f̃ denotes any scalar fermion and A, B indicate chirality,
A, B = (L, R):

(
M2

f̃

)
AB =

⎛
⎜⎜⎝

(m2
f 1)AB (�

f
AB)12 (�

f
AB)13

(�
f
AB)21 (m2

f 2)AB (�
f
AB)23

(�
f
AB)31 (�

f
AB)32 (m2

f 3)AB

⎞
⎟⎟⎠ , (22)

�
I J
LL = �

J I�
LL and �

I J
R R = �

J I�
R R , but no such relation holds for �LR . It

is often to set (m2 )AB = (m2 )AB = (m2 )AB = m̃2 where m̃ is the
f 1 f 2 f 3
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average sfermion mass. The Flavor Changing structure of the A − B
sfermion propagator is exhibited by its non-diagonality and it can
be expanded as

〈
f̃ a

A f̃ b∗
B

〉 = i
(
k2 I − m̃2 I − �

f
AB

)−1
ab

 iδab

k2 − m̃2
+ i(� f

AB)ab

(k2 − m̃2)2
+ O

(
�2), (23)

where a,b = (1,2,3) are flavor indices and I is the unit ma-
trix. It is convenient to define a dimensionless quantity (δ

f
AB)ab ≡

(�
f
AB)ab/m̃2. As long as (�

f
AB)ab is smaller than m̃2 we can con-

sider only the first order term in (δ
f
AB)ab of the sfermion propaga-

tor expansion.
The parameters (δ

f
AB)ab can be constrained through vacuum

stability argument [33], experimental measurements concerning
FCNC and CP violating phenomena [34]. Recent studies about other
possible constraints can be found in Refs. [35–37].

At next leading order in αs expansion, the dominant SUSY
contributions to our decay modes are originated from diagrams
mediated by the exchange of gluino and chargino. The complete
expressions for the gluino and chargino contributions to the Wil-
son coefficients can be found in Refs. [39,40,34,38].

After including SUSY contributions to the mentioned decays and
keeping the dominant terms we find

A
(

B− → π− K̄ (∗)0) × 107

 −0.0178
(
δd

LL

)
23 − 6.6914

(
δd

LR

)
23 − 1.5857

(
δd

RL

)
23

− (0.0052 + 0.0003i)
(
δu

LR

)
32 − (0.0046 − 0.0003i)

(
δu

RL

)
32

+ (0.3319 − 0.0612i),

A
(

B− → π0 K̄ (∗)−) × 107

 0.0125
(
δd

LL

)
23 + 4.7315

(
δd

LR

)
23 + 1.1212

(
δd

RL

)
23

+ (0.0056 − 0.0001i)
(
δu

LR

)
32 − (0.0223 − 0.0001i)

(
δu

RL

)
32

+ (0.2508 − 0.1259i),

A
(

B0 → π0 K̄ (∗)0) × 107

 −0.0127
(
δd

LL

)
23 − 4.7315

(
δd

LR

)
23 − 1.1212

(
δd

RL

)
23

+ (0.0094 + 0.0001i)
(
δu

LR

)
32 − (0.0185 + 0.0001i)

(
δu

RL

)
32

+ (0.2949 − 0.0707i),

A
(

B0 → π+ K̄ (∗)−) × 107

 0.0178
(
δd

LL

)
23 + 6.6914

(
δd

LR

)
23 + 1.5857

(
δd

RL

)
23

− (0.0106 + 0.0005i)
(
δu

LR

)
32 − (0.0099 − 0.0005i)

(
δu

RL

)
32

+ (0.2695 − 0.1392i),

A
(

B̄− → ρ−K 0) × 107

 0.0043
(
δd

LL

)
23 + 1.6190

(
δd

LR

)
23 − 1.0851

(
δd

RL

)
23

− (0.0001 + 0.0005i)
(
δu

LR

)
32 − (0.0021 − 0.0005i)

(
δu

RL

)
32

− (0.3473 + 0.0111i),

A
(

B− → ρ0 K −) × 107

 −0.0031
(
δd

LL

)
23 − 1.1448

(
δd

LR

)
23 + 0.7673

(
δd

RL

)
23

− (0.0037 + 0.0006i)
(
δu

LR

)
32 − (0.0120 − 0.0006i)

(
δu

RL

)
32

− (0.2232 + 0.0501i),
A
(

B̄0 → ρ0 K 0) × 107

 0.0030
(
δd

LL

)
23 + 1.1448

(
δd

LR

)
23 − 0.7673

(
δd

RL

)
23

− (0.0032 + 0.0003i)
(
δu

LR

)
32 − (0.0108. − 0.0003i)

(
δu

RL

)
32

− (0.3470 + 0.0307i),

A
(

B− → ρ+K −) × 107

 −0.0043
(
δd

LL

)
23 − 1.6190

(
δd

LR

)
23 + 1.0851

(
δd

RL

)
23

− (0.0008 + 0.0010i)
(
δu

LR

)
32 − (0.0037 − 0.0010i)

(
δu

RL

)
32

− (0.1723 + 0.0386i). (24)

The mass insertions (δu
RL)32 and (δu

LR)32 are not constrained by
b → sγ and so we can set them as (δu

RL)32 = (δu
LR)32 = eiδu where

δu is the phase that can vary from −π to π . It should be noted
that in order to have a well-defined Mass Insertion Approximation
scheme, it is necessary to have

|(δ f
AB)ab| < 1 but here in order to maximize the SUSY CP-

violating contributions we take it of order one. Applying b → sγ
constraints leads to the following parametrization [41]

(
δd

LL

)
23 = eiδd ,

(
δd

LR

)
23 = (

δd
RL

)
23 = 0.01eiδ. (25)

In the following we present our results for the CP asymmetries.
In our analysis we consider two scenarios, the first one with a sin-
gle mass insertion where we keep only one mass insertion per
time and take the other mass insertions to be zero and the second
scenario with two mass insertions will be considered only in the
cases when one single mass insertion is not sufficient to accom-
modate the experimental measurement. After setting the different
mass insertions as mentioned above, we see from Eq. (24) that, the
terms that contain the mass insertions (δu

RL)32 and (δu
LR)32 will be

small in comparison with the other terms and thus we expect that
their contributions to the asymmetries will be small. These terms
are obtained from diagrams mediated by the chargino exchange
and thus we see that gluino contributions give the dominant con-
tributions as known in the literature.

We start our analysis of the direct CP asymmetries by consid-
ering the first scenario in which we take only one mass insertion
corresponding to the gluino mediation and set the others to be
zero.

After substituting the mass insertions given in Eq. (25), in
Eq. (24) we find that the first and third terms in the amplitudes
B+ → π+ K̄ ∗ 0 and B+ → π0 K ∗+ will be approximately equal and
both of them will be smaller than the second term. As a conse-
quence, one predicts that the asymmetries generated by the mass
insertions (δd

LL)23 and (δd
RL)23 will be equal and in the same time

these asymmetries will be smaller than the case of using (δd
LR)23

which can be seen from Fig. 1. In that figure, we plot the CP
asymmetries, ACP(B+ → π+ K̄ ∗ 0) and ACP(B+ → π0 K ∗+) versus
the phase of the (δd

AB)32 where A and B denote the chirality i.e.
L and R , for 3 different mass insertions. The horizontal lines in
both diagrams represent the experimental measurements to 1σ .
As can be seen from Fig. 1 left, for all gluino mass insertions,
the value of the CP asymmetry ACP(B+ → π+ K̄ ∗ 0) is enhanced
to accommodate the experimental measurement of the asymmetry
within 1σ for many values of the phase of the mass insertions.
On the other hand, Fig. 1 right shows that the CP asymmetry
ACP(B+ → π0 K ∗+) is enhanced to accommodate the experimen-
tal measurement within 1σ for all values of the phase of the mass
insertions. The point we stress here is that SUSY Wilson coeffi-
cients provide source of large weak phases, which are needed for
accommodation of CP asymmetries.
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Fig. 1. CP asymmetries versus the phase of the (δd
AB )23 where A and B denote the chirality i.e. L, R , for 3 different mass insertions. The left diagram corresponds to

ACP(B+ → π+ K̄ ∗0) while the right diagram corresponds to ACP(B+ → π0 K ∗+). In both diagrams we take only one mass insertion per time and vary the phase of from −π
to π . The horizontal lines in both diagrams represent the experimental measurement to 1σ .

Fig. 2. CP asymmetries versus the phase of the (δd
AB )23 where A and B denote the chirality i.e. L, R , for 3 different mass insertions. The left diagram corresponds to

ACP(B0 → π0 K̄ ∗0) while the right diagram corresponds to ACP(B0 → π− K ∗+). In both diagrams we take only one mass insertion per time and vary the phase of from −π
to π . The horizontal lines in both diagrams represent the experimental measurement to 1σ .
In Fig. 2 we plot the two asymmetries, ACP(B0 → π0 K̄ ∗ 0) and
ACP(B0 → π−K ∗+) versus the phase of the (δd

AB)32 as before. As
can be seen from Fig. 2 left, ACP(B0 → π0 K̄ ∗ 0) lies within 1σ
range of its experimental value for many values of the phase of
the mass insertion (δd

LR)23 only. The reason for that is as be-
fore (see Eq. (24)), the two mass insertions (δd

LL)23 and (δd
RL)23

will give equal contributions to the CP asymmetries which will
be smaller than the case of using (δd

LR)23. On the other hand,
Fig. 2 right, we see that ACP(B0 → π−K ∗+) can be accommodated
within 1σ for many values of the phase of the three gluino mass
insertions.

Finally we discuss the CP asymmetries of the decay modes
B+ → ρ+K 0 and B+ → ρ0 K + . After substituting the mass inser-
tions given in Eq. (25) in Eq. (24), we find that the first and third
terms in the amplitudes B+ → ρ+K 0 and B+ → ρ0 K + will be no
longer equal as previous cases and thus we expect their contribu-
tions to the asymmetries will be different which can be seen from
Fig. 3 where, as before, we plot ACP(B+ → ρ+K 0) and ACP(B+ →
ρ0 K +) versus the phase of the (δd

AB)23. In Fig. 3 we do not show
the horizontal lines representing the 1σ range of the experimental
measurement as the three curves of the ACP(B+ → ρ+K 0) corre-
sponding to the three gluino mass insertions totally lie in this 1σ
range for all values of the phase of the mass insertions. On the
other hand, Fig. 3 right, we see that ACP(B+ → ρ0 K +) cannot be
accommodated within 1σ for any value of the phase of all gluino
mass insertions. This motivates us to consider the second scenario
with two mass insertions.

In Fig. 4, we plot the CP asymmetry, ACP(B+ → ρ0 K +) versus
the phase of the mass insertion for 2 different mass insertions. The
left diagram correspond to gluino contributions where we keep
the two mass insertions (δd

LR)23 and (δd
RL)23 and set the other

mass insertions to zero. The right diagram correspond to both
gluino and chargino contributions where we keep the two mass
insertions (δd

LR)23 and (δu
RL)32 and set the other mass insertions

to zero. In both diagrams we assume that the two mass inser-
tion have equal phases and we vary the phase from −π to π .
As before, the horizontal lines in both diagrams represent the ex-
perimental measurement to 1σ . As can be seen from Fig. 4 left,
two gluino mass insertions cannot accommodate the experimen-
tal measurement for any value of the phase of the mass insertion.
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Fig. 3. CP asymmetries versus the phase of the (δd
AB )23 where A and B denote the chirality i.e. L, R , for 3 different mass insertions. The left diagram corresponds to

ACP(B+ → ρ+ K 0) while the right diagram corresponds to ACP(B+ → ρ0 K +). In both diagrams we take only one mass insertion per time and vary the phase of from −π
to π .

Fig. 4. CP asymmetry of ACP(B+ → ρ0 K +) versus the phase of the mass insertion for 2 different mass insertions. The left diagram correspond to gluino contributions where
we keep the two mass insertions (δd

LR )23 and (δd
RL)23 and set the other mass insertions to zero. The right diagram correspond to both gluino and chargino contributions

where we keep the two mass insertions (δd
LR )23 and (δu

RL)32 and set the other mass insertions to zero. In both diagrams we assume that the two mass insertion have equal
phases and we vary the phase from −π to π . The horizontal lines in both diagrams represent the experimental measurements to 1σ .
On the other hand from Fig. 4 right, two mass insertions one
corresponding to chargino contribution and the other correspond-
ing to gluino contribution cannot accommodate the experimental
measurements. We find that in order to accommodate the CP sym-

metry in this case the Wilson coefficient C g̃
9 should be increased

at least by a factor −6π/α without violating any constraints on
the SUSY parameter space. We show the corresponding diagram
in Fig. 5.

5. Conclusion

Within Soft Collinear Effective Theory, we extend the Standard
Model analysis of the B → π K ∗ and B → ρK asymmetries to in-
clude the next leading order QCD corrections. We find that, even
with QCD correction, the Standard Model predictions cannot ac-
commodate the direct CP asymmetries in these decay modes.

We have analyzed the SUSY contributions to the direct CP
asymmetries of the decay modes B → ρK and B → π K ∗ using the
Mass Insertion Approximation. Contrarily to SM, our results show
that these direct CP asymmetries can be significantly enhanced by
the SUSY contributions mediated by gluino exchange and thus ac-
commodate the experimental results.
Fig. 5. CP asymmetry of ACP(B+ → ρ0 K +) versus the phase of the mass insertion
for 2 different mass insertions correspond to gluino contributions where we keep
the two mass insertions (δd

LR )23 and (δd
LL)23 and set the other mass insertions to

zero. We assume that the two mass insertion have equal phases and we vary the
phase from −π to π . The horizontal lines in the diagram represent the experimen-
tal measurements to 1σ .
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