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1. Introduction

Production scheduling of open-pit mines is an important prob-
lem that arises in surface mine planning. It can be summarized as
follows: The ore body is represented as a three-dimensional array
of blocks. Each block has a set of attributes including its weight and
its metal content estimated using drill hole data. Blocks have to be
mined from the ground before they can be processed in a plant
where the metal that they contain is recovered. A block is not pro-
cessed unless it is economically profitable to do so; that is, only if
the expected revenue from selling the metal contained within the
block is greater than the processing cost. This leads to a partition of
the blocks into two groups: the group of ore blocks includes blocks
that can be processed profitably, and the group of waste blocks in-
cludes all the remaining blocks. In addition, each block has an eco-
nomic value representing the net profit associated with it. The
open-pit mine production scheduling problem (MPSP) consists of
identifying which blocks should be mined during each period of
the life of the mine so as to maximize the net present value of
the mining operation. Different physical and operational con-
straints have to be met when scheduling blocks. Those considered
in this paper are as follows:

� Reserve constraints: a block can be mined at most once during
the horizon.
638; fax: +1 514 398 7099.
(A. Lamghari), roussos.dimi

Y-NC-ND license.
� Slope constraints: a block cannot be mined before its predeces-
sors. Indeed, to have access to a given block, all the blocks over-
lying it, referred to as its predecessors, have to be removed
beforehand.
� Mining constraints: the total weight of blocks (waste and ore)

mined during each period should be at least equal to a mini-
mum value to avoid having an unbalanced mining flow
throughout the periods. On the other hand, it should not exceed
the mining equipment capacity available during that period.
� Processing constraints: the total weight of ore blocks mined dur-

ing each period should be at least equal to a minimum amount
required to feed the processing plant, but it should not exceed
the processing plant capacity. Note that we assume that ore
blocks are processed during the same period when they are
mined.
� Metal production constraints: during each period, the amount of

metal recovered from the ore blocks processed should not
exceed the amount that can be sold during this period and
should not be less than a minimum amount.

Production scheduling decisions are critical for a mining com-
pany, as they serve as a baseline for determining the periodical me-
tal production and are a key factor in determining the financial
returns of significant investments in the order of hundreds of mil-
lions of dollars. Finding the most profitable production schedule is
a complex task since it involves large data sets, multiple con-
straints, and uncertainty. Uncertainty stems mainly from the fact
that the metal content of the blocks is not known precisely at
the time decisions are made: it is inferred from limited drilling
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information. This type of uncertainty is referred to in the literature
as grade, geological, or metal uncertainty. Another source of uncer-
tainty is the volatility of the metal prices. The considerations above
clearly explain why the MPSP has been a frequently studied opti-
mization problem since the 1960s (Johnson, 1969).

Different optimization methods have been applied to solve the
deterministic version of the MPSP, which assumes that all the
problem parameters are well known. Dagdelen and Johnson
(1986) propose an exact method based on Lagrangian relaxation.
A branch-and-cut algorithm was developed by Caccetta and Hill
(2003). Another exact approach based on cutting plane techniques
was recently proposed by Bley et al. (2010). The major limitation
with exact methods is that they can only be applied to instances
of relatively small size. Solving instances of realistic size, where
typically the number of blocks is in the order of tens to hundreds
of thousands, requires prohibitive computational times. To reduce
the size of the problem and thus make large instances of practical
interest computationally tractable by exact methods, Ramazan
(2007) exploits the structure of the problem to aggregate blocks
into groups. Other approaches to tackling realistic large-scale in-
stances rely on heuristics (Gershon, 1987), a combination of dy-
namic programming and heuristics (Tolwinski and Underwood,
1996), genetic algorithms (Denby and Schofield, 1994), and particle
swarm algorithms (Ferland et al., 2007). A more detailed review of
the different solution approaches for the MPSP can be found in
Newman et al. (2010). This paper also provides a review of other
optimization problems that arise in the mining context such as
fleet allocation (Souza et al., 2010; Topal and Ramazan, 2010).

The deterministic version of the MPSP ignores the uncertain
nature of the problem, which leads to misleading assessments
(Ravenscroft, 1992; Dowd, 1994; Dimitrakopoulos et al., 2002;
Godoy and Dimitrakopoulos, 2004). Stochastic versions of the
problem, which are more realistic and more relevant, have been
attracting the attention of an increasing number of researchers in
the last decade. The literature has mostly focused on addressing
metal uncertainty. Formulations minimizing deviations from pro-
duction targets over multiple ore body scenarios describing the
metal uncertainty have been proposed by Godoy (2003), Ramazan
and Dimitrakopoulos (2007, 2012), and Albor and Dimitrakopoulos
(2010). Menabde et al. (2007) develop a formulation maximizing
the expected net present value over several scenarios while satis-
fying the production targets in an average sense. Golamnejad
et al. (2006) propose a chance-constrained formulation; however,
chance-constrained formulations make severe and unrealistic
assumptions, such as a Gaussian distribution and independence
of the metal content of mining blocks (Ramazan and Dimitrakopo-
ulos, 2012). Boland et al. (2008) take into account the metal uncer-
tainty via a multistage stochastic programming approach.

While different approaches for modeling metal uncertainty
have been developed, solution methods have received relatively
less attention. A solution method based on simulated annealing
is described in Godoy (2003). The method used in Albor and Dim-
itrakopoulos (2010) consists of generating a set of nested pits,
grouping these pits into pushbacks, and then generating a schedule
based on the pushback designs obtained. The stochastic models
proposed in the studies by Menabde et al. (2007), Ramazan and
Dimitrakopoulos (2007, 2012), and Boland et al. (2008) are solved
using the commercial mixed integer programming software CPLEX,
which restricts these approaches to instances of relatively small
size (typically, instances with less than 20,000 blocks).

The objective of this paper is to propose an efficient solution
method to tackle large instances of the MPSP with metal uncer-
tainty. More specifically, we propose a metaheuristic method
based on a Tabu search procedure (Glover and Laguna, 1998; Han-
sen, 1986). To search the feasible domain more extensively, we use
two different diversification strategies to generate several initial
solutions to be optimized by the Tabu search procedure. The first
diversification strategy exploits a long-term memory of the search
history. The second one relies on the variable neighborhood search
method (Hansen and Mladenovic, 2001). Even if the solution meth-
od is introduced for the specific problem studied in this paper and
the specific approach used to address metal uncertainty, its flexi-
bility should allow it to be easily adapted to dealing with other
uncertainty modeling approaches and to account for additional
scheduling constraints.

We provide numerical results allowing us to evaluate the effi-
ciency of the method with respect to the upper bounds provided
by CPLEX. These results indicate that the proposed approach can
generate very good solutions in relatively short computational
times. Furthermore, comparing the two diversification strategies
indicates that the first one generates better solutions than the sec-
ond one.

The remainder of the paper is organized as follows: In Section 2,
the approach used to deal with metal uncertainty is outlined, and a
mathematical formulation of the problem is introduced. Sections 3
and 4 describe the Tabu search procedure and the two diversifica-
tion strategies, respectively. Computational results on real-life data
are reported and discussed in Section 5. Finally, conclusions are
drawn in Section 6.
2. Problem formulation

We assume that a finite set of possible scenarios, each specify-
ing the metal content of each block, is available, and that each sce-
nario has an equal probability of occurrence.

Referring to the description given in the previous section, the
problem can be formulated as a two-stage stochastic integer pro-
gramming model (Birge and Louveaux, 1997). In the first stage,
one determines for each period of the horizon a set of blocks to be
mined respecting the minimum and maximum mining limits, such
that each block in each set is scheduled exactly once after all its pre-
decessors. The metal content of the blocks, and thus their group (ore
or waste), is uncertain at this stage. In the second stage, the uncer-
tainty is revealed according to each scenario. In some periods, ore
blocks available, requiring processing, may have a total weight
exceeding the processing plant capacity, while in other periods, they
may not meet the minimum requirement. The same may happen
with the metal recovered from the ore blocks processed. To adapt
to the situation at hand, some recourse actions should be taken.
For instance, if the plant capacity is not sufficient to process all ore
blocks mined during a given period, the recourse action would be
to stockpile the excess so that it could be used later when shortage
occurs. In each period, each recourse action yields a cost. Hence, the
problem consists of identifying a first-stage solution that minimizes
the expected cost of the second-stage solution; i.e., a schedule that
maximizes the expected net present value of the mining operation
minus the expected recourse costs incurred due to the violation of
the processing constraints and the metal production constraints. Note
that the proposed formulation is similar to that presented in Rama-
zan and Dimitrakopoulos (2012) except that these authors mini-
mize the total penalty costs for deviating from production targets.

In the rest of the paper, we will refer to the processing con-
straints and the metal production constraints as stochastic con-
straints. The other constraints (reserve constraints, slope
constraints, and mining constraints) are referred to as non-stochas-
tic constraints.

We use the following notation to formulate the first stage of the
problem:

� N: the number of blocks considered for scheduling.
� i: block index, i ¼ 1; . . . ;N.
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� T: the number of periods over which blocks are being scheduled
(horizon).
� t: period index, t ¼ 1; . . . ; T.
� Pi: the set of predecessors of block i; i.e., blocks that should be

removed before i can be mined. Note that if block p is a prede-
cessor of block i, then i is called a successor of p.
� Si: the set of successors of block i.
� wi: the weight of block i.
� Wt: minimum weight that should be mined during period t

(considering both ore and waste blocks).
� Wt: maximum weight that can be mined during period t (min-

ing equipment capacity).

To formulate the second stage, the following notation is used for
each scenario:

� S: the number of scenarios used to model metal uncertainty.
� s: scenario index, s ¼ 1; . . . ; S.
� ois: parameter indicating the group of block i under scenario s
ois¼
1 if block i is an ore block under scenario s;
0 otherwiseði:e:; if i is a waste block under scenario sÞ:

�

� mis: the metal content of block i under scenario s.
� v its: the discounted economic value of block i if mined during

period t, and if scenario s occurs. If we denote by d1 the discount
rate and by pis the economic value of block i under scenario s,
then v its is given by the following formula:
v its ¼
pis

ð1þ d1Þt
:

Recall that we have defined in Section 1 the economic value of a
block as being the net profit associated with it. The net profit differs
according to the group (ore or waste). In the first case, it is equal to
the value of the metal content of the block less the mining, process-
ing, and selling costs. In the second case, it is equal to minus the
cost of mining the block. Furthermore, it is assumed that ore blocks
are processed during the same period when they are mined and that
the profit is also generated during that period.

For each period t, the following notation is used:

� Ot: minimum weight of ore required to feed the processing
plant during period t.
� Ot: maximum weight of ore that can be processed in the plant

during period t (processing plant capacity).
� co�

t ¼ co�

ð1þd2Þt
: unit shortage cost associated with the failure to

meet Ot during period t (co� is the undiscounted unit shortage
cost, and d2 represents the risk discount rate).
� coþ

t ¼ coþ

ð1þd2Þt
: unit surplus cost incurred if the total weight of ore

blocks mined during period t exceeds Ot .
� Mt: minimum amount of metal that should be produced during

period t.
� Mt: maximum amount of metal that can be sold during period t

(metal demand).
� cm�

t ¼ cm�

ð1þd2Þt
: unit shortage cost associated with the failure to

meet Mt during period t.

� cmþ
t ¼ cmþ

ð1þd2Þt
: unit surplus cost incurred if the metal production

during period t exceeds Mt .

The variables used to formulate the problem are as follows:

� A binary variable is associated with each block i for each period t:
xit ¼
1 if block i is mined during period t;
0 otherwise:

�

� In modeling the processing constraints, we use the variables do�
ts

and doþ
ts to denote the shortage and the surplus in the amount of

ore mined during period t if scenario s occurs, respectively.
� Finally, the variables dm�

ts and dmþ
ts measure the shortage and the

surplus in metal production during period t under scenario s,
respectively.

The proposed model is summarized as follows:

max
1
S

XS

s¼1

XT

t¼1

XN

i¼1

v itsxit �
XS

s¼1

XT

t¼1

co�
t do�

ts þ coþ
t doþ

ts þ cm�
t dm�

ts

�(

þcmþ
t dmþ

ts

�)
ð1Þ

ðMÞ s:t:
XT

t¼1

xit 6 1 i ¼ 1; . . . ;N ð2Þ

xit �
Xt

s¼1

xps 6 0 i ¼ 1; . . . ;N;p 2 Pi;

t ¼ 1; . . . ; T ð3Þ
XN

i¼1

wixit 6Wt t ¼ 1; . . . ; T ð4Þ

XN

i¼1

wixit P Wt t ¼ 1; . . . ; T ð5Þ

XN

i¼1

oiswixit þ do�
ts P Ot t ¼ 1; . . . ; T;

s ¼ 1; . . . ; S ð6Þ
XN

i¼1

oiswixit � doþ
ts 6 Ot t ¼ 1; . . . ; T;

s ¼ 1; . . . ; S ð7Þ
XN

i¼1

oismisxit þ dm�
ts P Mt t ¼ 1; . . . ; T;

s ¼ 1; . . . ; S ð8Þ
XN

i¼1

oismisxit � dmþ
ts 6 Mt t ¼ 1; . . . ; T;

s ¼ 1; . . . ; S ð9Þ
xit ¼ 0 or 1 i ¼ 1; . . . ;N; t ¼ 1; . . . ; T ð10Þ
do�

ts ;d
oþ
ts ; d

m�
ts ;dmþ

ts P 0 t ¼ 1; . . . ; T;

s ¼ 1; . . . ; S: ð11Þ

xit are the first-stage decision variables. They are scenario-indepen-
dent since they must be fixed before knowing the values of the
uncertain parameters. The deviation variables do�

ts ; doþ
ts , dm�

ts , and
dmþ

ts are the second-stage (recourse) decision variables. Their values
depend both on the realization of the uncertain parameters and on
the values of the first-stage decision variables.

The objective function (1) includes two elements to maximize
the expected net present value of the mining operation, and to
minimize the expected recourse costs incurred whenever the sto-
chastic constraints are violated due to metal uncertainty. In this
presentation, we assume that all scenarios have an equal probabil-
ity of occurrence and hence the coefficient 1

S represents the proba-
bility that scenario s occurs.

Constraints (2)–(5) are related to the non-stochastic constraints
and thus are scenario-independent. Constraints (2) guarantee that
each block i is mined at most once during the horizon (reserve con-
straints). The mining precedence (slope constraints) is enforced by
constraints (3). Constraints (4) and (5) ensure that the require-
ments on the mining levels are respected during each period of
the horizon (mining constraints).
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Constraints (6)–(9) are related to the stochastic constraints and
thus are scenario-dependent. Constraints (6) and (7) are related to
the requirements on the processing levels (processing constraints).
For each scenario s, the target is to have the total weight of ore
blocks mined during any period t in the interval ½Ot ;Ot �. If it is equal
to a value smaller than Ot (respectively, larger than Ot), then the
shortage penalty cost is equal to co�

t do�
ts (respectively, the surplus

penalty cost is equal to coþ
t doþ

ts ). Finally, constraints (8) and (9) indi-
cate that, during any period t, the target is to have the metal pro-
duction in the interval ½Mt;Mt�. Otherwise, the shortage penalty
cost is equal to cm�

t dm�
ts or the surplus penalty cost is equal to

cmþ
t dmþ

ts (metal production constraints).
Suppose that the scheduling horizon consists of a single period,

that the number of scenarios is reduced to one, and that the con-
straints (5)–(9) are dropped. Then, our problem would reduce to
the well-known Precedence-Constrained Knapsack Problem (PCKP)
(Kellerer et al., 2004) and would be simplified considerably. But
it is known that the PCKP is NP-hard (You and Yamada, 2007),
which implies that the resolution of large instances with an exact
method is very time consuming. Since our problem is even more
complex, and since the size of real-world MPSP instances is very
large, then heuristic and metaheuristic methods are indicated to
address these large-scale realistic instances. We have developed
a Tabu search procedure and two different diversification strate-
gies to search the feasible domain more extensively.

3. Tabu search

In this section, we first introduce a modified version of the ori-
ginal model, where we allow violations of the mining constraints (4)
and (5) at the expense of a penalty cost added to the objective
function. We then describe the solution procedure.

3.1. Modified model

A solution x is encoded as an array of length N where the ith en-
try is associated with block i and represents the period in which i is
scheduled. Referring to the model ðMÞ in Section 2, this means that
xi ¼ t if xit ¼ 1. Now if xit ¼ 0 for all t ¼ 1; . . . ; T (i.e., block i is not
mined during the horizon), then xi is set to ðT þ 1Þ, a fictitious per-
iod. Obviously, in this case block i does not incur costs nor does it
generate revenue. Furthermore, constraints (4)–(9) related to the
mining, processing, and metal production levels do not apply to
the fictitious period ðT þ 1Þ.

For the other periods t – ðT þ 1Þ, we allow violations of the min-
ing constraints at the expense of the following penalty cost to be
added to the objective function:

PðxÞ ¼
XT

t¼1

Pþmax
XN

i¼1

wixit �Wt;0

( )2

þP�max Wt �
XN

i¼1

wixit ;0

( )2
2
4

3
5

ð12Þ
where Pþ and P� are parameters specifying how much to penalize
the violation of constraints (4) and (5), respectively.

The modified model ðMMÞ is summarized as follows:

maxf ðxÞ¼1
S

XS

s¼1

XT

t¼1

XN

i¼1

v itsxit�
XS

s¼1

XT

t¼1

co�
t do�

ts þcoþ
t doþ

ts þcm�
t dm�

ts þcmþ
t dmþ

ts

� �( )
�PðxÞ

ðMMÞ s:t:
XTþ1

t¼1

xit¼1 i¼1; . . . ;N ð13Þ

and constraints (3) and (6)–(11).
The solution procedure is initiated with a feasible solution of

ðMMÞ. Then, a Tabu search procedure is used to improve the qual-
ity of this solution by increasing the expected net present value
and reducing constraint violations. When the Tabu search termi-
nates, a diversification strategy is used to generate a new starting
solution for the Tabu search. This process is iterated as long as
the elapsed time is less than a specified maximum time timemax.

Note that to determine the penalty cost PðxÞ, we use the square
of the deficient weight and the square of the exceeding weight
rather than the deficient and the exceeding weights because it ap-
pears reasonable to prefer a solution having different periods with
a small infeasibility (with respect to the original model ðMÞ) rather
than a solution having few periods with a large infeasibility. Fur-
thermore, the values of the parameters Pþ and P� are initially set
equal to 1. They are adjusted every 10 iterations, as in Gendreau
et al. (1994): if the 10 previous solutions are feasible, then Pþ

and P� are divided by 2; if they are all infeasible, then Pþ and P�

are multiplied by 2; otherwise Pþ and P� remain unchanged.

3.2. Initial solution

The method used to generate the first initial solution is a
sequential heuristic procedure consisting of ðT þ 1Þ major itera-
tions. During the procedure, denote by E the current set of blocks
that are eligible to be mined because they are not scheduled yet,
and all their predecessors are already scheduled. At each major
iteration t ðt ¼ 1; . . . ; TÞ, a certain number of blocks are selected
from E and scheduled at period t. The set of blocks scheduled at t
is denoted Bt and is built up by sequentially adding blocks from
E as follows: Select randomly a block i among those in E, add it
to Bt , and update E. Repeat the process until either the total weight
of blocks in Bt is greater or equal than Wt ¼ WtþWt

2 , or E is empty.
Thereafter, perform a new iteration to deal with the next period
ðt þ 1Þ. Blocks left unselected at the end of the Tth iteration are in-
cluded in BTþ1.

Note that choosing blocks from E ensures that the solution gen-
erated by the heuristic satisfies the reserve constraints and the slope
constraints. On the other hand, while some notice is taken of the
satisfaction of the mining constraints, the other objectives and con-
straints are ignored. Indeed, the purpose at this stage is to quickly
identify a solution satisfying the non-stochastic constraints. Now
this solution is improved using the Tabu search procedure de-
scribed in the following section.

3.3. Tabu search procedure

The neighborhood of a feasible solution x of the modified model
ðMMÞ is generated by shifting a block i currently scheduled at per-
iod xi to another period t – xi. This structure allows a new block to
be inserted into the schedule (if xi ¼ T þ 1), or an existing block to
be removed from the schedule (if t ¼ T þ 1), or a block to be moved
to a different period (if xi; t – T þ 1).

The new solution generated is denoted x� ði; tÞ. The shift is fea-
sible and the solution generated belongs to the neighborhood of x if
and only if the slope constraints are satisfied; i.e., if and only if
xp 2 ½1; t� for all p 2 Pi and xs 2 ½t; T þ 1� for all s 2 Si (recall that Pi

and Si denote the set of predecessors and successors of block i,
respectively). Hence the shift is feasible if t 2 ½eðxiÞ; lðxiÞ� where
eðxiÞ ¼maxp2Pi

fxpg (the closest predecessors of i are scheduled at
eðxiÞ) and lðxiÞ ¼mins2Si

fxsg (the closest successors of i are sched-
uled at lðxiÞ). To keep track more easily of the admissible shifts
for each block i, we define a 2� N matrix C where the elements
in column i are specified as C1i ¼ eðxiÞ and C2i ¼ lðxiÞ. The matrix
C is easily updated at each iteration since a shift involving block i
induces modifying the information in column i and in columns
associated with its closest predecessors and its closest successors.

To avoid cycling, a short-term Tabu list TL that forbids reversing
recent shifts is used. To be more specific, if we move from x to
x� ði; tÞ, then we forbid block i to be scheduled at xi (the shift



646 A. Lamghari, R. Dimitrakopoulos / European Journal of Operational Research 222 (2012) 642–652
ði; xiÞ is declared Tabu) during the next h iterations, where h is a
random integer number chosen in ½hmin; hmax�. However, a Tabu shift
can be applied if it leads to a solution better than the best solution
found so far denoted xbest (classical aspiration criterion).

At each iteration, we select one of the best non-Tabu neighbor
solutions or one of the best Tabu neighbor solutions satisfying
the aspiration criterion to be the current solution for the next iter-
ation. The modification value Dxði; tÞ ¼ f ðx� ði; tÞÞ � f ðxÞ associated
with a neighbor solution x� ði; tÞ is easy to evaluate since only
periods xi and t are affected by the shift ði; tÞ.

Note that there may exist several shifts with the same best
modification value. To break ties, we use a secondary selection cri-
terion based on a frequency memory. To be more specific, denote
by F ¼ ½F it � an N � ðT þ 1Þ frequency matrix. Each entry F it , asso-
ciated with the pair of block i and period t, represents the number
of times that i has been scheduled at t since the beginning of the
solution process. This frequency matrix is updated whenever a
shift ði; tÞ is applied by increasing the value of the entry F it by 1.
To break ties, the best candidate solution x� ði; tÞwith the smallest
frequency value F it is selected. This secondary selection criterion
can be seen as a diversification strategy used to drive the search to-
wards less explored regions of the search space.

Finally, the Tabu search procedure terminates when the number
of successive non-improving iterations reaches a specified value
nitermax. Denote by x� the current best solution generated by the
Tabu search. If x� is better than the solution xbest generated in pre-
vious applications of the search (the best solution found so far),
then xbest is replaced by x�.
4. Diversification strategies

Two different diversification strategies are compared numeri-
cally. The first strategy exploits a long-term memory of the search
history while the second one is based on the variable neighborhood
search method. If the time elapsed is smaller than timemax, these
strategies can be used to generate a new initial solution x0 to reini-
tialize the Tabu search procedure.
4.1. Long-term memory diversification strategy

Consider the current best solution x�. Since the purpose of any
diversification strategy is to search the feasible domain more
extensively, one way to achieve this is by moving some blocks to
the periods where they rarely have been scheduled to date. To
identify such periods, we refer to the frequency matrix F ¼ ½F it�
defined in Section 3.3. For each block i, let ti ¼ argmin

t–x�
i
;Tþ1
fF itg be

the period (different from x�i and ðT þ 1Þ) at which i has been
scheduled the least frequently, and denote ui ¼ F iti

.
To generate the new initial solution x0, start with x0 :¼ x�. Asso-

ciate with each block i a probability of being selected inversely pro-
portional to its ui value. Select a block j randomly according to
these probabilities, and move it to period tj (i.e., set
x0 :¼ x0 � ðj; tjÞ). Now such a shift may create infeasibility. Indeed,
if tj > x�j , it may happen that some successors s of j are now sched-
uled before tj in x0 (i.e., x0

s < x0
j ). On the other hand, if tj < x�j , then

some predecessors p of j may be now scheduled after tj in x0 (i.e.,
x0

p > x0
j ). In this case, we apply the following sequential process

that allows the retrieval of feasibility.
To illustrate the process, consider the case where tj > x�j . Let

C ¼ s 2 Sj : x0
s < x0

j

n o
. At each iteration, select randomly s in C.

Identify as ¼ max
k2Ps ;kRC

x0
k

� �
and bs ¼ min

l2Ss ;lRC
x0

l

� �
the periods at which

the closest predecessors and the closest successors of s are sched-
uled, but without considering the predecessors and the successors
of s that are in C. Determine a period ss in ½as; bs� where s has been
less frequently scheduled: ss ¼ argmin

t2½as ;bs �
fF stg. Move s to ss (i.e., set

x0 :¼ x0 � ðs; ssÞ). Then eliminate s from C. The process terminates
when the set C is empty.

Note that during the diversification stage, each time a shift ði; tÞ
is applied, the Tabu list, initially empty, is updated as described in
Section 3.3 in order to avoid returning to x� during the Tabu search.
The frequency matrix F is also updated.

4.2. Variable neighborhood diversification strategy

This strategy relies on principles found in the basic variable
neighborhood search method presented by Hansen and Mladenov-
ic (2001). A set of kmax neighborhood structures Nkðk ¼ 1; . . . ; kmaxÞ
has to be specified a priori. In our implementation, the structure N1

is the neighborhood used in the Tabu search described in Section
3.3. Nkðk P 2Þ are straightforward extensions of N1: given a solu-
tion x, the elements of NkðxÞ are generated by successively applying
k shifts to x. In doing so, we take care not to move a block more
than once.

To modify the value of k in order to determine the neighbor-
hood used to specify the diversification, we proceed as follows:
When the diversification strategy is applied for the first time, k is
set equal to 1. Then, whenever the Tabu search is completed with
the current best solution x�, we modify the value of k as follows: If
x� is better than xbest, then xbest :¼ x� and k :¼ 1; otherwise, xbest
is not modified and

k :¼
kþ 1 if k < kmax;

1 if k ¼ kmax:

�

To specify the new initial solution x0, consider the best solution
xbest, and determine x0 2 NkðxbestÞ (the neighborhood of xbest in
the structure Nk). Start with x0 :¼ xbest. Let B ¼ i : e x0

i

� �
– l x0

i

� �� �
be the set of blocks i that can be moved from their current period
x0

i to a new period where the slope constraints can still be satisfied.
The selection of the blocks to be moved relies on additional

information included in a N-dimensional vector T where the ith

component T i is associated with block i. This vector is updated
at each iteration of the Tabu search or the diversification strategy
as follows: Whenever a shift ði; tÞ is applied, then T i :¼ T i þ 1;
i.e., T i indicates the number of times that block i has been moved.

At each iteration of the diversification strategy, select a block j
in the set B. The selection is probabilistically biased towards blocks

with lower values of T i. Next, consider the periods in e x0
j

� �
; l x0

j

� �h i
feasible for block j. Select a period t in this interval either randomly
or in a greedy manner by selecting the period inducing the best
improvement of the objective function. Then, move block j to t
(i.e., set x0 :¼ x0 � ðj; tÞ) and update the set B, the array T , and
the Tabu list, which is initially empty. This process is repeated k
times.

5. Numerical results

Two different sets of problems P1 and P2 are used to complete
the numerical experimentation. Each set includes 5 different prob-
lems based on real-life data from our industry partners. Problems
in P1 are from a copper deposit where blocks are of size
20� 20� 10 meters and weigh 10,800 tons each. Problems in P2

are from a gold deposit where blocks are of size 15� 15�
10 meters and weigh 5625 tons each. The 10 problems are speci-
fied in Table 1.

The largest problem in each set is a real-life size problem (prob-
lems C5 and G5). The N blocks in these problems are those within
the pit limits corresponding to the blocks to mine so as to maximize



Table 1
Characteristics of the problems in the two data sets.

Set Problem D Number of
blocks (N)

Number of
periods (T)

Number of
scenarios (S)

P1 C1 20,000 4273 3 20
Metal type: copper
Block size: 20� 20� 10 meters C2 15,000 7141 4 20
Block weight: 10,800 tons

C3 10,000 12,627 7 20
C4 5000 20,626 10 20
C5 0 26,021 13 20

P2 G1 20,000 18,821 5 20
Metal type: gold
Block size: 15� 15� 10 meters G2 15,000 23,901 7 20
Block weight: 5625 tons

G3 10,000 30,013 8 20
G4 5000 34,981 9 20
G5 0 40,762 11 20

Table 2
Economic parameters used to compute the objective function coefficients.

Parameters P1 P2

Mining cost $1/t $1/t
Processing cost $9/t $15/t
Metal price $0.125/oz $900/oz
Selling cost $1.875E�02/oz $7/oz
Undiscounted shortage cost for ore ðco�Þ $15/t $17/t
Undiscounted surplus cost for ore ðcoþÞ $15/t $17/t
Undiscounted shortage cost for metal ðcm�Þ $1.25E�02/oz $90/oz
Undiscounted surplus cost for metal ðcmþÞ $6.25E�03/oz $45/oz
Discount rate ðd1Þ 10% 10%
Risk discount rate ðd2Þ 10% 10%
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the profit expected from the mining operation while satisfying the
slope constraints. These blocks were identified by solving the fol-
lowing problem:

max
XN

i¼1

v iyi ð14Þ

ðPLÞ s:t:

yi 6 yp i ¼ 1; . . . ;N; p 2 Pi ð15Þ
yi ¼ 0 or 1 i ¼ 1; . . . ;N ð16Þ

where N is the number of blocks in the mineral deposit, and

v i ¼
PS

s¼1
pis

S is the expected economic value of block i. Recall that
pis denotes the economic value of block i under scenario s, and S
denotes the number of scenarios used to model metal uncertainty.
Pi the set of predecessors of block i. yi ¼

1 if block i is part of the pit;
0 otherwise:

�
For the other problems (C1–C4 and G1–G4), the blocks consid-

ered were also obtained by solving the mathematical model ðPLÞ;
however, the economic values of the blocks have been decreased
in order to obtain smaller pits (i.e., in the objective function (14),
v i is replaced by ðv i � DÞ where the decreasing factor D is given
in the third column of Table 1). The purpose of using problems
C1–C4 and G1–G4 is twofold: to assess how the proposed solution
method scales with the problem size, and to determine the limit of
problem size up to which the commercial solver CPLEX is able to
solve the problem in a reasonable amount of time.

For each deposit (copper and gold), 20 equiprobable scenarios
representing the mineral deposits were generated from a limited
number of drilling information and the geostatistical techniques
of conditional simulation (Goovaerts, 1997; Scheidt and Caers,
2009; Horta and Soares, 2010; Chiles and Delfiner, 2012), which
can be seen as a complex Monte Carlo simulation framework.
The scenarios generated reproduce all available data and informa-
tion as well as spatial statistics of the data. The specific technique
utilized herein is retailed in Boucher and Dimitrakopoulos (2009).

The economic parameters (unit costs, unit revenues, discount
factor) are based on real-life data and are summarized in Table 2.
The reasoning behind the choice of the values of the undiscounted
shortage and surplus costs is as follows:

� If the ore produced during period t is less than Ot , there is a
shortage, and the mining company ’’loses’’ some of the capital
invested to build a processing plant with a large capacity. The
investment is typically equal to $15/t and $17/t per year for
copper and gold, respectively. Hence, we use these values for
the undiscounted shortage cost for ore, co�.
� If the amount of ore mined during period t exceeds the process-
ing plant capacity, the mining company must increase the plant
capacity at a cost of $15/t and $17/t for copper and gold, respec-
tively. Hence, we use these values for the undiscounted surplus
cost for ore, coþ.
� If there is a shortage of metal during period t, and the contract

with the buyer stipulates that a penalty of 10% of the value of
the ’’undelivered’’ metal is to be charged, then the undiscounted
shortage cost for the metal, cm�, is defined as: 0:1�metalprice.
� In case of an excess of metal production over demand, metal

prices may fall. Assuming sales of the excess metal at a price
5% below the original price, the undiscounted surplus cost for
metal, cmþ, is defined as: 0:05�metal price.

Finally, for the 10 problems, each period is one year long. Lower
and upper bounds on processing at each period are defined as:
total expected amount of ore

number of periods � 5%. The same margin is considered for metal

production levels, while a higher margin (20%) is considered for
mining levels.

The numerical tests were completed on an AMD Opteron 250
computer (2.4 gigahertz) with 16 gigabytes of RAM running under
Linux. Preliminary tests were conducted to determine appropriate
parameter values for the different procedures introduced in this
paper. On the basis of the results of these tests, we have chosen
the following values that exhibit a good overall performance:

� Parameters of the solution procedure in Section 3.1:
– Maximum allotted time: timemax ¼ 0:02NT seconds (N

being the number of blocks in the problem and T the number
of periods over which blocks are being scheduled).

� Parameters of the Tabu search procedure in Section 3.3:
– Interval in which the duration of the Tabu status of the shifts

is chosen: ½hmin; hmax� ¼ ½b0:8gc; d1:2ge�, where g denotes the



Table 3
Comparison between TS-LTM and TS-VN.

Set Problem NPVð$Þ Zbestð$Þ IterDiv

TS�LTM
TS�VN

TS�LTM
TS�VN

TS-LTM TS-VN

P1 C1 1.003 1.002 867.7 766.9
C2 1.008 1.005 664.3 744.6
C3 1.027 1.025 184.6 346.9
C4 1.033 1.031 103.0 253.0
C5 1.077 1.193 57.3 111.2

P2 G1 1.028 1.186 739.9 1346.4
G2 1.117 1.909 394.3 430.2
G3 1.157 2.286 239.1 204.1
G4 1.176 2.230 149.3 156.7
G5 1.217 2.258 68.5 113.4
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number of blocks that can be moved from their current per-
iod in the initial solution x0 to a new period where the slope
constraints can still be satisfied (i.e., blocks i such that
e x0

i

� �
– l x0

i

� �
).

– Maximum number of successive non-improving iterations:
nitermax ¼ g:

� Parameters of the variable neighborhood diversification strat-
egy in Section 4.2:
– Maximal number of neighborhood structures: kmax ¼ d

ffiffiffiffi
N
p
e:

– Probability of choosing the random strategy: a ¼ 0:3. Recall
that in the procedure described in Section 4.2, once a block j
is selected in the set B, it is moved to a period

t 2 e x0
j

� �
; l x0

j

� �h i
chosen either randomly or in a greedy

manner. The period t is chosen at random with a probability
of a 2 ½0;1�. The selection bias in favor of the best shifts can
therefore be increased by setting the a value closer to 0, or
be reduced by setting a closer to 1.

In the following, TS-LTM and TS-VN denote the two variants of
the solution procedure in Section 3.1, obtained by combining the
Tabu search procedure in Section 3.3 (denoted TS) with the two
diversification strategies in Section 4 (the long-term memory
diversification strategy and the variable neighborhood diversifica-
tion strategy, denoted LTM and VN, respectively). We compare the
variants numerically with the 10 problems specified in Table 1,
using the values above for the parameters. Since both variants con-
tain stochastic features, each problem is solved 10 times by each
variant using different initial solutions. All reported results corre-
spond to averages over the 10 runs.

In Table 3, we compare the variants globally in terms of the
average value Zbest of the best solutions generated, the average va-
lue NPV of the expected net present value for the best solutions
found (i.e., the average value of the first term of the objective func-
tion (1)), and the average number IterDiv of diversification itera-
tions performed (i.e., number of times that new solutions have
been generated to reinitialize the Tabu search). Note that we do
not compare CPU times since they are equivalent (both variants
stop after timemax ¼ 0:02NT seconds). Furthermore, for the first
two criteria (Zbest and NPV), we report the relative performance
of TS-LTM over TS-VN (the ratio of the value obtained by TS-LTM
to that obtained by TS-VN) rather than the values obtained by
the two variants.

As can be observed from the results in Table 3, TS-LTM always
produces better results than TS-VN. The performance differences
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Fig. 1. Evolution of the best solution
increase with the problem size. In particular, for the smallest prob-
lem C1, NPV and Zbest are improved respectively by 0:30% and
0:16% when TS-LTM is used. Even higher improvements of
21:70% and 125:82%, respectively, are obtained for the largest
problem, G5.

The values of IterDiv indicate that, in general, TS-VN restarts the
Tabu search procedure more frequently than TS-LTM. This can be
explained by two reasons. First, VN is often less time consuming
than LTM (cf. Sections 4.1 and 4.2). Second, the results indicate that
as TS-VN progresses, the number of TS iterations performed be-
tween two diversifications tends towards nitermax, which means
that the Tabu search fails to improve the new initial solution, much
less the best solution found so far. TS-LTM often exhibits the oppo-
site behavior and performs more than nitermax iterations between
two diversifications.

To summarize, the VN diversification strategy does not appear
to be very effective for escaping local optima. We think that the
fact that this strategy generates solutions in the neighborhood of
the best solution found so far xbest (cf. Section 4.2) is the main rea-
son for the poor performance of TS-VN. Indeed, the consequence of
this is that the search is performed in a restricted region of the
feasible domain (around xbest), and it fails to explore other regions
that may contain better solutions. On the other hand, LTM gener-
ates solutions that are significantly different from xbest (cf. Section
4.1). Since it is based on the frequency matrix, which enables keep-
ing track of the entire history of the search, this strategy drives the
search towards unexplored or less explored regions of the feasible
domain and thus provides better opportunities for an extensive
exploration of it.
4000 5000 6000
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TS−LTM
TS−VN

found over time for problem C5.
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Fig. 2. Evolution of the best solution found over time for problem G5.

Table 4
Comparison between TS-LTM, TS-VN and CPLEX.

Set Problem %Gap CPU time (minutes)

TS-LTM TS-VN TS-LTM TS-VN CPLEX

P1 C1 0.23 (0.02) 0.40 (0.08) 4.28 4.28 8.97
C2 0.67 (0.06) 1.17 (0.19) 9.53 9.53 73.64
C3 1.98 (0.21) 4.39 (0.17) 29.47 29.47 1,457.05
C4 4.17 (0.49) 7.09 (0.18) 68.77 68.77 12,115.63
C5 – – 112.77 112.77 –

P2 G1 1.15 (0.05) 16.64 (14.15) 31.38 31.38 855.50
G2 1.72 (0.06) 48.52 (7.19) 55.78 55.78 3,786.73
G3 2.07 (0.11) 57.17 (2.51) 80.05 80.05 7,902.27
G4 2.40 (0.21) 56.23 (1.97) 104.95 104.95 15,230.50
G5 – – 149.47 149.47 –

Table 5
Comparison between TS-LTM, TS-VN, and pure TS.

Set Problem G Zbest G %Gap

TS-LTM TS-VN TS-LTM TS-VN

P1 C1 1.004 1.003 2.797 1.629
C2 1.001 0.996 1.106 0.635
C3 1.023 0.998 2.104 0.947
C4 1.033 1.001 1.726 1.015
C5 1.039 0.871 – –

P2 G1 0.996 0.840 0.668 0.047
G2 1.005 0.526 1.234 0.045
G3 1.950 0.853 23.166 0.871
G4 1.935 0.868 20.504 0.881
G5 1.834 0.812 – –
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Figs. 1 and 2 illustrate even more strongly that the use of the VN
diversification strategy is not very useful for escaping local optima.
These figures show the results for the largest problems in each set
(problems C5 and G5, respectively). Each curve associated with a
variant indicates the average values of the best solutions generated
over the 10 resolutions calculated at different times of the
resolution.

Globally, for problem C5 (cf. Fig. 1), the curves associated with
the two variants have almost the same shape. During the first
200 seconds, they are exactly alike (recall that the initial solutions
are identical and that they are improved using the same Tabu
search procedure). During the period between 200 and 1000 sec-
onds, the values of the objective function continue to increase,
but TS-LTM performs slightly better than TS-VN. The gap between
the two variants increases during the period between 1000 and
2000 seconds. Improvements rarely occur with TS-VN, indicating
that this variant can easily be trapped in local optima. After
2000 seconds, the curve associated with TS-LTM also levels, but
at higher values than TS-VN.

For problem G5, the curves in Fig. 2 indicate that TS-LTM con-
sistently improves the quality of the solutions found, while TS-
VN has the same behavior as for problem C5: after improving the
solution at the beginning of the process, it reaches a point where
it cannot move out of local maxima.

To further analyze the performance of the two variants, we
compare the results they produce with those obtained with CPLEX
12.2. Since none of the problems was solved to optimality within
one day, we have solved the linear relaxation of the problem to ob-
tain an upper bound on the optimal value. In Table 4, we evaluate
the effectiveness of the two variants with respect to the upper
bounds provided by CPLEX. For each problem, except for problems
C5 and G5, for which CPLEX was unable to solve the linear relaxa-
tion within 4 weeks, we indicate the value of the average relative
gap %Gap between the average value Zbest of the best solutions
generated (as reported in Table 3) and the linear relaxation optimal
value ZLR:

%Gap ¼ ZLR � Zbest
ZLR

� 100:

The standard deviation of %Gap for the 10 runs is indicated in
parentheses. The CPU times required by TS-LTM, TS-VN, and CPLEX
are given in minutes in the last three columns of the table. Note that
CPU times for TS-LTM and TS-VN are identical since both stop after
timemax ¼ 0:02NT seconds.

Notice first the effectiveness of TS-LTM in producing very good
quality solutions for all problem sizes. The results indicate that
%Gap tends to increase with the problem size (this is probably
due to the fact that IterDiv decreases with the problem size). How-
ever, its average value is only 1:80%, and in 92:5% of all cases (con-
sidering the 80 runs), it is smaller than 4%. The small values of
standard deviation indicate even more clearly the robustness of
TS-LTM. TS-VN is not competitive with TS-LTM, especially when
the problem size increases (problems in P2). The results also show
that both variants require significantly shorter solution times than
CPLEX. In particular, for problems C4 and G4, the computational
times for TS-LTM and TS-VN are only about 1 and 2 hours, respec-
tively, while the CPU time required by CPLEX to solve the linear
relaxation of the problem is approximately 9 and 11 days,
respectively.
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To evaluate the impact of the two proposed diversification
strategies, we solve the same problems without them; i.e., using
a pure Tabu search. To be more specific, each problem is solved
10 times using the Tabu search procedure in Section 3.3 (TS), but
instead of stopping the procedure when the number of consecutive
iterations without improving xbest reaches the value nitermax,
the procedure is stopped when the CPU time reaches
timemax ¼ 0:02NT seconds (i.e., using the same stopping criterion
as for TS-LTM and TS-VN). Table 5 includes results comparing
the two approaches where:

� G Zbest = (value of Zbest with diversification)/(value of Zbest
without diversification).

� G %Gap = (value of %Gap without diversification)/(value of
%Gap with diversification).

The numerical results in Table 5 indicate that the LTM diversi-
fication strategy has a positive impact in improving the quality of
the solutions (except for problem G1). On the other hand, using
the VN diversification strategy has a negative impact, in general.
To assess whether these differences in performance are statistically
significant, for each pair of methods, we apply Wilcoxon signed-
rank tests (see the website http://www.R-project.org) with a 5%
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level of confidence over their numerical results. These tests con-
firm the results in Tables 4 and 5, indicating that TS-LTM outper-
forms both TS and TS-VN. On the other hand, TS is statistically
better than TS-VN. So overall, with regards to solution quality,
TS-LTM would rank first, TS second, and TS-VN last. Note that
among the three methods, TS-VN is the only one that focuses the
search around xbest. Therefore, these results corroborate the obser-
vations made above: for the problem studied in this paper, focus-
ing the search around the best solution found so far is not the
best strategy to escape local optima.

To gain a deeper insight into the performance of the three
methods, we conduct additional experiments and perform an anal-
ysis of run-time distributions. Run-time distributions (RTDs) or
time-to-target plots (TTT plots) are useful tools to characterize
the running times of stochastic algorithms for combinatorial opti-
mization and have been widely used as a tool for algorithm design
and comparison. They display on the ordinate axis the probability
that an algorithm will find a solution at least as good as a given tar-
get value within a given running time, shown on the abscissa axis
(Ribeiro et al., 2011). The methodology used to produce the TTT
plots can be summarized as follows: n independent runs on a given
instance are performed. For each run, the CPU time required to ob-
tain a solution with a value at least as good as a given target value
is recorded. After sorting these times in ascending order, a proba-
104 105
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S-LTM, TS-VN, and pure TS for problem C3.
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bility pi ¼ i�0:5
n is associated with the ith sorted running time ti.

Then, the points ðti; piÞ are plotted. Next, we present illustrative re-
sults for two problems: problem C3 from the set P1 and problem
G3 from the set P2.

For each problem, each method (TS, TS-LTM, and TS-VN) was
run 200 times with different seeds (thus different initial solutions).
The target was set to the value of the best solution found by the
worst method, TS-VN. Run-time distributions of the three methods
were obtained using the Perl program described in Aiex et al.
(2007). They are superimposed in Figs. 3 and 4.

From these figures, we can observe that TS-LTM is more likely to
find a target solution faster than the other two methods. For in-
stance, for problem C3, Fig. 3 shows that the probability of finding
the target value in at most 2 minutes is approximately 5% for both
TS and TS-VN, while it is 80% for TS-LTM. For the larger problem, G3,
Fig. 4 shows that the probabilities of reaching the target value in at
most 15 minutes are approximately 48%, 78%, and 95% for TS-VN,
TS, and TS-LTM, respectively. The analysis of the run-time distribu-
tions leads therefore to results that are consistent with the previous
ones obtained using the other comparison criteria, in the sense that
TS as well as TS-LTM perform much better than TS-VN, and that TS-
LTM outperforms TS. It also indicates that TS-LTM is robust, and the
quality of the initial solution does not make any significant differ-
ence in terms of the quality of the final solution.

In conclusion, it seems to be worth using the proposed ap-
proach to solve the open-pit mine production scheduling problem
with metal uncertainty. The results indicate that when problems
are relatively small, the three methods introduced in this paper
can generate very good solutions. For larger problems, the compar-
ison indicates that TS-LTM is more effective and robust than TS-VN
and TS. Solution times required by the three methods are reason-
able even for problems of large size. For problems C5 and G5 of
realistic size, CPU times are approximately 2 and 2.5 hours, respec-
tively, while CPLEX is not able to solve even the linear relaxation of
any of these problems within 4 weeks.
6. Conclusions

In this paper, we have proposed a metaheuristic method based
on a Tabu search procedure to solve an important real-world prob-
lem that arises in surface mine planning, namely the open-pit mine
production scheduling problem with metal uncertainty. To search
the feasible domain more extensively, we have used two different
diversification strategies to generate several initial solutions to be
optimized by the Tabu search procedure. The first diversification
strategy, LTM, exploits a long-term memory of the search history.
The second one, VN, relies on the variable neighborhood search
method.

Two variants of the solution method TS-LTM and TS-VN, ob-
tained by combining the Tabu search procedure TS with the two
diversification strategies LTM and VN, respectively, were com-
pared on 10 problems based on real-life data and having different
sizes. This comparison shows that for problems of relatively small
sizes, TS-VN produces solutions as good as TS-LTM. It is, however,
not competitive with TS-LTM on larger problems, nor is it compet-
itive with a pure Tabu search.

The upper bounds provided by CPLEX allowed us to evaluate the
quality of the solutions generated by the two variants. Results indi-
cate that the variant TS-LTM performs very well on all the tested
problems and is very robust. Indeed, the gap between the solutions
generated by this variant and the upper bounds obtained using
CPLEX is smaller than 4% in 92:5% of all runs. Results also indicate
that the computational times of the proposed solution method are
reasonable and significantly smaller than those required by CPLEX
to solve the linear relaxation of the problem.
Another interesting feature of the proposed solution method is
its flexibility. Even though it is introduced for the specific problem
studied in this paper and the specific approach used to address me-
tal uncertainty, it can be easily adapted to deal with other uncer-
tainty modeling approaches and additional scheduling
constraints. Future research will be devoted to adapting it to solve
more complex versions of the problem that include additional
operational constraints and other sources of uncertainty. We are
also interested in designing parallel algorithms to improve the per-
formance of the solution method for large problems.

Another important research direction is the development of
other efficient solution approaches. Since it has been observed
empirically that the problem formulation often achieves small
integrality gaps, one approach could be to solve the linear relaxa-
tion of the problem using an efficient algorithm and then to use
an LP-rounding procedure to get an integer solution. Similar ap-
proaches are proposed in Meagher (2010) and Moreno et al.
(2010) to solve the deterministic version of the open pit mine pro-
duction scheduling problem.
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